JPH0546796B2 - - Google Patents

Info

Publication number
JPH0546796B2
JPH0546796B2 JP58251814A JP25181483A JPH0546796B2 JP H0546796 B2 JPH0546796 B2 JP H0546796B2 JP 58251814 A JP58251814 A JP 58251814A JP 25181483 A JP25181483 A JP 25181483A JP H0546796 B2 JPH0546796 B2 JP H0546796B2
Authority
JP
Japan
Prior art keywords
power factor
separately excited
exciter
excited synchronous
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58251814A
Other languages
Japanese (ja)
Other versions
JPS60139194A (en
Inventor
Wataru Okamoto
Osamu Tokumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58251814A priority Critical patent/JPS60139194A/en
Publication of JPS60139194A publication Critical patent/JPS60139194A/en
Publication of JPH0546796B2 publication Critical patent/JPH0546796B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 [技術分野] 本発明は他励磁同期機の自動力率制御装置、特
に負荷変動に係わらず同期機の力率をほぼ100%
で運転可能な自動力率制御装置に関するものであ
る。
[Detailed Description of the Invention] [Technical Field] The present invention is an automatic power factor control device for a separately excited synchronous machine, and in particular, the power factor of the synchronous machine can be controlled to almost 100% regardless of load fluctuations.
This invention relates to an automatic power factor control device that can be operated at

[従来技術] 従来より、同期機とは別個に設けられた電動機
により励磁機を発電制御し、この発電電流を同期
の励磁電流として用いるいわゆるMG式の他励磁
同期機が周知であるが、この種の同期機、特に同
期電動機の運転に際しては、同期機の負荷変化に
よつてその力率が大幅に変化する特性を有し、こ
の力率変化によつて損失が生じ効率的な運転がで
きないという欠点があつた。
[Prior Art] Conventionally, a so-called MG-type separately excited synchronous machine is well known, in which an electric motor provided separately from the synchronous machine controls the generation of an exciter, and this generated current is used as an excitation current for synchronization. When operating a type of synchronous machine, especially a synchronous motor, the power factor of the synchronous machine changes significantly as the load changes, and this change in power factor causes loss and prevents efficient operation. There was a drawback.

例えば、工場設備として用いられるアンローダ
制御のコンプレツサ用同期電動機等においてはそ
の負荷が0〜100%まで変化するが、同期電動機
の励磁電流を一定にすると負荷変動によりその力
率が大幅に変動し、銅損等により運転効率が著し
く低下することとなる。そこで、例えば電動発電
機である励磁機の界磁巻線に可変抵抗を接続し、
これを手動操作して同期機の励磁電流を変化させ
る方法も提案されている。しかしながら、このよ
うな手動操作では、負荷の変動が一定していない
工場設備等においては、力率がほぼ100%になる
ように追従操作することができず、運転効率の高
い制御が困難であつた。
For example, in a synchronous motor for an unloader-controlled compressor used as factory equipment, the load changes from 0 to 100%, but if the excitation current of the synchronous motor is kept constant, its power factor will fluctuate significantly due to load fluctuations. Operating efficiency will drop significantly due to copper loss, etc. Therefore, for example, by connecting a variable resistor to the field winding of an exciter, which is a motor generator,
A method has also been proposed in which the excitation current of the synchronous machine is changed by manual operation. However, with such manual operation, it is not possible to perform follow-up operation so that the power factor becomes almost 100% in factory equipment where load fluctuations are not constant, making it difficult to control with high operational efficiency. Ta.

一方、近年では、例えば特開昭55−23750号公
報に記載されているように、サイリスタを用いて
同期機の励磁電流をリニアに制御するようにした
SCR式の他励磁同期機が採用されつつある。し
かしながら、上記したような既設のMG式他励磁
同期機が稼働している場合、これをSCR式に改
造して同期機の励磁電流をリニアに制御するには
力率を検出するための手段が必要になるなど、制
御回路の複雑化を招き、設備コストの面からも問
題が多い。
On the other hand, in recent years, as described in Japanese Patent Application Laid-open No. 55-23750, thyristors have been used to linearly control the excitation current of synchronous machines.
SCR type separately excited synchronous machines are being adopted. However, when an existing MG type separately excited synchronous machine as described above is in operation, a means to detect the power factor is required in order to convert it to an SCR type and linearly control the excitation current of the synchronous machine. This leads to the complexity of the control circuit, and there are many problems in terms of equipment costs.

また、例えば特公昭41−6648号公報に記載の
MG式の他励磁式同期発電機の場合のように、励
磁機の界磁調整抵抗に直列接続した力率調整抵抗
をモータ駆動により調整する方法も考えられる。
しかしながら、この場合も、上記SCR式の場合
と同様に力率の検出するための手段やモータ駆動
等が必要であり、制御回路の複雑化及び設備コス
トの面で問題が多い。
Also, for example, as described in Japanese Patent Publication No. 41-6648,
As in the case of the MG-type separately excited synchronous generator, a method of adjusting the power factor adjustment resistor connected in series with the field adjustment resistor of the exciter by driving the motor is also considered.
However, in this case as well, as in the case of the above-mentioned SCR type, a means for detecting the power factor, a motor drive, etc. are required, and there are many problems in terms of the complexity of the control circuit and equipment cost.

[発明の目的] 本発明は係る課題に鑑みてなされたものであ
り、その目的は、MG式の他励磁同期機の運転時
における負荷変化に対して該同期機の励磁電流を
追従させ、自動的にほぼ力率100%の運転を達成
可能な自動力率制御装置を簡単な構成で提供する
ことにある。
[Object of the Invention] The present invention has been made in view of the above problems, and its purpose is to make the excitation current of the MG type separately excited synchronous machine follow the load change during operation of the machine, and to automatically The object of the present invention is to provide an automatic power factor control device with a simple configuration that can achieve operation with a power factor of almost 100%.

[発明の構成] 本発明に係る他励磁同期機の自動力率制御装置
は、他励磁同期電動機と別個に設けられた電動機
によつて励磁機を発電させ、この発電電流を励磁
電流としてアンローダ制御方式のコンプレツサを
駆動する他励磁同期電動機において、(i)励磁機の
界磁巻線に接続された複数の抵抗器と、(ii)コンプ
レツサの段階的な負荷状態を示すアンローダ信号
を検出する負荷検出部と、(iii)この負荷検出部が検
出したアンローダ信号に応じて、前記他励磁同期
電動機の力率がほぼ100%を維持するようなパタ
ーンで前記複数の各抵抗器の接続切断制御を行
い、その合成抵抗値を段階的に変化させることに
より前記励磁機の界磁電流を段階的に制御するス
イツチ手段と、を具備することを特徴とするもの
である。
[Structure of the Invention] The automatic power factor control device for a separately excited synchronous machine according to the present invention causes an exciter to generate electricity using a motor provided separately from a separately excited synchronous motor, and controls an unloader by using the generated current as an exciting current. In a separately excited synchronous motor that drives a compressor of this type, (i) multiple resistors connected to the field winding of the exciter, and (ii) a load that detects an unloader signal indicating the stepwise load state of the compressor. and (iii) control the connection and disconnection of each of the plurality of resistors in a pattern that maintains the power factor of the separately excited synchronous motor at approximately 100% in accordance with the unloader signal detected by the load detection unit. and a switch means for controlling the field current of the exciter in a stepwise manner by changing the combined resistance value in a stepwise manner.

[実施例] 以下図面に基づいて本発明の好適な実施例を説
明する。
[Embodiments] Preferred embodiments of the present invention will be described below based on the drawings.

第1図には本発明に係る同期機の全体構成が示
されており、同期機10の励磁電流が励磁機12
から供給されており、該励磁機13を構成する発
電機は電動機14によつて回転駆動されている。
FIG. 1 shows the overall configuration of a synchronous machine according to the present invention, in which the exciting current of the synchronous machine 10 is
The generator constituting the exciter 13 is rotationally driven by an electric motor 14.

前記励磁機12の界磁巻線12aには後述する
手動及び自動調整器から所定の界磁電流が供給さ
れ、これによつて、励磁器12から同期機10に
所望の励磁電流が供給されることとなる。
A predetermined field current is supplied to the field winding 12a of the exciter 12 from a manual and automatic regulator, which will be described later, so that a desired excitation current is supplied from the exciter 12 to the synchronous machine 10. It happens.

本発明において、前記界磁巻線12aには自動
力率制御器本体16の内部に設けられた切替器1
8から手動及び自動調整された界磁電流が選択的
に供給される。すなわち、切替器18の一方の入
力端には手動界磁調整器20が接続され、その抵
抗値Rを変化させることにより、L1の経路を通
つて手動調整された界磁電流が界磁巻線12aに
供給される。
In the present invention, the field winding 12a is provided with a switching device 1 provided inside the automatic power factor controller main body 16.
Manually and automatically adjusted field currents are selectively supplied from 8. That is, a manual field adjuster 20 is connected to one input terminal of the switch 18, and by changing its resistance value R, the manually adjusted field current is applied to the field winding through the path L1 . line 12a.

一方、切替器18の他方の入力端には可変抵抗
器22が接続され、この可変抵抗器22から自動
調整された界磁電流が回路L2なる経路を通つて
界磁巻線12aに供給される。
On the other hand, a variable resistor 22 is connected to the other input terminal of the switch 18, and an automatically adjusted field current is supplied from the variable resistor 22 to the field winding 12a through a path called circuit L2. Ru.

従つて、本発明においては、前述した手動調整
及び自動調整された両界磁電流を選択的に切替
え、任意に同期機10の力率を制御することが可
能となる。
Therefore, in the present invention, the power factor of the synchronous machine 10 can be arbitrarily controlled by selectively switching between the manually adjusted and automatically adjusted field currents described above.

特に、前述した可変抵抗器22は以下に詳細に
説明するごとく、同期機10の負荷に応じてその
抵抗値が力率100%を達成可能なごとく選択制御
され、これによつて、同期機10の運転効率を著
しく改善することが可能となる。
In particular, as described in detail below, the variable resistor 22 is selectively controlled so that its resistance value can achieve a power factor of 100% according to the load of the synchronous machine 10. This makes it possible to significantly improve the operating efficiency of the system.

前記可変抵抗器22による自動界磁調整を行う
ため、本体16内には可変抵抗器22に接続され
る可変制御部24が設けられ、実施例において、
この可変制御部24はリレーボツクスからなる。
そして、前記可変制御部24には負荷検出部26
が接続され、該負荷検出部26は図示しないコン
プレツサからのアンローダ信号により同期機10
の負荷状態を常時検出し、この負荷変化に応じて
同期機10の力率がほぼ100%を維持するように
可変制御部24によつて可変抵抗器22のパター
ンが制御される。
In order to perform automatic field adjustment using the variable resistor 22, a variable control section 24 connected to the variable resistor 22 is provided in the main body 16, and in the embodiment,
This variable control section 24 consists of a relay box.
The variable control section 24 includes a load detection section 26.
is connected, and the load detection unit 26 detects the synchronous machine 10 by an unloader signal from a compressor (not shown).
The pattern of the variable resistor 22 is controlled by the variable control unit 24 so that the power factor of the synchronous machine 10 is maintained at approximately 100% in response to changes in the load.

従つて、本発明によれば、同期機10の負荷を
常時監視しながら、この負荷変動に応じて励磁電
流をパターン制御して常時その運転力率をほぼ
100%に安定させて運転を継続することが可能と
なる。
Therefore, according to the present invention, the load of the synchronous machine 10 is constantly monitored, and the excitation current is pattern-controlled in accordance with the load fluctuations, so that the operating power factor is almost always maintained.
It is now possible to continue operation with a stable level of 100%.

第2図には、前記自動界磁調整部の一例が示さ
れ、コンプレツサのアンローダ信号による負荷パ
ターンの制御例を示す。すなわち、負荷検出部は
負荷0段〜負荷6段までの7段階のリレー接点を
含み、これによつてコンプレツサのアンローダ状
態が検出される。そして、これら負荷検出部の各
リレー接点にはリレーボツクスのリレーCR0〜
CR6が接続されており、これら7個のリレーに
対応して、可変抵抗器22の各巻線タツプに接続
されたリレー接点が制御される。実施例におい
て、リレーCR0は可変抵抗器22に接続される
リレー接点を有することなく、この負荷パターン
CR0においては全巻線抵抗が用いられる。
FIG. 2 shows an example of the automatic field adjustment section, and shows an example of controlling a load pattern using a compressor unloader signal. That is, the load detection section includes relay contacts in seven stages from load stage 0 to load stage 6, thereby detecting the unloading state of the compressor. Each relay contact of these load detection parts is connected to the relay CR0 to CR0 of the relay box.
CR6 is connected, and the relay contacts connected to each winding tap of the variable resistor 22 are controlled in correspondence with these seven relays. In the embodiment, relay CR0 can handle this load pattern without having a relay contact connected to variable resistor 22.
In CR0, full winding resistance is used.

従つてコンプレツサのアンローダ状態に応じて
所定のリレー制御が行われ、同期機の負荷である
コンプレツサの負荷変動に応じて所望の励磁電流
が選択され、実施例においては、この切替パター
ンは負荷変動に応じて同期機の力率がほぼ100%
になるように設定されているので、自動界磁調整
運転時には極めて高い運転効率を得ることが可能
となる。例えば負荷3段においては、CR0,CR
1,CR2,CR3、のリレーが作動し、これによ
つて、可変抵抗器22からは所望の抵抗値が選択
され、回路L2を通して励磁機12の界磁巻線1
2aに所望の界磁電流が供給され、この結果、同
期機10には負荷3段に対応して力率100%を得
るための励磁電流が供給されることとなる。
Therefore, a predetermined relay control is performed according to the unloader state of the compressor, and a desired excitation current is selected according to the load fluctuation of the compressor, which is the load of the synchronous machine. Accordingly, the power factor of synchronous machine is almost 100%
Therefore, it is possible to obtain extremely high operating efficiency during automatic field adjustment operation. For example, in a three-stage load, CR0, CR
The relays 1, CR2, and CR3 are activated, whereby a desired resistance value is selected from the variable resistor 22, and the field winding 1 of the exciter 12 is connected through the circuit L2.
A desired field current is supplied to the synchronous machine 2a, and as a result, the synchronous machine 10 is supplied with excitation current for obtaining a power factor of 100% corresponding to the three stages of loads.

なお、第2図において、可変抵抗器22には界
磁電流を微調整するための可変抵抗Riが設けら
れ、また起動時の大電流を流すため、起動用リレ
ーCRsが設けられている。
In FIG. 2, the variable resistor 22 is provided with a variable resistor Ri for finely adjusting the field current, and is also provided with a starting relay CRs to flow a large current during starting.

[発明の効果] 以上説明したように、本発明によれば、コンプ
レツサのアンローダ信号により負荷を検出すると
ともに、その検出結果に応じて励磁機の励磁電流
を段階的に制御することとしたので、負荷の検出
が極めて容易であり、しかも励磁機の電磁電流の
段階的制御をリレー等の簡単なスイツチ手段のみ
で実現できる。これにより、制御のため回路構成
が極めて簡単となり、極めて低コストでほぼ力率
100%を達成することができる。特に、既設の
MG式他励磁同期電動機を改造する場合のその効
果は大きい。
[Effects of the Invention] As explained above, according to the present invention, the load is detected by the unloader signal of the compressor, and the excitation current of the exciter is controlled in stages according to the detection result. It is extremely easy to detect the load, and stepwise control of the electromagnetic current of the exciter can be achieved using only simple switching means such as relays. This makes the circuit configuration for control extremely simple, extremely low cost, and almost power factor
100% can be achieved. In particular, existing
The effect is great when modifying an MG type separately excited synchronous motor.

本発明によれば、前述したアンローダ制御のコ
ンプレツサ用同期電動機において、電動機出力の
約1%の向上を図ることができた。
According to the present invention, it was possible to improve the motor output by about 1% in the above-mentioned unloader-controlled compressor synchronous motor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る他励磁同期機の自動力率
制御装置の好適な実施例を示すブロツク図、第2
図は第1図における自動界磁調整部の一例を示す
回路図である。 10……同期機、12a……界磁巻線、14…
…電動機、18……切替器、20……界磁調整
器、22……可変制御部、24……可変抵抗器、
26……負荷検出部。
FIG. 1 is a block diagram showing a preferred embodiment of the automatic power factor control device for a separately excited synchronous machine according to the present invention, and FIG.
This figure is a circuit diagram showing an example of the automatic field adjustment section in FIG. 1. 10...Synchronous machine, 12a...Field winding, 14...
...Electric motor, 18...Switcher, 20...Field regulator, 22...Variable control unit, 24...Variable resistor,
26...Load detection section.

Claims (1)

【特許請求の範囲】 1 他励磁同期電動機と別個に設けられた電動機
によつて励磁機を発電させ、この発電電流を励磁
電流として、アンローダ制御方式のコンプレツサ
を駆動する他励磁同期電動機において、 前記励磁機の界磁巻線に接続された複数の抵抗
器と、 前記コンプレツサの段階的な負荷状態を示すア
ンローダ信号を検出する負荷検出部と、 この負荷検出部が検出したアンローダ信号に応
じて、前記他励磁同期電動機の力率がほぼ100%
を維持するようなパターンで前記複数の各抵抗器
の接続切断制御を行い、その合成抵抗値を段階的
に変化させることにより前記励磁機の界磁電流を
段階的に制御するスイツチ手段と、 を具備することを特徴とする他励磁同期機の自動
力率制御装置。
[Scope of Claims] 1. In a separately excited synchronous motor that generates electricity from an exciter using a motor provided separately from the separately excited synchronous motor, and uses the generated current as an exciting current to drive an unloader control type compressor, the separately excited synchronous motor has the following steps: a plurality of resistors connected to the field winding of the exciter; a load detection unit that detects an unloader signal indicating a stepwise load state of the compressor; The power factor of the separately excited synchronous motor is almost 100%.
a switch means for controlling the field current of the exciter in a stepwise manner by controlling the connection and disconnection of each of the plurality of resistors in a pattern that maintains the resistance value, and changing the combined resistance value in steps; An automatic power factor control device for a separately excited synchronous machine, comprising:
JP58251814A 1983-12-23 1983-12-23 Automatic power factor controller of separately-excited synchronous machine Granted JPS60139194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58251814A JPS60139194A (en) 1983-12-23 1983-12-23 Automatic power factor controller of separately-excited synchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58251814A JPS60139194A (en) 1983-12-23 1983-12-23 Automatic power factor controller of separately-excited synchronous machine

Publications (2)

Publication Number Publication Date
JPS60139194A JPS60139194A (en) 1985-07-23
JPH0546796B2 true JPH0546796B2 (en) 1993-07-14

Family

ID=17228312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58251814A Granted JPS60139194A (en) 1983-12-23 1983-12-23 Automatic power factor controller of separately-excited synchronous machine

Country Status (1)

Country Link
JP (1) JPS60139194A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2660310B2 (en) * 1992-03-27 1997-10-08 島津メクテム株式会社 X-ray television fluoroscope

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523750A (en) * 1978-08-04 1980-02-20 Sumitomo Metal Ind Ltd Power-factor controller for synchronous motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125011U (en) * 1974-03-29 1975-10-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5523750A (en) * 1978-08-04 1980-02-20 Sumitomo Metal Ind Ltd Power-factor controller for synchronous motor

Also Published As

Publication number Publication date
JPS60139194A (en) 1985-07-23

Similar Documents

Publication Publication Date Title
EP0547243A1 (en) Method and apparatus for controlling and driving induction motor
KR20040049583A (en) Apparatus and control method for driving of reciprocating compressor
US6094019A (en) Motor drive circuit
US5606246A (en) Power supply unit for vehicles
JPH0546796B2 (en)
US4956596A (en) Variable speed drive system
US5412298A (en) Motor control circuit having series or compound excitation during starting and shunt excitation during normal running
US5708357A (en) Power circuit for electronic controller
JPH05344778A (en) Dc motor
US5654613A (en) Over drive control apparatus of direct current series motor
US3974393A (en) Method of switching hydro-electric unit from group power control into the individual power control duty
US20230343533A1 (en) Systems and methods for detecting welded contacts in a switch system
JPS5829393A (en) Capacitor motor
KR102229210B1 (en) Automatic transfer switch device and controll method thereof
US2130584A (en) Welder
JPH0237755B2 (en) FUKAKANSHISEIGYOSOCHI
US2426035A (en) Generator voltage regulation
US2054446A (en) Variable speed motor
US1743246A (en) Regulator system
US2197888A (en) Welder
US5033107A (en) Electric sauna heater
US1682381A (en) Reese t
JPH09191574A (en) Power-saving device
JPS6050899B2 (en) Loom operating method and equipment
USRE25893E (en) Automatic means for rotating a lagging or leading rotor of a synchronous machine