JPH0546711B2 - - Google Patents

Info

Publication number
JPH0546711B2
JPH0546711B2 JP60164503A JP16450385A JPH0546711B2 JP H0546711 B2 JPH0546711 B2 JP H0546711B2 JP 60164503 A JP60164503 A JP 60164503A JP 16450385 A JP16450385 A JP 16450385A JP H0546711 B2 JPH0546711 B2 JP H0546711B2
Authority
JP
Japan
Prior art keywords
lead
heat dissipation
current lead
lead conductor
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60164503A
Other languages
Japanese (ja)
Other versions
JPS6225473A (en
Inventor
Ikuo Ito
Akira Ishihara
Yoshihiko Shindo
Kyoshi Takita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60164503A priority Critical patent/JPS6225473A/en
Publication of JPS6225473A publication Critical patent/JPS6225473A/en
Publication of JPH0546711B2 publication Critical patent/JPH0546711B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は、超電導コイルなど極低温に保持さ
れた超電導機器に対して外部電源から電流を供給
する給電用の電流リードの構成に関する。
The present invention relates to the configuration of a current lead for supplying current from an external power source to a superconducting device kept at an extremely low temperature, such as a superconducting coil.

【従来技術とその問題点】 まず頭記した超電導コイルを例にその超電導機
器の構成を第6図に示す。図において、1は二重
構造の真空容器等として構成された断熱容器であ
り、該容器内に超電導コイル2を収容して容器の
開放面を絶縁性の蓋3で閉塞し、かつ容器1の内
部に冷媒として例えば液体ヘリウムHeを満たし
て超電導コイル2を極低温に保持する。一方、こ
の超電導コイル2へ外部電源より給電を行うため
に容器の蓋3を軸封貫通して電流リード4が装備
されている。この電流リード4は蓋3を貫通する
リード本体5と、該リード本体5の上下両端に接
続された常温側端子部6および低温側端子部7と
からなり、かつ常温側端子部6は図示されてない
外部電源に、一方の低温側端子7が超電導コイル
2から引き出した口出線2aにそれぞれ接続して
給電を行うように構成されている。なお図示例の
他に超電導コイル2を収容した容器本体にヘリウ
ムリザーバを接続しこのヘリウムリザーバに電流
リードを設置して超電導コイル2への給電を行う
方式もある。 かかる電流リード4は超電導コイル2への供給
電流が数千アンペアにも達する大電流であること
から通電に伴つて発生するジユール熱も大であ
り、さらに該電流リード4を通じて容器内に侵入
する熱を極力抑えるために電流リード4を強制冷
却する必要がある。このための手段として後述の
ように電流リード4のリード導体の周囲に冷却ガ
スの通路となるらせん溝を設けて溝間に放熱フイ
ンを形成し、このらせん溝へ容器1内に入れた液
体ヘリウムの蒸発ガスを流して電流リード4を強
制冷却する方式が一般に採用されている。 かかる方式による電流リード4の詳細構造を示
すと第4図のごとくであり、リード本体5は常温
側端子部6と低温側端子部7との間を結ぶリード
導体8と、該リード導体8を囲繞した中空管9と
からなり、かつリード導体8の周面上には軸方向
に沿つて符号10で示すらせん状の溝を設けて溝
の間に放熱フイン11を形成した構造となつてい
る。かかる構成で機器の運転時には、前記らせん
溝10と中空管9とで囲まれた通路を通じて容器
1内で蒸発したヘリウムガスが矢印のように上昇
して流れ、このガス通流過程でリード導体8の周
面上に張り出す放熱フイン11との間で熱鋼管し
て電流リードを冷却する。なおリード導体8の上
端から外方へ排出するヘリウムガスは図示されて
ない冷凍機に導かれて冷却され、再び液体ヘリウ
ムとなつて容器1内へ還流される。 一方、上記の電流リード4は、その設計上の所
要通電断面積が通電電流と冷却条件から決定され
る。すなわち導体断面積が必要以上に大であると
リード導体を通じて外部熱の侵入量が増大し、逆
に断面積が小であるとジユール熱損が増加する問
題があり、この面から適正な通電断面積が決定さ
れる。一方、リード導体8の周囲に形成されたら
せん溝10、放熱フイン11に関しては、らせん
溝10のガス通路断面積をリード導体8の冷却に
必要とされる最小の流路断面積として容器1内に
収容した液体ヘリウムの蒸発量を最小限に抑えつ
つ、ここを通流するヘリウムガスと導体側の放熱
フイン11との間の熱交換面積を大にして高い熱
交換率が得られるように設定することが望まれ
る。さらにヘリウムガス系統で例えば弁の故障等
により万一ヘリウムガスの供給停止のトラブルが
生じた場合を想定すると、この場合にはトラブル
の回復までに低温に冷却されている電流リードの
温度上昇を極力低く抑える必要があるが、このた
めには通電に直接関与しない放熱フイン11のマ
スを大きくしておけばその熱容量により前記トラ
ブル発生時の温度上昇を極力抑えることが可能で
ある。したがつて前記の各冷却条件を満足させる
ためにも、リード導体8の周囲に形成した前記の
らせん溝10は溝幅は数mm程度にできるだけ狭
く、かつ溝深さを深くして放熱フイン11のフイ
ン高さを大きく構成することが望ましい。 ところで従来における電流リード4のリード導
体8は第5図に示すような構成であり、このよう
な構造では、そのらせん溝10を設けるには直径
φの銅の丸棒素材を旋盤にかけてその全域を連続
的に切削加工し、らせん溝を形成する方法が採ら
れていた。しかしながらこの旋盤による切削加工
法では、加工性の制約から前記したように溝幅が
狭くかつ深さ寸法の深いらせん溝10を切削加工
することが困難であり、電流リードのリード導体
として充分な冷却特性を持つたものが製作できな
い難点があつた。
[Prior art and its problems] First, FIG. 6 shows the configuration of a superconducting device using the above-mentioned superconducting coil as an example. In the figure, reference numeral 1 denotes a heat-insulating container configured as a double-walled vacuum container, etc., in which a superconducting coil 2 is housed and the open surface of the container is closed with an insulating lid 3. The superconducting coil 2 is maintained at an extremely low temperature by filling the inside with, for example, liquid helium He as a coolant. On the other hand, in order to supply power to the superconducting coil 2 from an external power source, a current lead 4 is provided passing through the lid 3 of the container through a shaft seal. This current lead 4 consists of a lead body 5 that passes through the lid 3, and a room temperature side terminal portion 6 and a low temperature side terminal portion 7 connected to both upper and lower ends of the lead body 5, and the room temperature side terminal portion 6 is not shown in the figure. One of the low-temperature side terminals 7 is connected to the lead wires 2a drawn out from the superconducting coil 2 to supply power to an external power source that is not connected to the superconducting coil 2. In addition to the illustrated example, there is also a method in which a helium reservoir is connected to the container body housing the superconducting coil 2 and a current lead is installed in the helium reservoir to supply power to the superconducting coil 2. The current lead 4 supplies a large current, reaching several thousand amperes, to the superconducting coil 2, and therefore generates a large amount of heat as it is energized, and furthermore, the heat that enters the container through the current lead 4. In order to suppress this as much as possible, it is necessary to forcibly cool the current lead 4. As a means for this purpose, as will be described later, a spiral groove is provided around the lead conductor of the current lead 4 to serve as a passage for the cooling gas, and heat dissipation fins are formed between the grooves, and the liquid helium contained in the container 1 is introduced into the spiral groove. Generally, a method is adopted in which the current lead 4 is forcibly cooled by flowing evaporated gas. The detailed structure of the current lead 4 according to this method is shown in FIG. The lead conductor 8 has a structure in which a spiral groove 10 is provided along the axial direction on the circumferential surface of the lead conductor 8, and heat dissipation fins 11 are formed between the grooves. There is. When the device is operated with this configuration, the helium gas evaporated in the container 1 rises and flows as shown by the arrow through the passage surrounded by the spiral groove 10 and the hollow tube 9, and during this gas flow process, the lead conductor The current lead is cooled by a hot steel pipe between the heat dissipation fin 11 extending over the circumferential surface of the current lead. Note that the helium gas discharged outward from the upper end of the lead conductor 8 is guided to a refrigerator (not shown), cooled, and turned into liquid helium again and returned to the inside of the container 1. On the other hand, in the design of the current lead 4, the required current carrying cross-sectional area is determined from the current flowing and the cooling conditions. In other words, if the conductor cross-sectional area is larger than necessary, the amount of external heat entering through the lead conductor will increase, and conversely, if the cross-sectional area is small, there will be an increase in heat loss. The area is determined. On the other hand, regarding the spiral groove 10 and the heat dissipation fin 11 formed around the lead conductor 8, the gas passage cross-sectional area of the spiral groove 10 is set as the minimum flow passage cross-sectional area required for cooling the lead conductor 8 inside the container 1. The heat exchange area between the helium gas flowing therethrough and the heat radiation fin 11 on the conductor side is increased to obtain a high heat exchange rate while minimizing the amount of evaporation of the liquid helium contained in the conductor. It is desirable to do so. Furthermore, assuming that there is a problem in the helium gas system where the supply of helium gas is interrupted due to a malfunction of a valve, etc., in this case, the temperature of the current lead, which is cooled to a low temperature, should be kept as low as possible until the problem is recovered. Although it is necessary to keep the temperature low, for this purpose, by increasing the mass of the heat dissipating fins 11 that are not directly involved in energization, it is possible to suppress the temperature rise when the trouble occurs as much as possible due to its heat capacity. Therefore, in order to satisfy each of the cooling conditions described above, the spiral groove 10 formed around the lead conductor 8 should have a groove width as narrow as possible, approximately several mm, and a groove depth as deep as possible to form the heat dissipation fins 11. It is desirable to configure the fins to have a large height. By the way, the lead conductor 8 of the conventional current lead 4 has a structure as shown in FIG. A method was adopted in which continuous cutting was performed to form spiral grooves. However, with this cutting method using a lathe, it is difficult to cut the spiral groove 10, which has a narrow groove width and a deep depth, as described above, due to limitations in workability, and it is difficult to cut the spiral groove 10, which is narrow in groove width and deep in depth, as described above. The problem was that it was not possible to produce products with specific characteristics.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたもので
あり、従来構造の冷却ガス通路となるらせん溝を
有する放熱フインを設けるためのによる加工性の
難点を解消し、溝幅の狭いらせん溝および高さの
高い放熱フインがフライス切削加工法等によりリ
ード導体の周面に容易に形成でき、これにより高
い冷却特性が得られるようにした超電導機器給電
用の電流リードを提供することを目的とする。
This invention has been made in consideration of the above points, and solves the difficulty of workability due to the provision of heat dissipation fins having a spiral groove that serves as a cooling gas passage in the conventional structure, and has a spiral groove with a narrow groove width and a high height. An object of the present invention is to provide a current lead for power supply of superconducting equipment in which heat dissipation fins with high heat dissipation fins can be easily formed on the circumferential surface of a lead conductor by a milling method or the like, thereby obtaining high cooling characteristics.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明は電流リ
ードを構成するリード導体の素材周面上に直線状
のスリツトをらせん階段状に組合せて設けて、各
直線状のスリツト間を直列に連ねて冷却ガス通路
となるらせん溝を有する放熱フインを構成するよ
うにしたものである。 これらの構成を採用することにより、らせん溝
および放熱フインをスリツト加工により形成する
場合には、旋盤加工によらずにフライス盤等で行
うことができ、従来の構造によるものより加工性
の改善が図れるとともに、溝幅の狭いらせん溝と
フイン高さの高い放熱フインを有する冷却特性の
高い電流リードが得られる。
In order to achieve the above object, the present invention provides a combination of linear slits in a spiral staircase pattern on the circumferential surface of a material of a lead conductor constituting a current lead, and connects each linear slit in series for cooling. The heat dissipation fin is configured with a spiral groove that serves as a gas passage. By adopting these configurations, when forming spiral grooves and heat dissipation fins by slit processing, it can be done using a milling machine, etc., instead of using lathe processing, and workability can be improved compared to the conventional structure. At the same time, a current lead with high cooling characteristics having a spiral groove with a narrow groove width and a heat radiation fin with a high fin height can be obtained.

【発明の実施例】[Embodiments of the invention]

第1図ないし第3図はこの発明の実施例を示す
ものであり、第4図に対応する同一部材には同じ
符号が付してある。すなわちこの発明によれば、
丸棒であるリード導体8の素材周上を例えば90度
間隔で複数区分に割出した上で、互いに隣接する
区分の相互間で一部がラツプし合うように導体軸
方向に位置をずらしつつ各区分ごとに定ピツチ置
きに溝幅a、溝深さbの直線状スリツト10aが
設けられている。これにより前記直線状スリツト
10aの組合せでリード導体8の周面上には各区
分の直線状スリツト10aの間が順次直列に連な
るらせん階段状のらせん溝10、および溝間に放
熱フイン11が形成されることになる。またこの
場合にリード導体8の割出し区分数をn(図示例
では90度間隔でnは4)、放熱フイン11のピツ
チ間隔をpとして、隣接区分の相互間でx=p/
nずつ軸方向に位置をずらした上で溝幅aがp>
a>xとなる条件で直線状スリツト10aを設け
ることにより、各スリツト10aは互いに直列に
連なり合つてらせん溝10が形成されることにな
る。なおスリツト10a深さ寸法bは、リード導
体8の中央部分に所要の通電断面を残して各スリ
ツトの端部が隣接スリツトとの間で一部交叉し合
うような深さ寸法に設定されている。 また上記の構成において、スリツト10aを切
削加工で設ける場合には該スリツトが直線状であ
ることからフライス盤の採用が可能であり、した
がつて溝幅aが狭く、かつ深さbの深いスリツト
の加工も容易に行える。これによりらせん溝10
のガス通路断面を電流リード4の冷却に必要とさ
れる最小断面積に、また放熱フイン11は放熱面
積を大に構成でき、らせん溝10と放熱フイン1
1との間で高い熱交換性が得られることになる。
加えてらせん溝10は各スリツト10a間に跨る
部分で段差があり、この部分でらせん溝内を通流
する冷却ガスが乱流攪拌されるので放熱フイン1
1との間の熱交換性能をより一層高めることが期
待できる。さらに加えて放熱フイン11はフイン
高さ寸法が充分高く、そのマス、したがつて熱容
量が大となるので、冷却ガス系統に万一のトラブ
ルが発生した場合にもフイン11の大きな熱容量
により常温側から低温側への熱侵入を抑制して急
激な温度上昇を防止できる。
1 to 3 show embodiments of the present invention, and the same members corresponding to those in FIG. 4 are given the same reference numerals. That is, according to this invention,
The material circumference of the lead conductor 8, which is a round bar, is divided into multiple sections at 90 degree intervals, for example, and the positions of the adjacent sections are shifted in the axial direction of the conductor so that some overlap with each other. Linear slits 10a having a groove width a and a groove depth b are provided at regular intervals in each section. As a result, the combination of the linear slits 10a forms on the circumferential surface of the lead conductor 8 a spiral groove 10 in the shape of a spiral step in which the linear slits 10a of each section are successively connected in series, and heat dissipation fins 11 between the grooves. will be done. In this case, the number of indexed sections of the lead conductor 8 is n (n is 4 at 90 degree intervals in the illustrated example), the pitch interval of the heat dissipation fins 11 is p, and the distance between adjacent sections is x=p/
After shifting the position by n in the axial direction, the groove width a becomes p>
By providing the linear slits 10a under the condition that a>x, each slit 10a is connected in series to form a spiral groove 10. Note that the depth dimension b of the slits 10a is set to such a depth that the ends of each slit partially intersect with the adjacent slits, leaving a required current-carrying cross section in the center of the lead conductor 8. . Furthermore, in the above configuration, when the slit 10a is provided by cutting, since the slit is linear, a milling machine can be used. Processing is also easy. As a result, the spiral groove 10
The cross-section of the gas passage can be configured to the minimum cross-sectional area required for cooling the current lead 4, and the heat radiation fin 11 can be configured to have a large heat radiation area.
1, high heat exchange performance can be obtained.
In addition, the spiral groove 10 has a step between the slits 10a, and the cooling gas flowing through the spiral groove is turbulently stirred at this portion, so that the heat dissipation fin 1
It can be expected that the heat exchange performance with 1 can be further improved. In addition, the heat dissipation fins 11 have a sufficiently high fin height dimension, and their mass, and thus their heat capacity, are large. Therefore, even if a problem occurs in the cooling gas system, the large heat capacity of the fins 11 will cause the fins to reach the normal temperature side. It is possible to suppress heat intrusion from the low temperature side to the low temperature side and prevent a sudden temperature rise.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、リード導
体の素材周面上に直線状のスリツトをらせん階段
状に組合せて設けて、各直線状のスリツト間を直
列に連ねてらせん溝を有する放熱フインからなる
電流リードとしたことにより、スリツト加工にフ
ライス切削加工法を採用することができフイン高
さの高い放熱フインと溝幅の狭いらせん溝の形成
加工が可能となり、かくして冷却特性の高い電流
リードを容易に製作することができる。
As described above, according to the present invention, linear slits are provided on the peripheral surface of the material of the lead conductor in a spiral staircase pattern, and each linear slit is connected in series to form a heat dissipation fin having a spiral groove. By creating a current lead consisting of a slit, a milling method can be used for slitting, making it possible to form heat dissipating fins with a high fin height and spiral grooves with a narrow groove width, thus creating a current lead with high cooling properties. can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例による電流リードの
要部構成断面図、第2図および第3図はそれぞれ
第1図における矢視−、−断面図、第4
図は電流リード全体の構成断面図、第5図は第1
図に対応する従来の電流リードの構成断面図、第
6図はこの発明の実施対象である超電導機器給全
体の構成図である。図において、 1……容器、2……超電導機器としての超電導
コイル、4……電流リード、5……リード導体、
6……常温側端子部、7……低温側端子部、8…
…リード導体、9……中空管、10……らせん
溝、10a……直線状のスリツト、11……放熱
フイン。
FIG. 1 is a cross-sectional view of the main part of a current lead according to an embodiment of the present invention, FIGS.
The figure is a cross-sectional view of the entire current lead, and Figure 5 is the first
FIG. 6 is a cross-sectional view of the configuration of a conventional current lead corresponding to the figure, and FIG. 6 is a configuration diagram of the entire superconducting equipment supply to which the present invention is applied. In the figure, 1... Container, 2... Superconducting coil as a superconducting device, 4... Current lead, 5... Lead conductor,
6... Normal temperature side terminal part, 7... Low temperature side terminal part, 8...
... Lead conductor, 9 ... Hollow tube, 10 ... Spiral groove, 10a ... Straight slit, 11 ... Heat dissipation fin.

Claims (1)

【特許請求の範囲】[Claims] 1 極低温に維持された容器に装備して該容器内
に収容の超電導機器とを接続され、低温側端子部
と常温側端子部との間を結ぶ中空管で囲繞された
リード導体の外周面に冷却ガス通路となるらせん
溝を有する放熱フインが設けられた給電用の電流
リードのおいて、前記放熱フインが、リード導体
の素材周面上に直線状のスリツトを互いに隣接す
る区分の相互間で一部がラツプし合うようにリー
ド導体軸方向に位置をずらしつつらせん階段状に
組合わせて設けられて各直線状のスリツト間を直
列に連ねた冷却ガス通路となるらせん溝を有する
ことを特徴とする超電導機器給電用の電流リー
ド。
1. The outer periphery of a lead conductor that is equipped in a container maintained at an extremely low temperature and connected to superconducting equipment housed within the container, and surrounded by a hollow tube that connects the low-temperature side terminal part and the room-temperature side terminal part. In a current lead for power supply, which is provided with a heat dissipation fin having a spiral groove serving as a cooling gas passage on its surface, the heat dissipation fin has linear slits formed on the circumferential surface of the material of the lead conductor between adjacent sections. It has spiral grooves that are arranged in a spiral staircase pattern while shifting their positions in the axial direction of the lead conductor so that some of the grooves overlap in between, and serve as cooling gas passages connected in series between the linear slits. A current lead for powering superconducting equipment featuring:
JP60164503A 1985-07-25 1985-07-25 Current lead for supplying current to superconductive device Granted JPS6225473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60164503A JPS6225473A (en) 1985-07-25 1985-07-25 Current lead for supplying current to superconductive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60164503A JPS6225473A (en) 1985-07-25 1985-07-25 Current lead for supplying current to superconductive device

Publications (2)

Publication Number Publication Date
JPS6225473A JPS6225473A (en) 1987-02-03
JPH0546711B2 true JPH0546711B2 (en) 1993-07-14

Family

ID=15794392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60164503A Granted JPS6225473A (en) 1985-07-25 1985-07-25 Current lead for supplying current to superconductive device

Country Status (1)

Country Link
JP (1) JPS6225473A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241707A (en) * 1990-02-20 1991-10-28 Sumitomo Heavy Ind Ltd Current lead and manufacture thereof
DE4127711A1 (en) * 1991-08-22 1993-02-25 Kernforschungsz Karlsruhe LOW TEMPERATURE POWER SUPPLY WITH HEAT EXCHANGER

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140495A (en) * 1978-04-21 1979-10-31 Mitsubishi Electric Corp Superconductive device
JPS5998505A (en) * 1982-11-26 1984-06-06 Japanese National Railways<Jnr> Super conductive current lead

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54140495A (en) * 1978-04-21 1979-10-31 Mitsubishi Electric Corp Superconductive device
JPS5998505A (en) * 1982-11-26 1984-06-06 Japanese National Railways<Jnr> Super conductive current lead

Also Published As

Publication number Publication date
JPS6225473A (en) 1987-02-03

Similar Documents

Publication Publication Date Title
US4031422A (en) Gas cooled flux shield for dynamoelectric machine
US5283464A (en) Electrically insulated heat pipe type cooling apparatus for semiconductor
US4363773A (en) Superconductive electromagnet apparatus
US3936681A (en) Cooling arrangement for electric generators of underwater power plants
JPH0546711B2 (en)
JPH06504401A (en) Hollow electrical conductors that can be cooled at low temperatures and their applications
US2904708A (en) Ventilation of end turn portions of generator rotor winding
DE1182753B (en) Arrangement for cooling a metallic component forming part of the shell of an electron tube
US3538366A (en) Fluid cooled electromagnetic structure for traveling wave tubes
JPH0387050A (en) Electrically insulated heat pipe type semiconductor cooler
JPH0459764B2 (en)
SU957359A1 (en) Electric machine rotor
CN117424366B (en) Cooling structure and motor with same
JPS6218005Y2 (en)
JPH099542A (en) Rotor for electric rotating machine
JPS61170247A (en) Linear motor
JPH045244B2 (en)
JPH01164263A (en) Rotor for superconductive rotating machine
JPH11235009A (en) Current lead of rotor of superconducting rotating machine
SU629599A1 (en) Electric machine with cryogenic cooling
JPH11126718A (en) Transformer
JPH0723939Y2 (en) Coil with cooling passage
JPS626824Y2 (en)
JPH07307227A (en) Multiwinding transformer
JPH0512874B2 (en)