JPH0546780B2 - - Google Patents

Info

Publication number
JPH0546780B2
JPH0546780B2 JP57115460A JP11546082A JPH0546780B2 JP H0546780 B2 JPH0546780 B2 JP H0546780B2 JP 57115460 A JP57115460 A JP 57115460A JP 11546082 A JP11546082 A JP 11546082A JP H0546780 B2 JPH0546780 B2 JP H0546780B2
Authority
JP
Japan
Prior art keywords
vacuum
magnetic fluid
refrigerant
exhaust hole
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57115460A
Other languages
Japanese (ja)
Other versions
JPS5910153A (en
Inventor
Mikio Kumagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57115460A priority Critical patent/JPS5910153A/en
Publication of JPS5910153A publication Critical patent/JPS5910153A/en
Publication of JPH0546780B2 publication Critical patent/JPH0546780B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は超電導回転電機の真空排気装置に係
り、特に超電導界磁コイルを囲む断熱真空室の真
空排気構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a vacuum evacuation device for a superconducting rotating electrical machine, and particularly to a vacuum evacuation structure for an adiabatic vacuum chamber surrounding a superconducting field coil.

〔発明の技術的背景〕[Technical background of the invention]

第1図は超電導回転電機の回転子であつて、回
転子1は回転軸2を軸受3で支承し、トルクチユ
ーブ4には液体ヘリウムが満たされた極低温の液
相冷媒室5内に超電導界磁コイル6を装着し外方
の常温ダンパ7との間およびトルクチユーブ4の
内部は真空室8を形成している。冷媒給排装置9
は2重管構造の両管端面間を塞いだ円筒状の固定
配管10を固定筒状部材11に固定し、固定配管
10の端部に、端部が2重管構造で途中から3重
管構造をした円筒状の回転配管12の端部が遊嵌
され、回転配管12は回転軸2内に同心状に取付
けられている。固定筒状部材11の内側には、回
転配管12の外周面をシールする3個の磁性流体
シール13が設けてある。
Fig. 1 shows a rotor of a superconducting rotating electrical machine, in which the rotor 1 supports a rotating shaft 2 with a bearing 3, and a torque tube 4 has superconducting conductors in a cryogenic liquid phase refrigerant chamber 5 filled with liquid helium. A vacuum chamber 8 is formed between the field coil 6 and the outside room-temperature damper 7 and the inside of the torque tube 4 . Refrigerant supply and discharge device 9
A cylindrical fixed pipe 10 with a double-pipe structure that closes the end faces of both pipes is fixed to a fixed cylindrical member 11, and a triple-pipe pipe with a double-pipe structure at the end is attached to the end of the fixed pipe 10. The end portion of a structured cylindrical rotary pipe 12 is loosely fitted, and the rotary pipe 12 is installed concentrically within the rotating shaft 2. Three magnetic fluid seals 13 are provided inside the fixed cylindrical member 11 to seal the outer peripheral surface of the rotary pipe 12.

液相ヘリウムは液相冷媒路14から固定配管1
0、回転配管12を通り液相冷媒室5に入り、冷
媒排出通路15を通り気相冷媒路16に出て液相
冷媒室5内の超電導界磁コイル6を冷却してい
る。超電導磁界コイル6は約−270℃の液体ヘリ
ウムで冷却されるため、断熱が重要であり真空室
8で囲んでいる。しかして超電導回転子1を大容
量タービン発電機に適用した場合はベースロード
の発電機となるため、最低6か月乃至1年の連続
運転が必要であり、その間の真空の低下は絶対に
避けなければならない。
Liquid phase helium is transferred from the liquid phase refrigerant path 14 to the fixed pipe 1.
0, enters the liquid-phase refrigerant chamber 5 through the rotating pipe 12, exits through the refrigerant discharge passage 15 to the gas-phase refrigerant path 16, and cools the superconducting field coil 6 in the liquid-phase refrigerant chamber 5. Since the superconducting magnetic field coil 6 is cooled with liquid helium at approximately -270°C, heat insulation is important, so it is surrounded by a vacuum chamber 8. However, when the superconducting rotor 1 is applied to a large-capacity turbine generator, it becomes a base load generator, so continuous operation for at least 6 months to 1 year is required, and a drop in vacuum during that time is absolutely avoided. There must be.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、従来の真空システムは運転前に
真空引きして封じ切つておくのが一般であるの
で、万一シール部の溶接やOリングなどの気密構
造部からリークすると運転が不能となる欠点があ
つた。
However, since conventional vacuum systems are generally evacuated and sealed before operation, there is a drawback that if a leak occurs from an airtight structure such as a welded seal or an O-ring, operation becomes impossible. Ta.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点に鑑みなされたもので、運転
中でも真空引きのできるようにした超電導回転電
機の真空排気装置を提供することを目的とする。
The present invention was made in view of the above-mentioned drawbacks, and an object of the present invention is to provide a vacuum evacuation device for a superconducting rotating electric machine that can perform evacuation even during operation.

〔発明の概要〕[Summary of the invention]

すなわち、冷媒給排装置内に真空室に連通する
真空排気シールを設けることによつて、超電導回
転電機の運転中においても真空排気シールを通し
て真空引きすることができるようにしたものであ
る。
That is, by providing an evacuation seal communicating with the vacuum chamber in the refrigerant supply/discharge device, it is possible to perform evacuation through the evacuation seal even while the superconducting rotating electric machine is in operation.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図面に示す一実施例について説明
する。第2図は第1図の左端の冷媒給排装置9に
冷媒給排機能のほかに真空排気機能を持たせたも
のである。回転子1は同じなので説明は省略す
る。回転軸2から延長する中空軸18は中空部に
冷媒供給管19を設置し、冷媒供給管19は断熱
のために先端を盲栓20でふさいだ真空層21を
有する外管19bと、液相冷媒を供給する内管1
9aとの2重管になつている。真空層21は回転
子内部の冷媒供給管19の右端部が前述の盲栓2
0を配設してないため、第1図の真空室8に連通
している。冷媒供給管19の左端部近傍には磁性
流体シールの磁気回路を構成するための磁気を通
す金属スリーブ22を冷媒供給管19の外管19
bの一部分に気密接合し、金属スリーブ22にお
ける磁性流体シール面の間に設けた真空排気孔2
3を真空層21に外管19bを介して連通してい
る。真空排気孔23の位置には固定筒状部材11
の内側に形成された磁性流体シール24に設けた
排気孔25を経由して外部の真空ポンプ26によ
つて真空層21に連通する第1図の真空室8の真
空引きを行う。27は中空軸18を固定筒状部材
11に対し位置決め支承する案内軸受、28は2
個の磁性流体シール24と13および中空軸18
と固定筒状部材11で構成される空間の冷媒排気
セクシヨンで気相冷媒路16に連通している。こ
こで、磁性流体シール24と冷媒供給管19と、
金属スリーブ22と真空排気孔23、排気孔25
と、真空ポンプ26とを総称して真空排気シール
とする。
An embodiment of the present invention shown in the drawings will be described below. In FIG. 2, the refrigerant supply/discharge device 9 at the left end of FIG. 1 is provided with a vacuum exhaust function in addition to the refrigerant supply/discharge function. Since the rotor 1 is the same, the explanation will be omitted. A refrigerant supply pipe 19 is installed in the hollow part of the hollow shaft 18 extending from the rotating shaft 2. Inner pipe 1 that supplies refrigerant
It is a double pipe with 9a. The vacuum layer 21 is formed by connecting the right end of the refrigerant supply pipe 19 inside the rotor to the aforementioned blind plug 2.
0 is not provided, it communicates with the vacuum chamber 8 in FIG. Near the left end of the refrigerant supply pipe 19, a metal sleeve 22 through which magnetism passes for forming a magnetic circuit of a magnetic fluid seal is installed on the outer pipe 19 of the refrigerant supply pipe 19.
A vacuum exhaust hole 2 is airtightly fitted to a part of b and provided between the magnetic fluid sealing surfaces of the metal sleeve 22.
3 is communicated with the vacuum layer 21 via the outer tube 19b. A fixed cylindrical member 11 is located at the position of the vacuum exhaust hole 23.
The vacuum chamber 8 in FIG. 1, which communicates with the vacuum layer 21, is evacuated by an external vacuum pump 26 through an exhaust hole 25 provided in a magnetic fluid seal 24 formed inside the chamber. 27 is a guide bearing for positioning and supporting the hollow shaft 18 with respect to the fixed cylindrical member 11; 28 is a guide bearing 2;
magnetic fluid seals 24 and 13 and hollow shaft 18
The refrigerant exhaust section of the space constituted by the fixed cylindrical member 11 and the fixed cylindrical member 11 communicates with the gas phase refrigerant path 16. Here, the magnetic fluid seal 24 and the refrigerant supply pipe 19,
Metal sleeve 22, vacuum exhaust hole 23, exhaust hole 25
and the vacuum pump 26 are collectively referred to as a vacuum exhaust seal.

次に作用を説明する。冷媒給排装置の機能とし
ては液体冷媒を液相冷媒路14から固定配管1
0、冷媒供給管19を通り第1図に示した回転子
1の液相冷媒室5に送り、そこで気化した冷媒は
冷媒排出通路15を通り気相冷媒路16に排出す
ることにより液相冷媒室5内の超電導界磁コイル
6を冷却する。真空排気装置の機能としては、第
1図の回転子1の真空室8を冷媒供給管19の真
空層21から真空排気孔23、排気孔25を通り
真空ポンプ26で真空引きを行い、液相冷媒室5
の周囲を真空断熱する。すなわち、回転子1の静
止中は勿論のこと回転中も外部より真空室21、
真空室8の真空引きを行うことができ、真空気密
構造部の軽微なリークは問題とすることなく運転
ができる。
Next, the action will be explained. The function of the refrigerant supply and discharge device is to transport the liquid refrigerant from the liquid phase refrigerant path 14 to the fixed pipe 1.
0, the refrigerant is sent through the refrigerant supply pipe 19 to the liquid phase refrigerant chamber 5 of the rotor 1 shown in FIG. The superconducting field coil 6 in the chamber 5 is cooled. The function of the evacuation device is to evacuate the vacuum chamber 8 of the rotor 1 shown in FIG. Refrigerant chamber 5
Vacuum insulate the area around it. In other words, the vacuum chamber 21,
The vacuum chamber 8 can be evacuated, and operation can be performed without causing any problems due to slight leaks in the vacuum-tight structure.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、真空排気シール
を有する真空排気装置を超電導回転電機の反駆動
側軸端に装着するようにしたので、超電導回転電
機の停止中は勿論運転中でも真空引きを行うこと
ができ、気密構造部からリークがあつても問題と
することなく運転を継続することができる。ま
た、真空排気シールは回転軸の先端の軸をシール
するので軸直径が小さく、磁性流体シールの周速
が小さく発熱や遠心力による磁性流体の飛散が少
く信頼性が高いなどのすぐれた効果がある。
As described above, according to the present invention, a vacuum evacuation device having a vacuum evacuation seal is attached to the non-drive side shaft end of the superconducting rotating electric machine, so that evacuation can be performed not only when the superconducting rotating electric machine is stopped but also during operation. Even if there is a leak from the airtight structure, operation can be continued without any problem. In addition, since the vacuum exhaust seal seals the shaft at the tip of the rotating shaft, the shaft diameter is small, the circumferential speed of the magnetic fluid seal is low, and the magnetic fluid is less likely to scatter due to heat generation or centrifugal force, making it highly reliable. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超電導回転電機の超電導回転子
を示す縦断面図、第2図は本発明の超電導回転電
機の真空排気装置の一実施例を示す縦断面図であ
る。 1……回転子、2……回転軸、6……超電導界
磁コイル、8……真空室、9……冷媒給排装置、
9a……内管、9b……外管、10……固定配
管、11……固定筒状部材、18……中空軸、1
9……冷媒供給管、20……盲栓、21……真空
層、22……金属スリーブ、23……真空排気
孔、24……磁性流体シール、25……排気孔、
26……真空ポンプ。
FIG. 1 is a vertical cross-sectional view showing a superconducting rotor of a conventional superconducting rotating electric machine, and FIG. 2 is a vertical cross-sectional view showing an embodiment of a vacuum evacuation device for a superconducting rotating electric machine according to the present invention. 1... Rotor, 2... Rotating shaft, 6... Superconducting field coil, 8... Vacuum chamber, 9... Refrigerant supply/discharge device,
9a...Inner tube, 9b...Outer tube, 10...Fixed pipe, 11...Fixed cylindrical member, 18...Hollow shaft, 1
9... Refrigerant supply pipe, 20... Blind plug, 21... Vacuum layer, 22... Metal sleeve, 23... Vacuum exhaust hole, 24... Magnetic fluid seal, 25... Exhaust hole,
26...Vacuum pump.

Claims (1)

【特許請求の範囲】[Claims] 1 超電導回転電機の反駆動側軸端部に設けられ
回転子の軸端に真空室で囲む超電導界磁コイルに
連通する冷媒給排装置を有する超電導回転電機の
真空排気装置において、冷媒排気セクシヨンと冷
媒供給セクシヨンとの間に設けた磁性流体シール
と、一方端を真空室に連通し他方端を密封した内
管と外管とで構成され、内管と外管の間を真空層
とし内管には液相冷媒を供給する2重管の冷媒供
給管と、前記磁性流体シールに対向して前記外管
の外周に気密接合して外管の一部を被い真空層に
真空排気孔で連通すると共に磁性流体シールの磁
気回路を形成する金属スリーブと、前記金属スリ
ーブの真空排気孔に連通する磁性流体シールを収
納する固定筒状部材の排気孔と、その排気孔を介
して真空層を真空引きする超電導回転電機の機外
に配置された真空ポンプとから成る真空排気シー
ルを有することを特徴とする超電導回転電機の真
空排気装置。
1. In a vacuum evacuation system for a superconducting rotating electrical machine, which has a refrigerant supply/discharge device installed at the non-drive side shaft end of the superconducting rotating electrical machine and communicating with a superconducting field coil surrounded by a vacuum chamber at the shaft end of the rotor, a refrigerant exhaust section and It consists of a magnetic fluid seal installed between the refrigerant supply section and an inner tube and an outer tube, one end of which communicates with a vacuum chamber and the other end of which is sealed, with a vacuum layer between the inner tube and the outer tube. A double refrigerant supply pipe for supplying a liquid phase refrigerant, and a vacuum exhaust hole in a vacuum layer that is airtightly fitted to the outer periphery of the outer pipe facing the magnetic fluid seal and covering a part of the outer pipe. A metal sleeve that communicates with each other and forms a magnetic circuit of the magnetic fluid seal, an exhaust hole of a fixed cylindrical member housing the magnetic fluid seal that communicates with the vacuum exhaust hole of the metal sleeve, and a vacuum layer through the exhaust hole. 1. A vacuum evacuation device for a superconducting rotating electric machine, comprising a vacuum pump and a vacuum pump disposed outside the superconducting rotating electric machine for evacuation.
JP57115460A 1982-07-05 1982-07-05 Vacuum evacuating device for superconductive rotary electric machine Granted JPS5910153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57115460A JPS5910153A (en) 1982-07-05 1982-07-05 Vacuum evacuating device for superconductive rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57115460A JPS5910153A (en) 1982-07-05 1982-07-05 Vacuum evacuating device for superconductive rotary electric machine

Publications (2)

Publication Number Publication Date
JPS5910153A JPS5910153A (en) 1984-01-19
JPH0546780B2 true JPH0546780B2 (en) 1993-07-14

Family

ID=14663092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57115460A Granted JPS5910153A (en) 1982-07-05 1982-07-05 Vacuum evacuating device for superconductive rotary electric machine

Country Status (1)

Country Link
JP (1) JPS5910153A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100727755B1 (en) 2005-07-28 2007-06-13 두산중공업 주식회사 Vacuum Apparatus for Exhausting Air
DE102011005091A1 (en) * 2011-03-04 2012-09-06 Siemens Aktiengesellschaft A superconducting synchronous machine comprising a rotatable rotor against a stator with at least one superconducting winding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728540A (en) * 1980-07-23 1982-02-16 Hitachi Ltd Refrigerant feed and exhaust device for superconductive generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728540A (en) * 1980-07-23 1982-02-16 Hitachi Ltd Refrigerant feed and exhaust device for superconductive generator

Also Published As

Publication number Publication date
JPS5910153A (en) 1984-01-19

Similar Documents

Publication Publication Date Title
JP3840182B2 (en) Magnetic bearing that supports rotating shaft using high Tc superconducting material
US4808864A (en) Superconducting electric rotating machine and its thermal insulation
US6657333B2 (en) Vacuum coupling of rotating superconducting rotor
JPH0546780B2 (en)
JPS62230352A (en) Cryosorption pump for rotary electric machine
JP4704869B2 (en) Superconducting rotating electrical machine refrigerant supply / discharge device
JPS5932988B2 (en) How to maintain vacuum inside a rotating body
JPS6194558A (en) Superconductive rotary electric machine
JP5806338B2 (en) Superconducting synchronous machine having at least one superconducting winding and having a rotor rotatable relative to the stator
JPS61160670A (en) Magnetic fluid sealing device
US20230048319A1 (en) Rotating device and vacuum pump
JPH0456547B2 (en)
JPH04281362A (en) Superconducting rotor
JP2635228B2 (en) Superconducting rotating electric machine rotor
JPS60210160A (en) Superconductive rotor
JPH022385B2 (en)
JPH06284697A (en) Superconductive rotary equipment
JPS60167673A (en) Superconductive rotor
JPS5947935B2 (en) Sealing device in the cryogenic refrigerant supply/discharge section of a rotor equipped with a superconducting coil of a superconducting rotating machine
JPS6130430Y2 (en)
JPH04255457A (en) Superconducting rotor
JPS6198156A (en) Superconductive rotor
JPH06303760A (en) Rotor of superconducting rotary electric machine
JPS6142511B2 (en)
JPH0386225A (en) Vacuum device