JPH0547069B2 - - Google Patents

Info

Publication number
JPH0547069B2
JPH0547069B2 JP61170850A JP17085086A JPH0547069B2 JP H0547069 B2 JPH0547069 B2 JP H0547069B2 JP 61170850 A JP61170850 A JP 61170850A JP 17085086 A JP17085086 A JP 17085086A JP H0547069 B2 JPH0547069 B2 JP H0547069B2
Authority
JP
Japan
Prior art keywords
fluid
flow
flow velocity
distribution
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61170850A
Other languages
Japanese (ja)
Other versions
JPS6327766A (en
Inventor
Hajime Yuasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP17085086A priority Critical patent/JPS6327766A/en
Publication of JPS6327766A publication Critical patent/JPS6327766A/en
Publication of JPH0547069B2 publication Critical patent/JPH0547069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • G01M9/065Measuring arrangements specially adapted for aerodynamic testing dealing with flow
    • G01M9/067Measuring arrangements specially adapted for aerodynamic testing dealing with flow visualisation

Description

【発明の詳細な説明】 (イ) 発明の技術分野〕 本発明は流体、または物体まわりの流体の流れ
を観察する際に、その流れに特別な処理を施さず
にその流速分布を観察できる流れの可視化装置に
関するものである。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to a flow in which the flow velocity distribution can be observed without applying any special processing to the flow when observing the flow of a fluid or a fluid around an object. The present invention relates to a visualization device.

〔従来技術〕[Prior art]

気流、または水流などの流体の流れの中に置か
れた物体の後流など、その流れの流速分布を観察
する場合には、その気流または水流中に煙、気
泡、染料などを混入するトレーサ法及び物体表面
の流跡線を直接見ることのできる油膜法などが従
来使用されている。
When observing the flow velocity distribution of a flow of air or water, such as the wake of an object placed in the flow, the tracer method involves mixing smoke, bubbles, dye, etc. into the air or water flow. The oil film method, which allows direct observation of trajectory lines on the surface of an object, has been conventionally used.

しかしながら、これらの従来方法では、必ずト
レーサとして流体とは異質な物質を使用するた
め、観察時にはその処理まで考慮した手続きが必
要であり、それだけ手間がかかるという問題があ
ると共に、使用する異質物質が流体中に混入し、
例えば大気や海洋などを汚染するという問題があ
つた。一方、赤外線による熱放射強度から被計測
物のコロイド粒子の濃度変動を取得して、その時
間的ずれから、この時間をコロイド粒子群の二平
面間の移動時間を求め、速度を算出する流れ断面
と直交する方向の速度測定方法が知られている
が、この速度測定方法は、測定に供する装置が複
雑で、かつ高価になるという欠点がある。
However, these conventional methods always use a substance that is different from the fluid as a tracer, so it is necessary to take into consideration the treatment of the substance during observation, which is time-consuming. mixed into the fluid,
For example, there was the problem of polluting the atmosphere and oceans. On the other hand, the concentration fluctuation of colloidal particles in the object to be measured is obtained from the thermal radiation intensity of infrared rays, and from the time lag, this time is determined as the travel time of the colloidal particle group between two planes, and the flow cross section is used to calculate the velocity. A method for measuring speed in a direction perpendicular to the direction is known, but this method has the disadvantage that the equipment used for the measurement is complex and expensive.

〔発明の目的〕[Purpose of the invention]

本発明は、流体中に曝された物体表面上の熱エ
ネルギーが周囲流体の流速の関数として流体中に
失われるため、物体表面に熱放射強度の分布が生
ずるという知見を得てなされたものであり、その
目的は、簡便な方式であるにもかかわらず、物体
のまわりを流れる流体の流速分布を瞬時に観察で
きる流れの可視化装置を提供することにある。
The present invention was made based on the knowledge that thermal energy on the surface of an object exposed to a fluid is lost into the fluid as a function of the flow velocity of the surrounding fluid, resulting in a distribution of thermal radiation intensity on the surface of the object. The purpose of the present invention is to provide a flow visualization device that can instantaneously observe the flow velocity distribution of a fluid flowing around an object, although it is a simple method.

〔発明の構成〕[Structure of the invention]

上記の目的を達成するため、本発明の流れの可
視化装置は、流体、または流体の流れの中に置か
れた物体表面を、静止流体中で一定温度になるよ
うに加熱しながらその流体を流して、赤外線撮影
機能を有するテレビカメラで流体の温度分布、ま
たはその物体表面の温度分布の変化を計測すると
共に、その温度分布の変化を、熱放射エネルギー
と表面流速との関係式より表面流速を求めるマイ
コン及び画面処理装置により画面処理して流速分
布用モニターテレビに流速分布としてデイスプレ
イするようにしたことを特徴とするものである。
To achieve the above object, the flow visualization device of the present invention allows the fluid to flow while heating the fluid or the surface of an object placed in the fluid flow to a constant temperature in the stationary fluid. The temperature distribution of the fluid or the change in temperature distribution on the surface of the object is measured using a television camera with an infrared imaging function, and the change in temperature distribution is calculated by calculating the surface flow velocity using the relational expression between thermal radiation energy and surface flow velocity. This feature is characterized in that the screen is processed by a desired microcomputer and screen processing device and displayed as a flow velocity distribution on a flow velocity distribution monitor television.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例について
説明する。第1図は本発明の一実施例における流
れの可視化装置の概略説明図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic explanatory diagram of a flow visualization device in an embodiment of the present invention.

まず、流体の流れFの中に置かれた物体1の表
面を、静止流体中で一定温度になるように外部か
らランプ2で加熱し、その状態でその流体を流し
て、赤外線撮影機能を有するテレビカメラ3で撮
像し、その物体1の表面温度分布の強度に応じた
濃淡、または色段階画像を出力する電子回路4か
らなる既存技術であるサーモグラフイを用いて物
体1の表面の温度分布の変化を計測し、その結果
を温度分布用のモニターテレビ5にデイスプレイ
して観察できるようにしており、これにより物体
1の表面温度の変化を観察することができる。
First, the surface of an object 1 placed in a fluid flow F is heated from the outside with a lamp 2 so that it reaches a constant temperature in a stationary fluid, and the fluid is allowed to flow in that state to obtain an infrared photographing function. The temperature distribution on the surface of the object 1 is measured using thermography, which is an existing technology consisting of an electronic circuit 4 that is imaged by a television camera 3 and outputs a shading or color-graded image according to the intensity of the surface temperature distribution of the object 1. The changes in the surface temperature of the object 1 can be observed by displaying the results on a monitor television 5 for temperature distribution, thereby making it possible to observe changes in the surface temperature of the object 1.

更に、上記の温度分布の変化を、熱放射エネル
ギーと表面流速との関係式より表面流速を求める
マイコン6及び画像処理装置7にて画像処理する
ことにより、流速分布用のモニターテレビ8に流
速分布としてデイスプレイして、流体の流れFの
流速分布を目視により瞬時に観察できるようにし
ている。
Furthermore, the change in the temperature distribution is image-processed by the microcomputer 6 and the image processing device 7, which calculate the surface flow velocity from the relational expression between the thermal radiation energy and the surface flow velocity, and the flow velocity distribution is displayed on the monitor TV 8 for flow velocity distribution. , so that the flow velocity distribution of the fluid flow F can be visually observed instantaneously.

なお、上記実施例の場合、物体1の表面を外部
からランプ2によつて加熱して、静止流体中で一
定温度になるようにしているが、物体1の内部に
ヒーテイングフイラメントなどを組込んで加熱す
るようにしても良い。
In the case of the above embodiment, the surface of the object 1 is heated from the outside by the lamp 2 to maintain a constant temperature in the stationary fluid, but it is also possible to incorporate a heating filament or the like inside the object 1. You may also heat it with

次に、第2図は本発明の他の実施例における流
れFの可視化方法の適用例を示しており、この場
合は、流体の流れFの物体1の物体後流の流速分
布を観察する例であり、赤外線撮影機能を有する
テレビカメラ3の焦点をその物体後流の被計測面
10に合わせ、電気回路4で流体の温度分布の変
化を計測し、それを直接、流速分布に画像処理し
て流速分布用のモニターテレビ8により目視にて
観察するようにしている。
Next, FIG. 2 shows an example of application of the method of visualizing the flow F in another embodiment of the present invention, in this case, an example of observing the flow velocity distribution of the object 1 in the fluid flow F. A television camera 3 with an infrared photographing function is focused on the measured surface 10 behind the object, and an electric circuit 4 measures changes in the temperature distribution of the fluid, which is then directly image-processed into a flow velocity distribution. The flow velocity distribution is visually observed using a monitor television 8 for flow velocity distribution.

この場合、テレビカメラ3の焦点をテレビカメ
ラ3の視野9の被計測面10に合わせ、かつ焦点
深度をできるだけ浅くするように調節しており、
更にその被計測面10に流れ込む流体の流れFを
予熱するため、流れFの上流でマイクロ波Mによ
る非接触昇温を行なつており、これにより昇温し
た流体塊をトレーサとして流体の後流の流速分布
を観察できるようにしてる。
In this case, the focus of the television camera 3 is adjusted to match the measurement surface 10 of the field of view 9 of the television camera 3, and the depth of focus is adjusted to be as shallow as possible.
Furthermore, in order to preheat the fluid flow F flowing into the measurement surface 10, non-contact heating is performed using microwaves M at the upstream side of the flow F, and the heated fluid mass is used as a tracer to generate a wake of the fluid. The flow velocity distribution can be observed.

〔発明の効果〕〔Effect of the invention〕

上記のように、本発明は、流体、または流体の
流れの中に置かれた物体表面を、静止流体中で一
定温度になるように加熱しながらその流体を流し
て、赤外線撮影機能を有するテレビカメラで流体
の温度分布、またはその物体表面の温度分布の変
化を計測すると共に、その温度分布の変化を、熱
放射エネルギーと表面流速との関係式より表面流
速を求めるマイコン及び画面処理装置により画面
処理して流速分布用モニターテレビに流速分布と
してデイスプレイするようにしたので、簡便な方
式であるにもかかわらず、物体のまわりを流れる
流体の流速分布を瞬時に観察できるようになつ
た。
As described above, the present invention provides a television having an infrared photographing function by heating a fluid or the surface of an object placed in a flow of fluid to a constant temperature in a stationary fluid while flowing the fluid. A camera measures the temperature distribution of the fluid or changes in the temperature distribution on the surface of the object, and the changes in temperature distribution are displayed on a screen by a microcomputer and screen processing device that calculates the surface flow velocity from the relational expression between thermal radiation energy and surface flow velocity. By processing the data and displaying it as a flow velocity distribution on a flow velocity distribution monitor television, it has become possible to instantly observe the flow velocity distribution of fluid flowing around an object, although it is a simple method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の流れの可視化装置
を適用したそれぞれ異なる各実施例を示す概略説
明図である。 1…物体、2…ランプ、3…テレビカメラ、4
…電子回路、7…画像処理装置、8…流速分布用
のモニターテレビ、F…流れ、M…マイクロ波。
FIGS. 1 and 2 are schematic explanatory diagrams showing different embodiments to which the flow visualization device of the present invention is applied. 1...Object, 2...Lamp, 3...TV camera, 4
...electronic circuit, 7...image processing device, 8...monitor television for flow velocity distribution, F...flow, M...microwave.

Claims (1)

【特許請求の範囲】[Claims] 1 流体、または流体の流れの中に置かれた物体
表面を、静止流体中で一定温度になるように加熱
しながらその流体を流して、赤外線撮影機能を有
するテレビカメラで流体の温度分布、またはその
物体表面の温度分布の変化を計測すると共に、そ
の温度分布の変化を、熱放射エネルギーと表面流
速との関係式より表面流速を求めるマイコン及び
画面処理装置により画面処理して流速分布用モニ
ターテレビに流速分布としてデイスプレイするよ
うにした流れの可視化装置。
1 A fluid or the surface of an object placed in a fluid flow is heated to a constant temperature in a stationary fluid, and the fluid is flown, and a television camera with an infrared photographing function is used to measure the temperature distribution of the fluid, or The change in temperature distribution on the surface of the object is measured, and the change in temperature distribution is processed on a screen by a microcomputer and screen processing device that calculates the surface flow velocity from the relational expression between thermal radiation energy and surface flow velocity, and the flow velocity distribution monitor TV A flow visualization device that displays the flow velocity distribution.
JP17085086A 1986-07-22 1986-07-22 Visualizing apparatus for flow of fluid Granted JPS6327766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17085086A JPS6327766A (en) 1986-07-22 1986-07-22 Visualizing apparatus for flow of fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17085086A JPS6327766A (en) 1986-07-22 1986-07-22 Visualizing apparatus for flow of fluid

Publications (2)

Publication Number Publication Date
JPS6327766A JPS6327766A (en) 1988-02-05
JPH0547069B2 true JPH0547069B2 (en) 1993-07-15

Family

ID=15912479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17085086A Granted JPS6327766A (en) 1986-07-22 1986-07-22 Visualizing apparatus for flow of fluid

Country Status (1)

Country Link
JP (1) JPS6327766A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101430A (en) * 1987-10-15 1989-04-19 Nkk Corp Method for detecting flow state of air flow on body-installed pedestal
JPH01101465A (en) * 1987-10-15 1989-04-19 Nkk Corp Detecting method for stripped position of air flow on body surface
JPH01180461A (en) * 1988-01-13 1989-07-18 Nkk Corp Flow state detecting method for air current on surface of assembly of pedestal and installed body
DE3826379C1 (en) * 1988-08-03 1989-10-26 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De
JP4502256B2 (en) 2004-09-07 2010-07-14 株式会社山武 Flow sensor
DE102004046529A1 (en) * 2004-09-23 2006-03-30 Mahle Filtersysteme Gmbh Velocity distribution determining method for construction unit, involves finding distribution from time temperature sequence, where ranges of large temperature changes per unit of time is correlated with ranges of large flow velocity
DE102010047713B4 (en) * 2009-10-12 2015-09-17 BAM Bundesanstalt für Materialforschung und -prüfung Measuring arrangement and method for the quantitative detection of spatial distributions of gas flows

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243571A (en) * 1984-05-18 1985-12-03 Nippon Furnace Kogyo Kaisha Ltd Measurement of speed in direction perpendicular to flow sectional plane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243571A (en) * 1984-05-18 1985-12-03 Nippon Furnace Kogyo Kaisha Ltd Measurement of speed in direction perpendicular to flow sectional plane

Also Published As

Publication number Publication date
JPS6327766A (en) 1988-02-05

Similar Documents

Publication Publication Date Title
Stasiek et al. Liquid crystal thermography and true-colour digital image processing
Dabiri et al. Digital particle image thermometry: the method and implementation
Camci et al. A new hue capturing technique for the quantitative interpretation of liquid crystal images used in convective heat transfer studies
Chan et al. Calibrating for viewing angle effect during heat transfer measurements on a curved surface
DE2262737C3 (en) Method and device for measuring the surface temperature of a metal object
Jones et al. Use of Fusible Temperature Indicators for Obtaining Quantitative Aerodynamic Heat-Transfer Data
Stasiek et al. The use of liquid crystal thermography in selected technical and medical applications—Recent development
JPH0547069B2 (en)
Ren et al. Internal and external cooling of a full coverage effusion cooling plate: effects of double wall configuration and conditions
Stasiek Thermochromic liquid crystals and true colour image processing in heat transfer and fluid-flow research
Richards et al. Transient temperature measurements in a convectively cooled droplet
US5963292A (en) Thermal tuft fluid flow investigation apparatus with a color alterable thermally responsive liquid crystal layer
ITGE970086A1 (en) CONSTANT IMPULSE THERMOGRAPHY.
JP2004177312A (en) Three dimensional temperature/velocity simultaneous measuring method of fluid
Monti Thermography
Ochoa et al. A new technique for dynamic heat transfer measurements and flow visualization using liquid crystal thermography
Allgaier et al. Double wall cooling of a full coverage effusion plate with cross flow supply cooling and main flow pressure gradient
DE10225616B4 (en) Method and device for determining the aerodynamic wall shear stresses on the surface of a body flowing around
Cramer et al. Thermographic imaging of cracks in thin metal sheets
Xue et al. Investigation on wave morphology and temperature distribution of falling liquid film in a vertical tube
Camci et al. A new hue capturing technique for the quantitative interpretation of liquid crystal images used in convective heat transfer studies
Kim An experimental study on the flow and heat transfer characteristics of an impinging jet
JPH0378923B2 (en)
Stasiek et al. LCT, PIV and IR Imaging Detection in Selected Technical and Biomedical Applications
Clark et al. An application of aeronautical techniques to physiology 1. The human microenvironment and convective heat transfer