JPH0546381B2 - - Google Patents

Info

Publication number
JPH0546381B2
JPH0546381B2 JP61234007A JP23400786A JPH0546381B2 JP H0546381 B2 JPH0546381 B2 JP H0546381B2 JP 61234007 A JP61234007 A JP 61234007A JP 23400786 A JP23400786 A JP 23400786A JP H0546381 B2 JPH0546381 B2 JP H0546381B2
Authority
JP
Japan
Prior art keywords
ptfe
powder
particle size
pps
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61234007A
Other languages
Japanese (ja)
Other versions
JPS6389560A (en
Inventor
Yukihiko Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Valqua Kogyo KK
Original Assignee
Nihon Valqua Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Valqua Kogyo KK filed Critical Nihon Valqua Kogyo KK
Priority to JP23400786A priority Critical patent/JPS6389560A/en
Publication of JPS6389560A publication Critical patent/JPS6389560A/en
Publication of JPH0546381B2 publication Critical patent/JPH0546381B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の技術分野 本発明はポリテトラフルオロエチレン樹脂をベ
ースとする組成物に関し、さらに詳しくは、耐摩
耗性に優れるとともに相手部材への攻撃性が小さ
いポリテトラフルオロエチレン樹脂をベースとす
る成形用組成物に関する。 発明の技術的背景ならびにその問題点 ポリテトラフルオロエチレン樹脂(以下PTFE
と略することがある)は、耐熱性および耐薬品性
に優れるとともに、摩擦係数が小さく自己潤滑性
を有しているので、摺動材、管、バルブ、コツク
などの成形品として広く使用されている。 ところで、PTFEは、耐摩耗性が必ずしも良好
ではなくしかも圧縮強さも充分ではないため、
PTFEに種々の充填剤を添加して耐摩耗性ならび
に機械的強度を改良することが行なわれている。
このようなPTFE中に添加される充填剤として
は、ガラス繊維、炭素繊維、グラフアイト、二硫
化モリブデン、ブロンズ粉末などの無機充填剤が
知られている。ところが上記のようなガラス繊維
などの無機充填剤が添加されたPTFEは、PTFE
自信の耐摩耗性は改良されるが、PTFE成形品と
接触する相手部材が軟質であると、この相手部材
が摩耗してしまうという問題点があつた。 このような問題点を解決するため、耐熱性ポリ
マーであるポリフエニレンサルフアイド(以下
PPSと略することがある)をPTFE中に添加する
ことが提案されており、このPPSが添加された
PTFE成形品は、相手部材が軟質であつても相手
部材を摩耗させることがないという優れた利点を
有している。 ところがPPSが5重量%以下添加されたPTFE
をベースとする成形用組成物を用いて成形体を製
造する際に、該成形用組成物を金型に入れて圧縮
して予備成形し、得られた予備成形体を金型から
取り出して加熱焼成するフリーベーキング法を採
用すると、加熱時に成形体にクラツクが生じてし
まうという重大な問題点があつた。また上記の
PTFEをベースとする成形用組成物を予備成形す
る際に、予備成形圧を300Kgf/cm2以上とすると、
得られる成形体にクラツクが発生するため、予備
成形圧を大きくすることができないという問題点
があつた。もし予備成形圧を大きくせずに成形体
を製造すると、緻密で機械的強度に優れた成形体
は得ることができない。 このようなPPSが充填剤として添加された
PTFEをベースとする成形用組成物に伴なう問題
点を解決するため、特公昭59−18420号公報には、
PTFEにPPSのほかに10〜30重量%のグラフアイ
トまたはガラス繊維を添加することを特徴とする
PTFEをベースとする成形用組成物が開示されて
いる。ところが、この成形用組成物は、ガラス繊
維を含む場合には、加熱焼成時にクラツクが発生
せずしかも予備成形圧を大きくすることができる
という利点は有しているものの、該組成物はガラ
ス繊維を含むため、相手部材に対する攻撃性が表
われてしまい相手部材を摩擦させてしまうという
問題点があつた。また特公昭59−18420号公報に
開示れた組成物がグラフアイト粒子を含む場合に
は、大きな粒径のグラフアイト粒子が用いられて
いるため、そしてこのグラフアイト粒子の大きさ
とPPS粒子の大きさとの関係が特定されていない
ため、やはり該組成物の加熱焼成時にクラツクが
発生するという問題点がやはり存在している。 そこで本発明者らは、PPSが添加されたPTFE
をベースとする成形用組成物に伴なう問題点を解
決すべく鋭意研究したところ、該組成物の加熱焼
成時にクラツクが発生したりあるいは予備成形圧
を大きくできないのは、PPS粒径が大きく、この
状態で急激に加熱焼成させるためにPPSから発生
するガスによるものであることを見出し、さらに
研究したところPPS粒子の表面に特定粒径を有す
るグラフアイト粒子を配置すれば、PPS粒子から
発生するガスを系外に容易に排出しうることを見
出して、本発明を完成するに至つた。 発明の目的 本発明は、上記のような従来技術に伴なう問題
点を解決しようとするものであり、PPSが添加さ
れたPTFEをベースとする成形用組成物から成形
体を製造する際に、得られる成形体にクラツクが
発生することなくしかも予備成形圧を大きくする
ことができるような、PTFEをベースとする成形
用組成物を提供することを目的としている。 発明の概要 本発明に係るポリテトラフルオロエチレンをベ
ースとする成形用組成物は、ポリテトラフルオロ
エチレン粉末96〜60重量%と、10〜30μmの平均
粒径を有するポリフエニレンサルフアイド粉末2
〜20重量%と、10μm以下の平均粒径を有するグ
ラフアイト粉末2〜20重量%とからなり、グラフ
アイト粉末の平均粒径はポリフエニレンサルフア
イド粉末の平均粒径の1/2以下であることを特徴
としている。 本発明に係るPTFEをベースとする成形用組成
物は、PTFE粉末に加えて、特定の粒径を有する
PPS粉末およびグラフアイト粉末を含有し、しか
もグラフアイト粉末の平均粒径はPPS粉末の平均
粒径の1/2以下であるため、このPTFEをベース
とする成形用組成物から成形体を製造するに際し
て、PPSから発生するガスは成形体外部に容易に
導き出すことが可能となり、得られる成形体にク
ラツクが発生せず、しかも成形体の予備成形圧を
大きくすることができる。また得られる成形体
は、特に水中および高温条件で優れた耐摩耗性を
有する。 発明の具体的説明 以下本発明に係るPTFEをベースとする成形用
組成物について具体的に説明する。 本発明に係るPTFEをベースとする成形用組成
物は、PTFE粉末96〜60重量%と、10〜30μmの
平均粒径を有するPPS粉末2〜20重量%と、10μ
m以下の平均粒径を有するグラフアイト粉末2〜
20重量%とを含んでおり、グラフアイト粉末の平
均粒径は、PPS粉末の平均粒径の1/2以下である。 PTFE粉末は、10〜40μmの粒径を有している
ことが好ましく、いわゆるモールデイングパウダ
ーおよびフアインパウダーのいずれもが用いられ
る。 また本発明に係る成形用組成物中のPTFE粉末
の含有量は96〜60重量%であるが、この含有量が
96重量%を越えると、得られる成形体の耐摩耗性
ならびに機械的強度があまり改良されないため好
ましくなく、一方60重量%未満では、得られる成
形品にクラツクが入つたり機械的強度が低下する
ため好ましくない。 PPS粉末は、10〜30μmの平均粒径を有してい
る。PPSの粒系が30μmを越えると、PTFE粉末
と均一に混合せず、このPPSが添加されたPTFE
をベースとする成形用組成物を加熱焼成する際に
PPS粉末から急激に多量のガスが発生し、得られ
る成形品にクラツクが発生するため好ましくな
い。 PPS粉末は成形用組成物中に2〜20重量%の量
で含まれるが、2重量%未満では、得られる成形
体の耐摩耗性ならびに機械的強度があまり改良さ
れないため好ましくなく、一方20重量%を越える
と、得られる成形品にクラツクが入つたりあるい
はふくれたりするため好ましくない。 グラフアイト粉末は10μm以下の平均粒径を有
しており、しかもPPS粉末の平均粒径の1/2以下
の大きさである。もしグラフアイト粉末が、10μ
mを越える平均粒径を有するか、あるいはPPS粉
末の平均粒径の1/2を越える大きさであると、加
熱焼成時にPPS粉末から発生するガスを完全に成
形体外に導き出すことができず、このためPPS粉
末から発生したガスが成形体内に閉じ込められ、
得られる成形体にクラツクが発生してしまう。 グラフアイト粉末は成形用組成物中に2〜20重
量%の量で含まれるが、2重量%未満では、PPS
粉末から発生するガスを、完全には成形体外に導
き出すことができないため好ましくなく、一方20
重量%を越えると、得られる成形品に占める充填
材の比率が高くなり、かえつて機械的強度が低下
するため好ましくない。 上記のようなグラフアイト粉末をPTFEをベー
スとする成形用組成物中に2〜20重量%の量で含
まれることにより、得られる成形体は、特に水分
を含む雰囲気下そして高温下で優れた耐摩耗性を
示す。たとえば上記のようなグラフアイト粉末を
10重量%の量で、PTFE粉末とPPS粉末とからな
る成形用組成物中に含ませることによつて水中で
の摩耗係数は、グラフアイト粉末を含ませない場
合の約1/10程度になる。また上記のような特性粒
径のグラフアイト粉末を含む成形用組成物と、平
均粒径50μmのグラフアイト粉末を含む成形用組
成物とを比較すると、水中での摩耗係数は、特定
粒径のグラフアイト粉末を含む場合には、50μm
のグラフアイト粉末を含む場合の1/2以下となる。 なお本発明に係るPTFEをベースとする成形用
組成物中に、必要に応じて、ガラス繊維、二硫化
モリブデン、ブロンズ粉末などの無機充填剤を含
有させることもできる。 このような本発明に係るPTFEをベースとする
成形用組成物から成形体を製造するには、PTFE
をベースとする成形用組成物を、常法に従つて圧
縮成形するとともにPTFEの融点以上の温度に加
熱焼成すればよい。この際、本出願人に係る特願
昭60−245774号公報に開示されるように予備加熱
を行なう必要は特にはない。 発明の効果 本発明に係るPTFEをベースとする成形用組成
物は、PTFE粉末に加えて、特定の粒径を有する
PPS粉末およびグラフアイト粉末を含有し、しか
もグラフアイト粉末の平均粒径はPPS粉末の平均
粒径の1/2以下であるため、このPTFEをベース
とする成形用組成物から成形体を製造するに際し
て、PPSから発生するがスは成形体外部に容易に
導き出すことが可能となり、得られる成形体にク
ラツクが発生せず、しかも成形時の予備成形圧を
大きくすることができる。また得られる成形体
は、特に水中および高温条件下で優れた耐摩耗性
を有する。 以下本発明を実施例により説明するが、本発明
はこれら実施例に限定されるものではない。 実施例 1 平均粒径30μmのPTFEモールデイングパウダ
ー(三井フロロケミカル社製 7J)75重量部と、
粉砕機にて平均粒径25μmに粉砕されたPPS(フ
イリツプ・ペトロレウム・インターナシヨナル社
製P−4)15重量部と、平均粒径6μmのグラフ
アイト粉末10重量部とを乾式にて充分均一に混合
してPTFEをベースとする成形用組成物を調製し
た。 得られた成形用組成物を金型に入れて300Kg/
cm2の圧力で予備成形して予備成形体を製造した。 次いで、この予備成形体をPTFEの融点以上の
温度である340℃で加熱焼成してPTFEをベース
とする成形体を製造した。 得られた成形体を、水中に浸漬して水中6Kg/
cm2の荷重をかけて0.4m/秒で相手部材と100時間
摺動させて、摩耗試験を行なつて、下記表により
摩耗係数を測定した。 摩耗係数=摩耗高さ[cm]/面圧[Kg/cm2]×摺速[
m/s] ×時間[hr] なお摩耗高さは、試験前後の成形体の重量減を
比重で除して摩耗体積を算出し、この摩耗体積を
接触面積で除することにより計算した。 結果を表1に示す。 また、得られた成形体を、200℃および300℃で
相手部材と14Kg/cm2の荷重をかけて0.5m/秒摺
動速度で100時間摺動させて、摩耗試験を行ない、
摩耗係数を測定した。 結果を表2に示す。 なおこの成形体は、相手部材に対する攻撃性は
認められなかつた。 実施例 2 平均粒径30μmのPTFEモールデイングパウダ
ー(三井フロロケミカル社製 7J)85重量部と、
粉砕機にて平均粒径25μmに粉砕されたPPS(フ
イリツプ・ペトロレウム・インターナシヨナル社
製P−4)10重量部と、平均粒径6μmのグラフ
アイト粉末5重量部とを乾式にて充分均一に混合
してPTFEをベースとする成形用組成物を調製し
た。 得られた成形用組成物を金型に入れて300Kg/
cm2の圧力で予備成形して予備成形体を製造した。 次いで、この予備成形体をPTFEの融点以上の
温度である340℃で加熱焼成してPTFEをベース
とする成形体を製造した。 得られた成形体を、水中に浸骨して水中に6
Kg/cm2の荷重をかけて0.4m/秒で相手部材を100
時間摺動させて、摩耗試験を行なつて、下記表に
より摩耗係数を測定した。 摩耗係数=摩耗高さ[cm]/面圧[Kg/cm2]×摺速[
m/s] ×時間[hr] なお摩耗高さは、試験前後の成形体の重量減を
比重で除して摩耗体積を算出し、この摩耗体積を
接触面積で除することにより計算した。 結果を表1に示す。 また、得られた成形体を、200℃および300℃で
相手部材と14Kg/cm2の荷重をかけて0.5m/秒摺
動速度で100時間摺動させて、摩耗試験を行ない、
摩耗係数を測定した。 結果を表2に示す。 なおこの成形体は、相手部材に対する攻撃性は
認められなかつた。 比較例 1 実施例1において、PTFEモールデイングパウ
ダー85重量部と、平均粒径25μmに粉砕された
PPS粉末15重量部とを混合して、PTFEをベース
とする成形用組成物を調製した。 得られた成形用組成物を金型に入れて300Kg/
cm2の圧力で予備成形して予備成形体を製造した。 次に、この予備成形体を金型より取り出して、
PPSの融点以上でしかもPTFEの融点以下の温度
である300℃に30分間保持して予備加熱した。 次いで、予備加熱処理が加えられた予備成形体
をPTFEの融点以上の温度である340℃で加熱焼
成した。 なおこの際予備加熱処理を加えないと、得られ
る成形体にクラツクが発生してしまつた。 上記のようにして得られた成形体を用いて、実
施例1と同様にして水中および高温条件下での摩
耗係数を求め、それぞれ表1および表2に示す。 なおこの成形体は、相手部材に対する攻撃性は
認められなかつた。 比較例 2 実施例1において、平均粒径6μmグラフアイ
ト粉末の代わりに、平均粒径50μmのグラフアイ
ト粉末を用い、しかも比較例1と同様に予備加熱
処理を加えた以外は、実施例1と同様にして水中
および高温条件下での摩耗係数を求めた。 結果を表1および表2に示す。 この場合にも予備加熱処理を行なわないと、得
られる成形体にクラツクが発生してしまつた。 なおこの成形体は、相手部材に対する攻撃性は
認められなかつた。
Technical Field of the Invention The present invention relates to a composition based on polytetrafluoroethylene resin, and more specifically to a molding composition based on polytetrafluoroethylene resin that has excellent wear resistance and is less aggressive to mating parts. relating to things. Technical background of the invention and its problems Polytetrafluoroethylene resin (PTFE)
) has excellent heat resistance and chemical resistance, as well as low coefficient of friction and self-lubricating properties, so it is widely used as molded products such as sliding materials, pipes, valves, and pots. ing. By the way, PTFE does not necessarily have good wear resistance and also does not have sufficient compressive strength.
Various fillers have been added to PTFE to improve its wear resistance and mechanical strength.
Inorganic fillers such as glass fiber, carbon fiber, graphite, molybdenum disulfide, and bronze powder are known as fillers added to such PTFE. However, PTFE to which inorganic fillers such as glass fibers are added, as mentioned above, is
Although the wear resistance of the product has been improved, there is a problem in that if the mating member that comes into contact with the PTFE molded product is soft, the mating member will wear out. In order to solve these problems, we developed polyphenylene sulfide (hereinafter referred to as "polyphenylene sulfide"), a heat-resistant polymer.
It has been proposed that PPS (sometimes abbreviated as PPS) be added to PTFE, and this PPS is added.
PTFE molded products have the excellent advantage of not causing wear on the mating member even if the mating member is soft. However, PTFE with less than 5% by weight of PPS added
When manufacturing a molded object using a molding composition based on , the molding composition is put into a mold and compressed to preform, and the obtained preform is taken out from the mold and heated. When a free baking method was adopted, there was a serious problem in that cracks occurred in the molded product during heating. Also the above
When preforming a PTFE-based molding composition, if the preforming pressure is 300 Kgf/cm 2 or more,
There was a problem in that the preforming pressure could not be increased because cracks would occur in the resulting molded product. If a molded article is produced without increasing the preforming pressure, a dense molded article with excellent mechanical strength cannot be obtained. Such PPS was added as a filler
In order to solve the problems associated with PTFE-based molding compositions, Japanese Patent Publication No. 59-18420
Characterized by adding 10 to 30% by weight of graphite or glass fiber in addition to PPS to PTFE
Molding compositions based on PTFE are disclosed. However, when this molding composition contains glass fibers, it has the advantage that cracks do not occur during heating and baking, and the preforming pressure can be increased. Because of this, there was a problem in that the material exhibited aggressiveness toward the other member, causing friction with the other member. Furthermore, when the composition disclosed in Japanese Patent Publication No. 59-18420 contains graphite particles, since graphite particles with a large particle size are used, and the size of the graphite particles and the size of the PPS particles are different from each other. Since the relationship between the composition and the composition has not been specified, there still remains the problem that cracks occur when the composition is heated and fired. Therefore, the present inventors developed PTFE with added PPS.
In order to solve the problems associated with molding compositions based on They discovered that this was due to the gas generated from PPS during rapid heating and firing in this state, and further research revealed that if graphite particles with a specific particle size were placed on the surface of PPS particles, the gas generated from PPS particles could be generated. The present invention was completed based on the discovery that the gas that is present can be easily discharged from the system. Purpose of the Invention The present invention aims to solve the problems associated with the prior art as described above, and is aimed at solving the problems associated with the prior art as described above. The object of the present invention is to provide a PTFE-based molding composition that does not cause cracks in the resulting molded product and allows for increased premolding pressure. Summary of the invention The molding composition based on polytetrafluoroethylene according to the present invention comprises 96-60% by weight of polytetrafluoroethylene powder and 2% polyphenylene sulfide powder having an average particle size of 10-30 μm.
-20% by weight and 2 to 20% by weight of graphite powder having an average particle size of 10 μm or less, and the average particle size of the graphite powder is 1/2 or less of the average particle size of polyphenylene sulfide powder. It is characterized by certain things. The PTFE-based molding composition according to the invention has, in addition to PTFE powder, a specific particle size.
Since it contains PPS powder and graphite powder, and the average particle size of the graphite powder is 1/2 or less of the average particle size of the PPS powder, a molded body is manufactured from this PTFE-based molding composition. At this time, the gas generated from the PPS can be easily led out of the molded product, so that cracks do not occur in the resulting molded product, and moreover, the preforming pressure of the molded product can be increased. Furthermore, the molded product obtained has excellent wear resistance, especially under water and high temperature conditions. DETAILED DESCRIPTION OF THE INVENTION The PTFE-based molding composition according to the present invention will be specifically described below. The PTFE-based molding composition according to the invention comprises 96-60% by weight of PTFE powder, 2-20% by weight of PPS powder with an average particle size of 10-30 μm and 10 μm of powder.
Graphite powder 2~ having an average particle size of m or less
20% by weight, and the average particle size of the graphite powder is 1/2 or less of the average particle size of the PPS powder. The PTFE powder preferably has a particle size of 10 to 40 μm, and both so-called molding powder and fine powder are used. Furthermore, the content of PTFE powder in the molding composition according to the present invention is 96 to 60% by weight;
If it exceeds 96% by weight, the wear resistance and mechanical strength of the molded product obtained will not be improved much, which is undesirable. On the other hand, if it is less than 60% by weight, the molded product obtained will have cracks or its mechanical strength will decrease. Therefore, it is undesirable. PPS powder has an average particle size of 10-30 μm. If the particle size of PPS exceeds 30μm, it will not mix uniformly with the PTFE powder, and the PTFE powder with this PPS added will
When heating and baking a molding composition based on
This is undesirable because a large amount of gas is suddenly generated from the PPS powder and cracks occur in the resulting molded product. PPS powder is contained in the molding composition in an amount of 2 to 20% by weight, but if it is less than 2% by weight, the abrasion resistance and mechanical strength of the resulting molded product will not be improved so much, which is not preferable; If it exceeds %, the resulting molded product may crack or swell, which is undesirable. The graphite powder has an average particle size of 10 μm or less, which is less than half the average particle size of PPS powder. If graphite powder is 10μ
If the average particle size exceeds m or exceeds 1/2 of the average particle size of the PPS powder, the gas generated from the PPS powder during heating and firing cannot be completely led out of the compact. For this reason, the gas generated from the PPS powder is trapped inside the compact,
Cracks occur in the resulting molded product. Graphite powder is included in the molding composition in an amount of 2 to 20% by weight, but less than 2% by weight, PPS
This is undesirable because the gas generated from the powder cannot be completely led out of the molded body.
If it exceeds % by weight, the proportion of the filler in the obtained molded product increases, which is undesirable because the mechanical strength deteriorates. By including graphite powder as described above in an amount of 2 to 20% by weight in a PTFE-based molding composition, the resulting molded product has excellent properties, especially in a moist atmosphere and at high temperatures. Shows wear resistance. For example, graphite powder like the one above
By including it in a molding composition consisting of PTFE powder and PPS powder in an amount of 10% by weight, the wear coefficient in water becomes approximately 1/10 of that when graphite powder is not included. . Furthermore, when comparing a molding composition containing graphite powder with the above-mentioned characteristic particle size and a molding composition containing graphite powder with an average particle size of 50 μm, the wear coefficient in water is lower than that of the specific particle size. 50μm if graphite powder is included
The amount is less than 1/2 that of the case containing graphite powder. Note that the PTFE-based molding composition according to the present invention may contain inorganic fillers such as glass fiber, molybdenum disulfide, and bronze powder, if necessary. In order to produce a molded article from the PTFE-based molding composition according to the present invention, PTFE
A molding composition based on PTFE may be compression molded according to a conventional method and then heated and fired at a temperature equal to or higher than the melting point of PTFE. At this time, there is no particular need to perform preheating as disclosed in Japanese Patent Application No. 60-245774 filed by the present applicant. Effects of the Invention The PTFE-based molding composition according to the present invention has a specific particle size in addition to PTFE powder.
Since it contains PPS powder and graphite powder, and the average particle size of the graphite powder is 1/2 or less of the average particle size of the PPS powder, a molded body is manufactured from this PTFE-based molding composition. At this time, the gas generated from PPS can be easily led out of the molded product, so that cracks do not occur in the resulting molded product, and moreover, the preforming pressure during molding can be increased. Furthermore, the molded product obtained has excellent wear resistance, especially under water and high temperature conditions. EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples. Example 1 75 parts by weight of PTFE molding powder (7J manufactured by Mitsui Fluorochemical Co., Ltd.) with an average particle size of 30 μm,
15 parts by weight of PPS (P-4 manufactured by Philippe Petroleum International), which has been ground to an average particle size of 25 μm using a pulverizer, and 10 parts by weight of graphite powder with an average particle size of 6 μm are thoroughly homogenized in a dry process. A PTFE-based molding composition was prepared. The obtained molding composition was put into a mold and 300 kg/
A preform was produced by preforming at a pressure of cm 2 . Next, this preformed body was heated and fired at 340° C., which is a temperature higher than the melting point of PTFE, to produce a PTFE-based molded body. The obtained molded body was immersed in water and weighed 6 kg/water.
A wear test was carried out by sliding against a mating member at 0.4 m/sec for 100 hours under a load of cm 2 , and the wear coefficient was measured according to the table below. Wear coefficient = wear height [cm] / surface pressure [Kg/cm 2 ] x sliding speed [
m/s] x time [hr] The wear height was calculated by dividing the weight loss of the compact before and after the test by the specific gravity to calculate the wear volume, and then dividing this wear volume by the contact area. The results are shown in Table 1. In addition, a wear test was carried out by sliding the obtained molded body against a mating member at 200°C and 300°C for 100 hours at a sliding speed of 0.5 m/sec under a load of 14 kg/cm 2 .
The wear coefficient was measured. The results are shown in Table 2. It should be noted that this molded product was not found to have any aggressiveness towards the mating member. Example 2 85 parts by weight of PTFE molding powder (7J manufactured by Mitsui Fluorochemical Co., Ltd.) with an average particle size of 30 μm,
10 parts by weight of PPS (P-4 manufactured by Philips Petroleum International), which was ground to an average particle size of 25 μm using a pulverizer, and 5 parts by weight of graphite powder with an average particle size of 6 μm were thoroughly homogenized in a dry process. A PTFE-based molding composition was prepared. The obtained molding composition was put into a mold and 300 kg/
A preform was produced by preforming at a pressure of cm 2 . Next, this preform was heated and fired at 340°C, which is a temperature higher than the melting point of PTFE, to produce a PTFE-based molded body. The obtained molded body was immersed in water for 6 hours.
Applying a load of Kg/cm 2 and moving the mating member 100 m/sec at 0.4 m/sec.
A wear test was performed by sliding the test piece for a period of time, and the wear coefficient was measured according to the table below. Wear coefficient = wear height [cm] / surface pressure [Kg/cm 2 ] x sliding speed [
m/s] x time [hr] The wear height was calculated by dividing the weight loss of the compact before and after the test by the specific gravity to calculate the wear volume, and then dividing this wear volume by the contact area. The results are shown in Table 1. In addition, a wear test was carried out by sliding the obtained molded body against a mating member at 200°C and 300°C for 100 hours at a sliding speed of 0.5 m/sec under a load of 14 kg/cm 2 .
The wear coefficient was measured. The results are shown in Table 2. It should be noted that this molded product was not found to have any aggressiveness towards the mating member. Comparative Example 1 In Example 1, 85 parts by weight of PTFE molding powder and pulverized to an average particle size of 25 μm were used.
A PTFE-based molding composition was prepared by mixing with 15 parts by weight of PPS powder. The obtained molding composition was put into a mold and 300 kg/
A preform was produced by preforming at a pressure of cm 2 . Next, this preform is taken out from the mold,
It was preheated by holding it at 300°C for 30 minutes, which is a temperature above the melting point of PPS and below the melting point of PTFE. Next, the preformed body subjected to the preheating treatment was heated and fired at 340°C, which is a temperature higher than the melting point of PTFE. Note that if no preheating treatment was performed at this time, cracks would occur in the resulting molded product. Using the molded body obtained as described above, the wear coefficients in water and under high temperature conditions were determined in the same manner as in Example 1, and are shown in Tables 1 and 2, respectively. It should be noted that this molded product was not found to have any aggressiveness towards the mating member. Comparative Example 2 Same as Example 1 except that graphite powder with an average particle size of 50 μm was used instead of graphite powder with an average particle size of 6 μm in Example 1, and a preheating treatment was added in the same manner as in Comparative Example 1. In the same manner, the wear coefficient was determined in water and under high temperature conditions. The results are shown in Tables 1 and 2. In this case as well, if the preheating treatment was not performed, cracks would occur in the molded product obtained. It should be noted that this molded product was not found to have any aggressiveness towards the mating member.

【表】【table】

【表】 表1および表2から、本発明に係るPTFEをベ
ースとする成形用組成物は、特に水中および高温
条件下において優れた耐摩耗性を有することがわ
かる。
[Table] Tables 1 and 2 show that the PTFE-based molding composition of the present invention has excellent wear resistance, particularly under water and high temperature conditions.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリテトラフルオロエチレン粉末96〜60重量
%と、10〜30μmの平均粒径を有するポリフエニ
レンサルフアイド粉末2〜20重量%と、10μm以
下の平均粒径を有するグラフアイト粉末2〜20重
量%とからなり、グラフアイト粉末の平均粒径は
ポリフエニレンサルフアイド粉末の平均粒径の1/
2以下であることを特徴とする、ポリテトラフル
オロエチレンをベースとする成形用組成物。
1 96-60% by weight of polytetrafluoroethylene powder, 2-20% by weight of polyphenylene sulfide powder with an average particle size of 10-30 μm, and 2-20% by weight of graphite powder with an average particle size of 10 μm or less %, and the average particle size of graphite powder is 1/ of the average particle size of polyphenylene sulfide powder.
A molding composition based on polytetrafluoroethylene, characterized in that the polytetrafluoroethylene-based molding composition has a polytetrafluoroethylene content of 2 or less.
JP23400786A 1986-10-01 1986-10-01 Polytetrafluoroethylene-based composition for molding Granted JPS6389560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23400786A JPS6389560A (en) 1986-10-01 1986-10-01 Polytetrafluoroethylene-based composition for molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23400786A JPS6389560A (en) 1986-10-01 1986-10-01 Polytetrafluoroethylene-based composition for molding

Publications (2)

Publication Number Publication Date
JPS6389560A JPS6389560A (en) 1988-04-20
JPH0546381B2 true JPH0546381B2 (en) 1993-07-13

Family

ID=16964090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23400786A Granted JPS6389560A (en) 1986-10-01 1986-10-01 Polytetrafluoroethylene-based composition for molding

Country Status (1)

Country Link
JP (1) JPS6389560A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347955B2 (en) * 1996-10-23 2002-11-20 昭和電線電纜株式会社 Fluororesin composition, fluororesin tube, fluororesin film and roller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102959A (en) * 1982-11-19 1984-06-14 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Coating composition
JPS60127933A (en) * 1983-12-13 1985-07-08 Youbea Le-Ron Kogyo Kk Material for sliding section of machine tool
JPS60223860A (en) * 1984-04-20 1985-11-08 Asahi Glass Co Ltd Lubricious resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102959A (en) * 1982-11-19 1984-06-14 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Coating composition
JPS60127933A (en) * 1983-12-13 1985-07-08 Youbea Le-Ron Kogyo Kk Material for sliding section of machine tool
JPS60223860A (en) * 1984-04-20 1985-11-08 Asahi Glass Co Ltd Lubricious resin composition

Also Published As

Publication number Publication date
JPS6389560A (en) 1988-04-20

Similar Documents

Publication Publication Date Title
JPS6137306B2 (en)
CN105722942A (en) Friction material composition and friction material
CN1313361A (en) Refractory antiwear polyimide as sealing material and its preparing process and application
JPS62105623A (en) Manufacture of molded product having polytetrafluoroethylene for its base
JP2016164216A (en) Fluorine resin composition for sliding member with low friction property and low wear property
WO2007065880A3 (en) Ptfe - based compositions as core - shell particles
JPH0546381B2 (en)
JP2812479B2 (en) Glass fiber-containing polytetrafluoroethylene composition and molded article thereof
JPS5918420B2 (en) Polytetrafluoroethylene molding composition
JPS6237656B2 (en)
JPS6362925A (en) Component of resin mold friction material for clutch
JP3315688B2 (en) Filler-containing polytetrafluoroethylene composition and molded article thereof
JPH01297449A (en) Tetrafluoroethylene resin composition
JPS63286458A (en) Tetrafluoroethylene resin composition
JPS62109844A (en) Member for sliding part
JPH01138256A (en) Sliding material composition
JPH1045989A (en) Resin composition
JPS6021178B2 (en) molding powder
JP2000001589A (en) Ptfe resin composition
JPH04279639A (en) Porous unit
CN102627821A (en) Filled modified teflon seal material and its preparation method
JPS63225649A (en) Phenolic resin molding material
JPS6281442A (en) Member for sliding part
JP2851532B2 (en) Sliding composition
CN115521574A (en) PEEK composite material and preparation method thereof