JPS60106540A - Decoloration of solution - Google Patents

Decoloration of solution

Info

Publication number
JPS60106540A
JPS60106540A JP58213905A JP21390583A JPS60106540A JP S60106540 A JPS60106540 A JP S60106540A JP 58213905 A JP58213905 A JP 58213905A JP 21390583 A JP21390583 A JP 21390583A JP S60106540 A JPS60106540 A JP S60106540A
Authority
JP
Japan
Prior art keywords
anion exchange
exchange resin
solution
resin
powdered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58213905A
Other languages
Japanese (ja)
Other versions
JPH0547269B2 (en
Inventor
Fumio Maekawa
文男 前川
Koji Kawasaki
川崎 耕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITOCHU SEITO KK
Original Assignee
ITOCHU SEITO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITOCHU SEITO KK filed Critical ITOCHU SEITO KK
Priority to JP58213905A priority Critical patent/JPS60106540A/en
Publication of JPS60106540A publication Critical patent/JPS60106540A/en
Publication of JPH0547269B2 publication Critical patent/JPH0547269B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To realize econimical decoloration of solution and to improve decoloration efficiency of solution by reusing used particulate anion exchange resin used in another process by recovering and regenerating the resin with a reactivating agent for repeated use. CONSTITUTION:In a process for decolorizing solution by allowing the solution to contact with powdery anion exchange resin, particulate anion exchange resin used in another process is crushed to <=250mu fine particle size which is reactivated by allowing the fine particles to contact with acid (e.g. HCl) and/or metal ion-contg. soln. (e.g. aq. NaCl) to obtain regenerated resin, which is used in this process. The regenerated resin which has been deteriorated again in this process due to adsorption of adsorbate consisting primarily of coloring matters is allowed to contact with acid (e.g. HCl) and/or metal ion-contg. soln. (e.g. aq. NaCl) to regenerate, and regenerated resin is used repeatedly. By this method, economical decoloration of solution is performed, treating efficiency is improved, and decoloration cost is reduced.

Description

【発明の詳細な説明】 色価に着色される溶液の脱色方法に関するものであり、
さらに詳細には粉末状陰イオン交換樹脂を用いた脱色方
法の改良に関するものである。
[Detailed Description of the Invention] This invention relates to a method for decolorizing a solution colored by a color value,
More specifically, the present invention relates to improvements in decolorizing methods using powdered anion exchange resins.

従来、陰イオン交換樹脂が脱塩ばかりでなく脱色にも有
効であることが知られており、例えば精製糖工業におい
て脱色工程等で利用されている。
It has been known that anion exchange resins are effective not only for desalination but also for decolorization, and are used, for example, in the decolorization process in the sugar refining industry.

そして、その使用態様としては、一般に粒径が0。In terms of usage, the particle size is generally 0.

3〜0.6鶴の粒状陰イオン交換樹脂を吸着塔内に充填
せしめ、当該充填層に被処理液を通液して溶液中の色素
成分を吸着せしめるというものが知られている。
It is known that an adsorption tower is filled with 3 to 0.6 granular anion exchange resins, and a liquid to be treated is passed through the packed bed to adsorb the dye component in the solution.

このような充填層に被処理液を通液する方法は単に充填
層に通液するだけであるから操作が比較的簡単であると
いう反面、吸着表面積が小さく吸着速度が遅いので、処
理能力が低(通液速度をそれほど速くすることができな
いという欠点を有する。このため吸着塔が比較的大きく
なり易く、かつ理論的吸着台量に対する利用率も比較的
小さくなってしすっている。
This method of passing the liquid to be treated through the packed bed is relatively easy to operate because the liquid is simply passed through the packed bed, but on the other hand, the processing capacity is low because the adsorption surface area is small and the adsorption speed is slow. (It has the disadvantage that the liquid passing rate cannot be made very high. For this reason, the adsorption tower tends to be relatively large, and the utilization rate with respect to the theoretical adsorption platform amount is also relatively small.

そこでさらに、吸着表面積の大きな粉末状陰イオン交換
樹脂を上記脱色に利用することが考えられている。この
粉末状陰イオン交換樹脂を用いれば、被処理液の通液速
度を大幅に速めることができ、かつ理論的吸着容量に対
する利用率も上昇しわずかな樹脂量で効果的に脱色する
ことができるところで、粒状の陰イオン交換樹脂を充填
塔等に充填し各種溶液の脱色ある(゛)は脱塩等に用い
ると、使用していくうちに貫流容量の低下や処理液の純
度の低下などが生じ、その能力が低下する。
Therefore, it has been considered to utilize a powdered anion exchange resin having a large adsorption surface area for the above-mentioned decolorization. By using this powdered anion exchange resin, the flow rate of the liquid to be treated can be greatly increased, and the utilization rate relative to the theoretical adsorption capacity can also be increased, making it possible to effectively decolorize with a small amount of resin. By the way, if granular anion exchange resin is packed in a packed tower or the like and used for decolorizing various solutions (゛), it may cause a decrease in the through-flow capacity or a decrease in the purity of the treated solution as it is used. occurs, and its ability decreases.

一般に粒状の陰イオン交換樹脂の能力の低下は、交換容
量の低下と粒子表面に有機物が不可逆的に吸着する所謂
有機物汚染による粒子内拡散速度の低下の2つの要因が
考えられるが、例えは溶剤等で洗浄しても有機物等の被
吸着物質をほとんど除去することができず上記陰イオン
交換樹脂の能力が元の状態に同値しないことが知られて
いる。このため、上記粒状の陰イオン交換樹脂はある時
期に新品のものと交換され、産業廃棄物として廃棄され
る。これは、上記粉末状の陰イオン交換樹脂においても
同様であると考えられ、能力の低下した粉末状陰イオン
交換樹脂も使い捨てにされている。
In general, the decrease in the ability of granular anion exchange resins is thought to be due to two factors: a decrease in exchange capacity and a decrease in the intra-particle diffusion rate due to so-called organic contamination, in which organic matter is irreversibly adsorbed on the particle surface. It is known that even if the anion exchange resin is washed with organic substances, it is hardly possible to remove adsorbed substances such as organic substances, and the ability of the anion exchange resin is not equivalent to its original state. Therefore, the granular anion exchange resin is replaced with a new one at some point and discarded as industrial waste. This is thought to be the same for the above-mentioned powdered anion exchange resins, and powdered anion exchange resins with reduced performance are also disposed of.

このように陰イオン交換樹脂を使い捨てにする、と、こ
の陰イオン交換樹脂が高価なものであるの、でランニン
グコストが増大するばかりか、産業廃棄物である使用済
樹脂の処分が問題となっている。
If the anion exchange resin is made disposable in this way, not only will running costs increase because the anion exchange resin is expensive, but the disposal of the used resin, which is industrial waste, will become a problem. ing.

特に高色価溶液を処理する場合には、上記樹脂を頻繁に
交換しなくてはならないので上記問題が一層顕著なもの
となっている。
Particularly when processing high color value solutions, the above-mentioned problem becomes even more pronounced because the above-mentioned resin must be replaced frequently.

本発明者等は上述の実情に鑑みて鋭意検討した結果、他
の工程で1度使用して使えなくなった使用済み粒状陰イ
オン交換樹脂を粉砕して微粉末となしある種の溶剤と接
触させてやると粒状の状態では脱着不可能であった被吸
着物質を速やかに除去して新品同様に回生ずることがで
き、さらに再生により繰り返し使用し得ることを見出し
本発明を完成したものであって、溶液を粉末状陰イオン
交換樹脂に接触させて脱色するにあたり、上記粉末状陰
イオン交換樹脂として他の工程で使用した使用済みの粒
状陰イオン交換樹脂を250μm以下の微粒子に粉砕し
さらに酸及び/または金属イオン含有溶液に接触させる
ことにより回生じて得られる粉末′状陰イオン交換樹脂
を用いるとともに、上記脱色により色素成分を中心とす
る被吸着物質を吸着した粉末状陰イオン交換樹脂を酸及
び/または金属イオン含有溶液と接触させて再生し、繰
り返し使用することを特徴とするものである。
As a result of intensive studies in view of the above-mentioned circumstances, the inventors of the present invention have found that used granular anion exchange resin that has been used once in another process is crushed into fine powder, and brought into contact with a certain type of solvent. The inventors have completed the present invention by discovering that the adsorbed substances that could not be desorbed in the granular state can be quickly removed and regenerated as if they were new, and that they can be used repeatedly through regeneration. In order to decolorize the solution by contacting the powdered anion exchange resin, the used granular anion exchange resin used in other processes as the powdered anion exchange resin is pulverized into fine particles of 250 μm or less, and then acid and Alternatively, a powdered anion exchange resin obtained by recycling by contacting with a metal ion-containing solution is used, and a powdered anion exchange resin that has adsorbed the adsorbed substances, mainly pigment components, by the decolorization is acidified. And/or it is characterized by being brought into contact with a metal ion-containing solution to be regenerated and used repeatedly.

以下、本発明の実施態様を第1図を参照しながら説明す
る。
Hereinafter, embodiments of the present invention will be described with reference to FIG.

本発明においては、溶液を脱色するために粉末状陰イオ
ン交換樹脂1を用いるわけであるが、この粉末状陰イオ
ン交換樹脂1を製造するために、使用済み粒状陰イオン
交換樹脂2を用意する。
In the present invention, a powdered anion exchange resin 1 is used to decolorize a solution, and in order to produce this powdered anion exchange resin 1, a used granular anion exchange resin 2 is prepared. .

上記使用済み粒状陰イオン交換樹脂2としては、前述し
た如き、各種脱色工程や脱塩工程等で使用され本来廃棄
されるようなものでよい。また、その種類も、スチレン
とジビニルベンゼンの共重合物あるいはアクリルとジビ
ニルベンゼンの共重合物などの母体に第4級アンモニウ
ム基、アルカノール基、第3級アミン基、第2級アミン
基、第1級アミン基、ポリアミン基などのイオン交換基
を有する強塩基性陰イオン交換樹脂、中塩基性陰イオン
交換樹脂、弱塩基性陰イオン交換樹脂等、いがなる陰イ
オン交換樹脂であっても使用することができ、そのイオ
ン形もOH形の他、CA形、804 形等の各種の塩形
のものが挙げられるが、特にCI形強塩基性陰イ°オン
又換樹脂が最も効果的である。
The used granular anion exchange resin 2 may be one that is used in various decolorization processes, desalination processes, etc. and is originally discarded, as described above. In addition, the types include a matrix such as a copolymer of styrene and divinylbenzene or a copolymer of acrylic and divinylbenzene, and a quaternary ammonium group, an alkanol group, a tertiary amine group, a secondary amine group, a primary amine group, etc. Can be used even if it is an anion exchange resin, such as strongly basic anion exchange resins, medium basic anion exchange resins, weak basic anion exchange resins, etc. that have ion exchange groups such as grade amine groups and polyamine groups. In addition to the OH form, its ionic form includes various salt forms such as the CA form and the 804 form, but the CI type strongly basic anionic resin is the most effective. be.

次に、この使用済み粒状陰イオン交換樹脂2を粉砕工程
3により微粒子状に粉砕する。この粉砕工程3・により
得られる微粒子の粒径としては、250μm以下である
ことが好ましく、より好ましくは100μm以下である
。上記粒径が250μm以上であると色素成分を中心と
する被吸着物質の脱離が難かしくなり、後述の回生が困
難なものとなる。また、上記粉末状イオン交換樹脂の粒
径が5μm以下、特にリークの危険性が大きい1.5μ
m以下のものであるとる別が困難なものとなり後述の脱
色溶液中に該樹脂が混入してしまう虞れがある。
Next, this used granular anion exchange resin 2 is crushed into fine particles in a crushing step 3. The particle size of the fine particles obtained by this pulverization step 3 is preferably 250 μm or less, more preferably 100 μm or less. If the particle size is 250 μm or more, it becomes difficult to remove adsorbed substances, mainly dye components, and regeneration, which will be described later, becomes difficult. In addition, the particle size of the powdered ion exchange resin is 5 μm or less, especially 1.5 μm, which has a high risk of leakage.
If it is less than m, it will be difficult to distinguish, and there is a risk that the resin will be mixed into the decolorizing solution described below.

また、その粉砕方法きしては、気流式粉砕法や凍結粉砕
法、機械的粉砕法等が挙げられるが、特に気流式粉砕法
か凍結粉砕法を用いることが好ましい。
In addition, examples of the pulverization method include a pneumatic pulverization method, a freeze pulverization method, a mechanical pulverization method, etc., and it is particularly preferable to use a pneumatic pulverization method or a freeze pulverization method.

上記気流式粉砕法は、空気の高速渦流による高周波な圧
力変動にともなう振動により原料である粒子状陰イオン
交換樹脂を自己破砕させ微粒子化させる方法であり、5
0μm以下に粉末化するのに要する時間が極めて短時間
(数秒程度)であるという特徴を有している。そしてこ
の粉砕方法によれは、粉砕時の温度上昇が40℃以下で
あるので熱による樹脂の劣化が生ずることがなく、有効
粒径を5〜50μmとしたときにその生産率は99.9
%にも達する。さらに特徴的なことは色素成分等の脱着
性に優れ回生や再生効果が大きな粉末状陰イオン交換樹
脂が得られることである。
The above-mentioned pneumatic pulverization method is a method in which the particulate anion exchange resin, which is a raw material, is self-pulverized into fine particles by vibrations caused by high-frequency pressure fluctuations caused by high-speed vortex flow of air.
It has the characteristic that the time required to powder it to 0 μm or less is extremely short (about several seconds). With this pulverization method, the temperature rise during pulverization is 40°C or less, so there is no deterioration of the resin due to heat, and the production rate is 99.9 when the effective particle size is 5 to 50 μm.
%. A further characteristic feature is that a powdered anion exchange resin can be obtained which has excellent desorption properties of pigment components and has a large regeneration and regeneration effect.

また、上記凍結粉砕法は、粒状の陰イオン交換樹脂に、
例えば液体窒素を直接接触させて一100℃以下に冷却
せしめ、次いで冷却した当該陰イオン交換樹脂をただち
にハンマーミル等で粉末化するものである。なお、上記
冷却に使用できる冷媒としては、上記液体窒素の他に液
体炭酸ガス、液体酸素、液化プロパン等各種の低沸点液
化ガスが挙げられるが、冷却温度が低いことおよび安全
性、経済性の面で液体窒素を用いることが好ましい。
In addition, the above-mentioned freeze-pulverization method uses granular anion exchange resin to
For example, the anion exchange resin is cooled to below -100° C. by direct contact with liquid nitrogen, and then the cooled anion exchange resin is immediately pulverized using a hammer mill or the like. In addition to the above-mentioned liquid nitrogen, refrigerants that can be used for the above-mentioned cooling include various low-boiling point liquefied gases such as liquid carbon dioxide, liquid oxygen, and liquefied propane. Preferably, liquid nitrogen is used on the surface.

この場合にも熱劣化の生じることがなく細かい粒度で、
かつ粒子径が比較的揃った粉末状陰イオン交換樹脂が得
られる。
In this case too, there is no thermal deterioration and the particle size is fine.
Moreover, a powdered anion exchange resin having a relatively uniform particle size can be obtained.

これに対し、ボールミルやハンマーミルを用いた機械的
粉砕法では、粉砕物の粒度を揃えることが難かしく、得
られた粉末状陰イオン交換樹脂を使用するにあたっては
、ふるい等で250〜5μmのものを選別して用いるこ
とが好ましい。さらに、上記機械的粉砕法では粉砕に要
する時間が長く温度上昇も大きいので、当該粉末状陰イ
オン交換樹脂の脱色性能が低下する虞れもある。
On the other hand, in the mechanical pulverization method using a ball mill or hammer mill, it is difficult to make the particle size of the pulverized product uniform, and when using the obtained powdered anion exchange resin, it is necessary to use a sieve etc. to It is preferable to select and use them. Furthermore, in the above-mentioned mechanical pulverization method, the time required for pulverization is long and the temperature rise is large, so there is a possibility that the decolorizing performance of the powdered anion exchange resin may be reduced.

陰イオン交換樹脂はその耐熱温度が比較的低く、例えば
4級アンモニウム基をイオン交換基とするOH形強塩基
性陰イオン交換樹脂の最高操作温度は60℃とされてお
り、当該温度を越えると急速にイオン交換基の熱分解が
生じる。陰イオン交換樹脂による色素成分の吸着機構の
詳細については不明であるが、陰イオン交換樹脂粒子表
面の極性が大いに関与しているものと考えられるので、
その粉砕時に熱が加わるのは好ましくない。
Anion exchange resins have a relatively low heat resistance temperature. For example, the maximum operating temperature of OH type strongly basic anion exchange resins with quaternary ammonium groups as ion exchange groups is 60°C, and if this temperature is exceeded, Thermal decomposition of the ion exchange groups occurs rapidly. Although the details of the adsorption mechanism of dye components by anion exchange resin are unknown, it is thought that the polarity of the anion exchange resin particle surface is largely involved.
It is undesirable that heat is applied during the grinding.

続いて、上記粉砕工程3により微粒子化した樹脂を回生
工程4により回生ずる。 □“上記回生工程4に用いら
れる回生剤としては、酸及び/または金属イオン含有溶
液が挙げられるが、この酸及び/または金属イオン含有
溶液としては、酸含有有機溶剤あるいは金属イオン含有
有機溶剤が効果的であり、特に酸含有アセトン及び酸含
有メタノール、アルカリ金属イオン含有メタノールが効
果的である。その他、上記有機溶剤としてエタノール、
エーテル、クロロホルム、ヘキサン等の有機溶剤を用い
た場合にも色素成分を脱着する効果がある。また、上記
酸としては、塩酸、硫酸、硝酸、リン酸、ギ酸、酢酸等
が挙げられるが、塩酸等の鉱酸を用いた方が効果が高い
。さらに、金属イオン含有溶液として、食塩水、水酸化
す1−リウム含有食塩水、塩酸含有食塩水等を用いても
効果があるが、上記酸含有アセトン等に比べてその回生
効果が劣る。
Subsequently, the resin made into fine particles in the pulverization step 3 is regenerated in a regeneration step 4. □“As the regeneration agent used in the regeneration step 4, an acid and/or metal ion-containing solution may be mentioned. Acid-containing acetone, acid-containing methanol, and alkali metal ion-containing methanol are particularly effective.Other organic solvents include ethanol,
The use of organic solvents such as ether, chloroform, and hexane also has the effect of desorbing pigment components. Further, examples of the acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, etc., but it is more effective to use a mineral acid such as hydrochloric acid. Furthermore, although it is effective to use a saline solution, a saline solution containing 1-lium hydroxide, a saline solution containing hydrochloric acid, etc. as the metal ion-containing solution, the regeneration effect thereof is inferior to that of the acid-containing acetone and the like.

最も好ましいのは、先ず酸及び/または金属イオン含有
水溶液と接触させ、続いて酸及び/または金属イオン含
有重機溶剤と接触させることである。
Most preferably, it is first brought into contact with an aqueous solution containing an acid and/or a metal ion, and then brought into contact with a heavy equipment solvent containing an acid and/or a metal ion.

ところで、上記酸含有有機溶剤中の酸濃度については、
その濃度が高いほど脱着速度が速くなるが、5%以上に
増加しても脱着量はそれほど上昇しなかった。また、酸
含有アセトンを用いた場合に、アセトン中の水分含量は
50%前後まではその脱着性能に差は見られなかった。
By the way, regarding the acid concentration in the above acid-containing organic solvent,
The higher the concentration, the faster the desorption rate, but even when the concentration was increased to 5% or more, the amount of desorption did not increase significantly. Furthermore, when acid-containing acetone was used, no difference was observed in the desorption performance up to a water content of around 50%.

上記微粒子状の陰イオン交換樹脂を、特にアセトン等の
浸透性の大きな有機溶剤を含む回生剤を使用して回生ず
る場合には、その脱着速度が非常に速く、短時間接触さ
せるだけで吸着している色素成分等をほぼ完全に脱離す
ることができる。韮た、上記回生剤として水溶液を用い
た場合には、大量の回生剤を使用することが必要きなり
その使用条件も高温であることが必要となるが、有機溶
剤を主体とする回生剤を用いる場合にはその使用量を大
幅に低減することができ、通常は回生ずる樹脂の10〜
20倍量で十分である。そして、上記有機溶剤を主体と
する回生剤を用いる場合には、回生に利用した有機溶剤
を蒸留等により簡単に回収して再利用することができ、
また廃液の量を減少させることができる等、そのメリッ
トは大きい。
When the above-mentioned fine particulate anion exchange resin is regenerated using a regenerating agent containing a highly permeable organic solvent such as acetone, the desorption rate is extremely fast, and the adsorption can be achieved with just a short period of contact. It is possible to almost completely remove the pigment components, etc. However, if an aqueous solution is used as the regeneration agent, it is necessary to use a large amount of the regeneration agent and the conditions for use must be at high temperatures. In some cases, the amount of resin used can be significantly reduced, and normally 10 to 10% of the regenerated resin is used.
20 times the amount is sufficient. When using a regeneration agent mainly composed of the above-mentioned organic solvent, the organic solvent used for regeneration can be easily recovered and reused by distillation, etc.
It also has great benefits, such as being able to reduce the amount of waste liquid.

さらに、上記有機溶剤を回収する場合には、廃液中の有
価物質の回収をも容易にするという効果もある。
Furthermore, when recovering the organic solvent, there is also the effect of facilitating the recovery of valuable substances in the waste liquid.

上述の回生工程4により、使用済み粒状陰イオン交換樹
脂2の樹脂細孔内部に蓄積した被吸着物質、特に高分子
色素、重金属を含むコロイド成分等は容易に除去され、
新品同様の粉末状陰イオン交換樹脂1が得られる。
Through the above-mentioned regeneration step 4, adsorbed substances accumulated inside the resin pores of the used granular anion exchange resin 2, especially colloidal components containing polymeric dyes and heavy metals, are easily removed.
A powdered anion exchange resin 1 that is as good as new is obtained.

そして、この粉末状陰イオン交換樹脂1に着色した被処
理溶液5を通液し、脱色溶液6を得る。
Then, the colored solution 5 to be treated is passed through the powdered anion exchange resin 1 to obtain a decolorized solution 6.

上記粉末状陰イオン交換樹脂1は脱色作用の点で骨炭や
粒状活性炭より優れた性能を有しており、被処理溶液5
に対して0.5係の使用量で元号に目的が達成される。
The powdered anion exchange resin 1 has better performance than bone char or granular activated carbon in terms of decolorization, and the solution to be treated 5
The purpose of the era name is achieved with the usage of 0.5 units.

さらに、この使用量は、多段接触方式または粉末樹脂層
方式を採用することにより大幅に減少することもできる
。したがって、単位樹脂量当りの溶液精製量も著しく上
昇し、特に粉末樹脂層方式では従来の粒状の陰イオン交
換樹脂を用いたものに比べて約10倍量にも達する。
Furthermore, this amount can be significantly reduced by adopting a multi-stage contact method or a powder resin layer method. Therefore, the amount of solution purified per unit amount of resin increases significantly, and in particular, in the powder resin layer method, the amount reaches about 10 times that of the conventional method using a granular anion exchange resin.

なお、上記粉末状樹脂層を作成する場合には、粉末状陰
イオン交換樹脂とケイソウ土、繊維状ろ過助剤特とを混
合使用してもよい。
In addition, when creating the powdered resin layer, a powdered anion exchange resin, diatomaceous earth, and a fibrous filter aid may be used in combination.

また、粉末状陰イオン交換樹脂1を用いた場合の被処理
液5としては、色価指数A、I、(Attenua−t
ion Index ) l Q 9以上の高色価溶液
である場合に最も効果的に脱色することができる。
In addition, when the powdered anion exchange resin 1 is used, the liquid to be treated 5 includes color indexes A, I, (Attenua-t
Decolorization can be achieved most effectively when the solution has a high color value of ion Index ) l Q 9 or higher.

さらに、上記粉末状陰イオン交換樹脂1は、粒状陰イオ
ン交換樹脂に比べて単に吸着量が多いはかりでな(,5
60〜720nmの可視高波長領域に吸光度特性を有す
る高分子色素に対して特異的に吸着量が大きいことが判
明した。
Furthermore, the powdered anion exchange resin 1 simply has a larger adsorption amount than the granular anion exchange resin (,5
It was found that the adsorption amount was specifically large for polymer dyes having absorbance characteristics in the visible high wavelength region of 60 to 720 nm.

一方、上記粉末状陰イオン交換樹脂1の脱色能力が低下
してきたら、再生工程7により再生する。
On the other hand, if the decolorizing ability of the powdered anion exchange resin 1 begins to decline, it is regenerated in a regeneration step 7.

この再生工程7で用いる再生剤は、先の回生工程4で用
いた回生剤と同様のものを用いればよく、例えば上記粉
末状陰イオン交換樹脂1をバッチ方式で攪拌接触させて
色素成分等の被吸着物質を脱離し、再び被処理5の脱色
に用いる。
The regenerating agent used in this regeneration step 7 may be the same as the regenerating agent used in the previous regeneration step 4. For example, the powdered anion exchange resin 1 is brought into contact with stirring in a batch method to remove pigment components, etc. The adsorbed substance is desorbed and used again to decolorize the treated object 5.

本発明は粉末状陰イオン交換樹脂1で吸着することがで
きる色素成分を含む溶液であればいかなる溶液の脱色に
も適用することができるが、特に甘蔗糖液や甜菜糖液等
の各種糖液、各種植物搾汁、パルプ工場廃液、食品工場
排水等の脱色に適用した場合に再生効果が非常に大きく
有用である。
The present invention can be applied to decolorizing any solution as long as it contains a pigment component that can be adsorbed by the powdered anion exchange resin 1, but in particular various sugar solutions such as cane sugar solution and sugar beet solution. It has a very large regeneration effect and is useful when applied to decolorizing various plant juices, pulp factory waste liquid, food factory waste water, etc.

特に、糖液の精製に適用する場合には上述の粉末状陰イ
オン交換樹脂と粉末状陽イオン交換樹脂とを併用するこ
とにより、例えばマグネシア清浄工程や炭酸飽充工程で
処理された糖液中の硬度成分をも除去することができ、
精製工程の省略を図ることができる。
In particular, when applied to the purification of sugar solutions, the above-mentioned powdered anion exchange resin and powdered cation exchange resin can be used in combination to improve sugar solution that has been treated, for example, in the magnesia cleaning process or carbonate filling process. It can also remove the hardness component of
The purification process can be omitted.

以上述べたように、本発明によれば本来廃棄されるべき
ものである使用済み粒状陰イオン交換樹脂を回生じて新
品同様に使用することができ、さらに再生剤により再生
して繰り返し使用しているので、経済的メリットは極め
て太き(、丈た産業廃棄物の量が著しく減少するので処
理労力や公害等の観点からも好ましい。さらに、粉末状
陰イオン交換樹脂の脱色能力が極めて高いので処理効率
を向上し脱色コストを低減することも可能である。
As described above, according to the present invention, used granular anion exchange resin, which should originally be discarded, can be recycled and used like new, and furthermore, it can be recycled with a regenerating agent and used repeatedly. Since the amount of solid industrial waste is significantly reduced, it is favorable from the viewpoint of processing labor and pollution.Furthermore, the decolorizing ability of the powdered anion exchange resin is extremely high. It is also possible to improve processing efficiency and reduce decolorization costs.

次に、本発明をより明確なものとするために具体的な実
施例について説明するが、本発明がこれら実施例に限定
されるものでないことは言うまでもない。
Next, specific examples will be described in order to make the present invention more clear, but it goes without saying that the present invention is not limited to these examples.

実施例1 甘蔗糖液の精製イオン交換樹脂工程に使用して能力の低
下した使用済み粒状強塩基性陰イオン交換樹脂をボール
ミルにて粉砕し、第1表に示すような粒度分布を有する
粉末状陰イオン交換樹脂を篩分法により調製した。
Example 1 Purification of cane sugar liquid Used granular strongly basic anion exchange resin whose capacity has decreased due to use in the ion exchange resin process is ground in a ball mill to obtain a powder having a particle size distribution as shown in Table 1. Anion exchange resin was prepared by sieving method.

これら各粒度分布を有する粉末状陰イオン交換樹脂1g
(乾燥重量)を、1%HC6含有10%食塩水5Qm/
を用いて70℃の温度条件で回生じた。
1g of powdered anion exchange resin having each of these particle size distributions
(dry weight) in 10% saline solution containing 1% HC6/5Qm/
It was recycled at a temperature of 70° C. using

この回生操作で得られた回生排液をPH7に中和して2
00m1に希釈し、この排液の吸光度を分光光度計によ
り測定して各粒度分布における脱着色素置をその吸光度
により比較した。さらに、上記回生操作により回生じた
粉末状陰イオン交換樹脂に残存する重金属量を食品添加
物公定分析法に基づいて測定した。結果を第1表に示す
The regenerated effluent obtained from this regeneration operation is neutralized to pH 7 and
The absorbance of this waste liquid was measured using a spectrophotometer, and the desorption dye placement in each particle size distribution was compared based on the absorbance. Furthermore, the amount of heavy metals remaining in the powdered anion exchange resin regenerated by the regeneration operation was measured based on the official food additive analysis method. The results are shown in Table 1.

第1表 この第1表からも明らかなように、粒状陰イオン交換樹
脂(粒径25.0μm以上)の状態では色素成分がほと
んど脱着しなかったのに対し、250μm以下、特に1
05μm以下に微粒子化することによって脱着色素量が
大幅に向上し、これに伴なって残留重金属も減少して回
生効果が向上している。特に、600μmにおける吸光
度が1(if)倍以上にもなっており、従来の粒状陰イ
オン交換樹脂では除去することかできなかった高分子の
色素成分をも脱着することができることが判明した。
Table 1 As is clear from Table 1, in the state of granular anion exchange resin (particle size of 25.0 μm or more), almost no pigment component was desorbed, whereas in the state of granular anion exchange resin (particle size of 25.0 μm or more), the pigment component was hardly desorbed.
By making the particles smaller than 0.05 μm, the amount of desorbed dye is greatly increased, and the residual heavy metals are also reduced, improving the regeneration effect. In particular, the absorbance at 600 μm was more than 1 (if) times higher, and it was found that it was possible to desorb polymeric dye components that could only be removed with conventional granular anion exchange resins.

実施例2 甘蔗糖液の精製イオン交換樹脂工程に使用して能力の低
下した使用済み粒状強塩基状陰イオン交換樹脂を気流粉
砕法にて粒径50μm以下(平均粒径18.5μm)に
粉砕し、得られる粉末状陰イオン交換樹脂1g(乾燥重
量)に対し第2表に示す回生剤50m/を加えて攪拌し
ながら30分間接触させた。各回生剤による脱着色素量
及び樹脂中に残留する重金属量を第2表に示す。
Example 2 Purification of cane sugar liquid Used granular strong basic anion exchange resin whose capacity has decreased due to use in the ion exchange resin process is pulverized to a particle size of 50 μm or less (average particle size 18.5 μm) using an air flow pulverization method. Then, 50 m/g of the regenerating agent shown in Table 2 was added to 1 g (dry weight) of the obtained powdered anion exchange resin, and the mixture was brought into contact with the resin for 30 minutes while stirring. Table 2 shows the amount of dye desorbed by each regenerating agent and the amount of heavy metals remaining in the resin.

なお、上記回生は、回生剤が有機溶剤を主体とするもの
である場合には常温下で、水溶液を主体とするものであ
る場合には70℃で行なった。また、上記脱着色素量は
420 nmに吸光度を有する色素成分に対・してのみ
算出し、その算出方法は次式によった。
Note that the regeneration was performed at room temperature when the regeneration agent was based on an organic solvent, and at 70° C. when the regeneration agent was based on an aqueous solution. Further, the amount of the desorbed dye was calculated only for the dye component having absorbance at 420 nm, and the calculation method was according to the following formula.

第2表 重 量 〕 」 」 ヨ ヨ ヨ 」 この第2表から、有機溶剤を主体とする回生剤において
脱着効果が優れ、特に先ず酸及び/韮たは金属イオン含
有水溶液である1%NaOH含有10%Nn水と接触さ
せ、続いて酸及び/または金属イオン含有有機溶剤であ
る5%HCl含有80%メタノール水と接触させれば極
めて効果的こと色素成分を除去することができることが
明らかである。
Table 2 Weight] ``Yoyoyo'' From this Table 2, it can be seen that the desorption effect is excellent in regenerating agents mainly composed of organic solvents, and that 10% Nn containing 1% NaOH, which is an aqueous solution containing acid and/or metal ions, is particularly effective. It is clear that contact with water followed by contact with 80% methanol water containing 5% HCl, an organic solvent containing acids and/or metal ions, can remove the pigment components very effectively.

実施例3 甘蔗糖液の精製イオン交換樹脂工程に使用して能力の低
下した使用済み粒状強塩基性陰イオン交換樹脂を気流粉
砕法にて粒径50μm以下(平均粒径18.5μm)に
粉砕して粉末状陰イオン交換樹脂を得た。
Example 3 Purification of cane sugar liquid Used granular strong basic anion exchange resin whose capacity has decreased due to use in the ion exchange resin process is pulverized to a particle size of 50 μm or less (average particle size 18.5 μm) using an air flow pulverization method. A powdered anion exchange resin was obtained.

得られた粉末状陰イオン交換樹脂1g(乾燥重量)を精
製糖工場における炭酸飾光工程終了後の精製中間糖液(
BX60.PH8,0,転化糖0.16 % 。
1 g (dry weight) of the obtained powdered anion exchange resin was added to the purified intermediate sugar solution (
BX60. PH8.0, invert sugar 0.16%.

色価r、b、u、 1237 ) 200mlに添加し
、70℃、30分間攪拌しながら色素成分を吸着させた
。吸着終了後、0.8μのメンブレンフィルタラ用イて
収して100ゴのビー力に移した。
Color values r, b, u, 1237) were added to 200 ml, and the pigment components were adsorbed while stirring at 70° C. for 30 minutes. After the adsorption was completed, the mixture was collected using a 0.8μ membrane filter and transferred to a beer force of 100μ.

この色素成分を吸着した粉末状陰イオン交換樹脂に20
1ft/のアセトン及び36%濃塩酸2 mlを加え、
マダネティックスターラ上で15分間攪拌して再生し、
上記粉末状陰イオン交換樹脂をろ紙(茄2)を用いてろ
別した。同様の操作を2回実施し、再生排液を合わせて
NaOH溶液で中和した後、200m1に希釈して分光
光度計により吸光度を測定し、色素脱着率をめた。なお
、上記色素脱着率は式 再生排液の色価(r、b、u、) X100(%) ニヨリ求メ、マタ色価(r、b、u、)は420nm及
び720 nmの吸光度より次式により算出した。
The powdered anion exchange resin that has adsorbed this pigment component contains 20%
Add 1 ft/ of acetone and 2 ml of 36% concentrated hydrochloric acid,
Stir for 15 minutes on a madanetic stirrer to regenerate.
The powdered anion exchange resin was filtered using filter paper (No. 2). The same operation was carried out twice, and the regenerated effluents were combined and neutralized with NaOH solution, then diluted to 200 ml, and the absorbance was measured with a spectrophotometer to calculate the dye desorption rate. The above dye desorption rate is determined by the following formula: Color value of regenerated effluent (r, b, u,) x 100 (%) Calculated using the formula.

(ただし、式中すはセルの長さを表わし、Cは試料の糖
濃度を表わす。) 再生操作を終了した粉末状強塩基性陰イオン交換樹脂を
充分に水洗した後、被処理液として前述の炭酸飽充工程
終了後の精製中間糖液を用いて、脱色精製−粉末状陰イ
オン交換樹脂回収−再生一説色精製・・・を繰り返した
(However, in the formula, C represents the length of the cell, and C represents the sugar concentration of the sample.) After thoroughly washing the powdered strong basic anion exchange resin after the regeneration operation with water, use it as the liquid to be treated. Using the purified intermediate sugar solution after the completion of the carbonation step, decolorization and purification, collection of powdered anion exchange resin, regeneration, and color purification were repeated.

10サイクルに及ぶ繰り返し操作を実施したが、脱色能
力の低下は認められなかった。
Although the operation was repeated for 10 cycles, no decrease in decolorizing ability was observed.

各サイクルにおける処理糖液の品質と各再生操作におけ
る色素脱着率を第3表に示す。
Table 3 shows the quality of the treated sugar solution in each cycle and the dye desorption rate in each regeneration operation.

/′ / 7・′ / /″ / 第3表 実施例4 脱塩工程で300サイクル使用済みの粒状強塩基性陰イ
オン交換樹脂(商品名ダイヤイオンPA308)を気流
粉砕法により粉砕し、粉末状陰イオン交換樹脂(平均粒
径23μm)を得た。
/' / 7・' / /'' / Table 3 Example 4 A granular strongly basic anion exchange resin (trade name Diaion PA308) that has been used for 300 cycles in the desalination process is pulverized by an air flow pulverization method to form a powder. An anion exchange resin (average particle size 23 μm) was obtained.

得られた粉末状陰イオン交換樹脂19(乾燥重量)を食
品工場の着色排水10ノに添加し、常温で20分間攪拌
して処理した。上記処理終了後に粉末状陰イオン交換樹
脂を10μのメンブレンフィルタでろ別し、2007M
のビー力中へ回収した。
The obtained powdered anion exchange resin 19 (dry weight) was added to 10 liters of colored wastewater from a food factory, and treated by stirring at room temperature for 20 minutes. After completing the above treatment, the powdered anion exchange resin was filtered through a 10μ membrane filter, and 2007M
It was recovered into the beer force.

この回収粉末状陰イオン交換樹脂に80係メタノール水
100m/と濃硝酸(48% ) 10 mlを添加し
、超音波攪拌を30分間継続した。続いて10μのメン
ブレンフィルタを用いて当該粉末状陰イオン交換樹脂を
回収し、洗浄後、前述の着色排水を用いて同様の操作を
3サイクル繰り返したが脱色能力の低下はほとんど認め
られなかった。結果を第4表に示す。
To this recovered powdered anion exchange resin, 100 m/80 methanol water and 10 ml of concentrated nitric acid (48%) were added, and ultrasonic stirring was continued for 30 minutes. Subsequently, the powdered anion exchange resin was collected using a 10μ membrane filter, and after washing, the same operation was repeated for three cycles using the colored wastewater described above, but almost no decrease in decolorization ability was observed. The results are shown in Table 4.

なお、第一4表中ssはJ IS KO1020)方法
(Cより測定した。
Note that ss in Table 14 was measured according to JIS KO1020 method (C).

第4表Table 4

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した溶液の脱色方法の工程を示す
説明図である。 特許出願人 伊藤忠製糖株式会社 代理人 弁理士 小 池 晃 同 田1村 榮 − 第1−
FIG. 1 is an explanatory diagram showing the steps of a method for decolorizing a solution to which the present invention is applied. Patent applicant: Itochu Sugar Co., Ltd. Representative Patent attorney: Kodo Koike Sakae Taichimura - Part 1-

Claims (1)

【特許請求の範囲】[Claims] 溶液を粉末状陰イオン交換樹脂に接触させて脱色するに
あたり、上記粉末状陰イオン交換樹脂として他の工程で
使用した使用済みの粒状陰イオン交換樹脂を250μm
以下の微粒子に粉砕しさらに酸及び/または金属イオン
含有溶液に接触させることにより回生じて得られる粉末
状陰イオン交換樹脂を用いるとともに、上記脱色により
色素成分を中心とする被吸着物質を吸着した粉末状陰イ
オン交換樹脂を酸及び/または金属イオン含有溶液と接
触させて再生し、繰り返し使用することを特徴とする溶
液の脱色方法。
When the solution is brought into contact with the powdered anion exchange resin to decolorize it, the used granular anion exchange resin used in other processes is used as the powdered anion exchange resin.
A powdered anion exchange resin obtained by grinding into the following fine particles and recovering by contacting with an acid and/or metal ion-containing solution was used, and the adsorbed substances, mainly pigment components, were adsorbed by the decolorization described above. A method for decolorizing a solution, which comprises bringing a powdered anion exchange resin into contact with an acid and/or metal ion-containing solution to regenerate and repeatedly use the resin.
JP58213905A 1983-11-16 1983-11-16 Decoloration of solution Granted JPS60106540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58213905A JPS60106540A (en) 1983-11-16 1983-11-16 Decoloration of solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213905A JPS60106540A (en) 1983-11-16 1983-11-16 Decoloration of solution

Publications (2)

Publication Number Publication Date
JPS60106540A true JPS60106540A (en) 1985-06-12
JPH0547269B2 JPH0547269B2 (en) 1993-07-16

Family

ID=16646961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213905A Granted JPS60106540A (en) 1983-11-16 1983-11-16 Decoloration of solution

Country Status (1)

Country Link
JP (1) JPS60106540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608245A (en) * 1985-10-17 1986-08-26 Gaddy James L Method of separation of sugars and concentrated sulfuric acid
WO2018096272A2 (en) 2016-11-24 2018-05-31 Novasep Process Purification method using a low granulometry resin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511385A (en) * 1978-07-11 1980-01-26 Nec Corp Light combining system
JPS5542598A (en) * 1978-09-19 1980-03-25 Rohm & Haas Sugar refining method using emulsion anionic exchange resin
JPS5546218A (en) * 1978-09-25 1980-03-31 Sony Corp Manufacturing method of image pick-up device
JPS5547148A (en) * 1978-09-19 1980-04-03 Rohm & Haas Emulsion copolymer cation and anion exchange resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511385A (en) * 1978-07-11 1980-01-26 Nec Corp Light combining system
JPS5542598A (en) * 1978-09-19 1980-03-25 Rohm & Haas Sugar refining method using emulsion anionic exchange resin
JPS5547148A (en) * 1978-09-19 1980-04-03 Rohm & Haas Emulsion copolymer cation and anion exchange resin
JPS5546218A (en) * 1978-09-25 1980-03-31 Sony Corp Manufacturing method of image pick-up device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608245A (en) * 1985-10-17 1986-08-26 Gaddy James L Method of separation of sugars and concentrated sulfuric acid
WO2018096272A2 (en) 2016-11-24 2018-05-31 Novasep Process Purification method using a low granulometry resin
US10870895B2 (en) 2016-11-24 2020-12-22 Novasep Process Purification method using a low granulometry resin

Also Published As

Publication number Publication date
JPH0547269B2 (en) 1993-07-16

Similar Documents

Publication Publication Date Title
US4430226A (en) Method and apparatus for producing ultrapure water
CA2199497C (en) Water treatment process
US3730770A (en) Sugar recovery method
US3800031A (en) Process for preparing silica hydrogel
US3442798A (en) Oxidation and reclamation process
US6225256B1 (en) Activated carbon feedstock
CN108993431A (en) A kind of humic acid Modified clay mineral adsorbent and preparation method thereof
JPS60106540A (en) Decoloration of solution
US3371112A (en) Purification of crude malic acid liquors
JPS60106539A (en) Decoloration of solution
CA1184853A (en) Agent and method for the treatment of production cycle and effluent water of the papermaking and related industries
RU2076846C1 (en) Process for purifying water
JPH0796082B2 (en) Fibrous adsorbent, solution processing method and solution processing apparatus using the same
RU2187459C2 (en) Method of adsorption treatment of waste waters to remove petroleum products and metal ions
US2471213A (en) Treatment of aqueous liquids
NL2029939A (en) Treatment process for purifying chlorine-containing wastewater by crystallization of ammonium salt
JPH059077B2 (en)
Englis et al. Production of a palatable artichoke sirup
JPH0577400B2 (en)
JPS609499A (en) Refining method of sugar liquid
Bashir et al. Recycling of the exhausted cation exchange resin for stabilized landfill leachate treatment
JPS6142336A (en) Regeneration of powdery anion exchange resin
WO2000001459A1 (en) Small diameter water stable zeolite composite useful as an ion exchange material
JPH0510079B2 (en)
RU2047558C1 (en) Method for activated carbon regeneration