JPH0546284Y2 - - Google Patents
Info
- Publication number
- JPH0546284Y2 JPH0546284Y2 JP5253887U JP5253887U JPH0546284Y2 JP H0546284 Y2 JPH0546284 Y2 JP H0546284Y2 JP 5253887 U JP5253887 U JP 5253887U JP 5253887 U JP5253887 U JP 5253887U JP H0546284 Y2 JPH0546284 Y2 JP H0546284Y2
- Authority
- JP
- Japan
- Prior art keywords
- light
- polyhedron
- snow
- areas
- support structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005516 engineering process Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Description
【考案の詳細な説明】
〔産業上の利用分野〕
この考案は太陽電池の支持構造に関し、詳しく
は地表が比較的高い反射率を有する地域、特に冬
季積雪するような地域でも有効に利用出来る太陽
電池の支持構造に関する。[Detailed explanation of the invention] [Industrial application field] This invention relates to a support structure for solar cells, and more specifically, it is a solar cell support structure that can be used effectively even in areas where the ground surface has a relatively high reflectance, especially in areas where there is snowfall in the winter. Related to battery support structure.
太陽エネルギの有効利用の一手段として、太陽
電池の利用が広く知られている。
The use of solar cells is widely known as a means of effectively utilizing solar energy.
この太陽電池を用いた装置においては、効率を
良くするため発電を行う受光面をその地の緯度と
太陽の南中高度とを勘案して、太陽光線に対し直
角に対面するように仰角を調節して設置すること
が重要であり、上記のように太陽光受光面を設置
するには、受光面の地平線に対する傾斜角を、そ
の他の緯度±10°設定することが一般に行われて
いる。 In order to improve the efficiency of this solar cell-based device, the elevation angle of the light-receiving surface that generates electricity is adjusted so that it faces the sun's rays at right angles, taking into account the latitude of the area and the altitude of the sun's meridian. In order to install the solar light receiving surface as described above, it is generally done to set the inclination angle of the light receiving surface with respect to the horizon by ±10° of other latitudes.
ところが太陽電池を設置して発電をしようとす
る場所の地表面が光の反射率の高い地域、あるい
は砂や雪の様に反射率の高いもので、おおわれて
いる場合地表からの反射光量は無視できないが、
従来これらをみすみす損失していることとなる。
However, if the ground surface where you want to install solar cells to generate power is in an area with high light reflectivity, or is covered with highly reflective materials such as sand or snow, the amount of light reflected from the ground surface is ignored. I can't, but
This means that we have been losing out on these things.
さらに上記従来例のような角度に受光面を設定
すると冬季積雪する地域においては受光面上にも
積雪するので受光が不可能となり、また、曇天の
日も多いなどの理由で積雪地においては太陽電池
を用いたエネルギ利用は殆ど実用化されていない
のが現状である。 Furthermore, if the light-receiving surface is set at an angle like the conventional example above, in areas where it snows in the winter, snow will also accumulate on the light-receiving surface, making it impossible to receive light. At present, energy utilization using batteries has hardly been put into practical use.
しかし、融雪、暖房用のエネルギ源として太陽
電池の利用は、かかる積雪地域においてこそ必要
であり、積雪にもかかわらず太陽電池を有効に作
動させ得ることが望まれる。
However, the use of solar cells as an energy source for snow melting and heating is necessary only in such snowy areas, and it is desired that solar cells be able to operate effectively despite snowfall.
さらに海岸の砂地等にでも地表からの反射を有
効に利用することが望まれる。 Furthermore, it is desirable to effectively utilize reflection from the ground surface, such as on sandy beaches.
この考案は上記問題点を解決することを目的と
してなされたものである。 This invention was made for the purpose of solving the above problems.
なお、ここで用いる地表面とは、地表上の堆積
物の表面の意であり、すなわち太陽光にさらされ
る面のことである。 Note that the earth surface used here refers to the surface of deposits on the earth's surface, that is, the surface exposed to sunlight.
即ち、この考案の太陽電池の支持構造は多面体
上下側面を含む外表面全面に受光素子が貼着さ
れ、前記多面体は立設した支柱上端に取付けられ
たことを特徴とするものである。
That is, the solar cell support structure of this invention is characterized in that a light-receiving element is affixed to the entire outer surface of the polyhedron including the upper and lower side surfaces, and the polyhedron is attached to the upper end of an upright support.
周知のように海岸の砂地や積雪表面は白色であ
り、その反射光は曇天下であつてもかなり強い。
As is well known, the sandy and snowy surfaces of the coast are white, and their reflected light is quite strong even on cloudy days.
また曇天下における砂地面や積雪表面の反射光
は散乱光となり、例え北面した垂直面であつても
かなりの入射光量が有る。 In addition, reflected light from sandy or snowy surfaces under cloudy weather becomes scattered light, and even if the surface is vertical and faces north, there is a considerable amount of incident light.
即ち、積雪時の光線の入射方向は雪面からの散
乱光によつて特定せず無指向性の光線と言うこと
が出来る。 That is, the direction of incidence of the light beam during snowfall is not specified by the scattered light from the snow surface, and it can be said that the light beam is non-directional.
従つて、太陽電池の受光素子を多面体の上下側
面を含む表面全面に設け、これを支柱上に高く支
持すれば地表面からの反射光を含め全方向からの
受光が可能となるのである。 Therefore, if the light-receiving element of the solar cell is provided on the entire surface of the polyhedron, including the top and bottom sides, and this is supported high on a support, it becomes possible to receive light from all directions, including light reflected from the ground surface.
さらに重要なことは、積雪地では多面体表面に
は積雪しにくく、しかも太陽電池の受光素子は受
光して発電する際、発熱するので、これが融氷熱
源となることである。 More importantly, in snowy areas, it is difficult for snow to accumulate on the surface of the polyhedron, and the light-receiving elements of solar cells generate heat when they receive light and generate electricity, which serves as a heat source for melting ice.
また、上記の積雪地に限らず海辺の砂浜など地
表よりの光反射が多い地域にも同様のことが言
え、かかる支持構造により直射光及び反射光の両
者を同時に受光可能となり効率化が図られる。 In addition, the same applies not only to the above-mentioned snowy areas but also to areas where there is a lot of light reflection from the ground surface, such as sandy beaches at the seaside, and this support structure makes it possible to receive both direct light and reflected light at the same time, improving efficiency. .
次に、この考案について積雪地の実施例につい
て説明する。
Next, an example of this invention in a snowy area will be described.
第1図はこの考案の実施例の側面図である。 FIG. 1 is a side view of an embodiment of this invention.
直径1mのプラスチツク製の球1を用意し、こ
の球1の外表面に3cm×3cmのa−Si太陽電池2
……2を一面に貼着し、前記球1の下部1Aに固
定用台座3を設けて第1図に示すように雪面4上
に高さ1mとなるよう支柱5上端に固定支持し
た。 A plastic sphere 1 with a diameter of 1 m is prepared, and on the outer surface of this sphere 1, 2 a-Si solar cells of 3 cm x 3 cm are attached.
A fixing base 3 was attached to the lower part 1A of the ball 1 and fixed to the upper end of a support 5 so as to be 1 m above the snow surface 4 as shown in FIG.
上記太陽電池2……2表面の照度を測定したと
ころ、南側半球面で平均50mw/cm2、北側及び下
面半球面でも平均30mw/cm2となり、球面のほぼ
全面で受光されることが判明した。 When we measured the illuminance on the surface of solar cell 2...2, it was found that the average illuminance was 50 mw/cm 2 on the southern hemisphere, and 30 mw/cm 2 on the northern and lower hemisphere, indicating that light was received over almost the entire spherical surface. .
また、球体1上面部の積雪は日出と共に開始す
る発電時の熱により徐々に融解し始め、午前9時
頃には曇天にもかかわらず、すべて融解した。 In addition, the snow on the upper surface of the sphere 1 gradually began to melt due to the heat generated during power generation, which started at sunrise, and by around 9 a.m., it had all melted despite the cloudy weather.
この考案は以上のように構成されているので、
直射、反射光共に万偏なく受光出来、効率が良
い。
This idea is structured as above, so
It can receive both direct and reflected light without any polarization, and is highly efficient.
特に地表面上に光の反射率の高い堆積物の有る
地域、例えば海岸の砂地、コンクリート面、積雪
面等では地表面からの反射光を有効利用でき、さ
らに受光面上の積雪も側面又は下面側での受光発
電の際生じる熱により融解され、流れ落ち、積雪
地でも太陽電池の有効利用が図れるのである。 Particularly in areas where there are deposits with high light reflectance on the ground surface, such as sandy beaches, concrete surfaces, snow-covered surfaces, etc., reflected light from the ground surface can be used effectively, and snow accumulation on the light-receiving surface can also be removed from the side or bottom surface. It is melted by the heat generated during power generation when the light is received on the side, and the solar cells can be used effectively even in snowy areas.
第1図はこの考案の実施例の側面図である。 FIG. 1 is a side view of an embodiment of this invention.
Claims (1)
子が貼着され、前記多面体は立設した支柱上端
に取付けられたことを特徴とする太陽電池の支
持構造。 (2) 多面体が球状である実用新案登録請求の範囲
第1項記載の太陽電池の支持構造。[Claims for Utility Model Registration] (1) A support structure for a solar cell, characterized in that a light-receiving element is affixed to the entire outer surface of a polyhedron, including the upper and lower side surfaces, and the polyhedron is attached to the upper end of an upright support. . (2) The support structure for a solar cell according to claim 1 of the utility model registration claim, wherein the polyhedron is spherical.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5253887U JPH0546284Y2 (en) | 1987-04-07 | 1987-04-07 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5253887U JPH0546284Y2 (en) | 1987-04-07 | 1987-04-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63159852U JPS63159852U (en) | 1988-10-19 |
JPH0546284Y2 true JPH0546284Y2 (en) | 1993-12-03 |
Family
ID=30877793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5253887U Expired - Lifetime JPH0546284Y2 (en) | 1987-04-07 | 1987-04-07 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0546284Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1879226B (en) * | 2003-11-03 | 2010-10-13 | 戴索工业有限公司 | Multilayered photovoltaic device on envelope surface |
-
1987
- 1987-04-07 JP JP5253887U patent/JPH0546284Y2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63159852U (en) | 1988-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4148301A (en) | Water-borne rotating solar collecting and storage systems | |
US20110192460A1 (en) | Solar Power Generator | |
CN201063558Y (en) | Optical superposition type solar power supply | |
Chieng et al. | Computer simulation of enhanced output from bifacial photovoltaic modules | |
US20090000653A1 (en) | Solar power harvester with reflective border | |
JP4043100B2 (en) | Solar cell device | |
Uematsu et al. | Static concentrator photovoltaic module with prism array | |
WO1993003404A1 (en) | Solar powered lamp having a cover containing a fresnel lens structure | |
JPH0546284Y2 (en) | ||
CN204906289U (en) | Reflective solar photovoltaic electrical cell | |
JPS60178671A (en) | Solar ray power generation system | |
KR101408316B1 (en) | Sunlight reflecting apparatus used for unfreezing | |
CN101707969A (en) | Method and device for focusing heat on greenhouse or shed by utilizing Fresnel reflectors | |
JP4313841B1 (en) | Solar lens and solar-powered equipment | |
Yoshioka et al. | Preparation and properties of an experimental static concentrator with a new three‐dimensional lens | |
WO2003098125A1 (en) | Solar reflector and assembly thereof | |
WO1989002055A1 (en) | Solar energy conversion device | |
Gopinathan | Optimization of tilt angle of solar collectors for maximum irradiation on sloping surfaces | |
JP2004014887A (en) | Installation stand for solar battery panel | |
Oria et al. | A good combination: Tracking of the sun in polar axis and bifacial photovoltaic modules | |
Yoshioka et al. | Performance evaluation of two-dimensional compound elliptic lens concentrators using a yearly distributed insolation model | |
KR102709204B1 (en) | Hybrid solar street light | |
CN211959154U (en) | Condenser and concentrating photovoltaic module | |
AU613964B2 (en) | Solar energy conversion device | |
US9169647B2 (en) | Skylight having multiple stationary tilted reflectors aimed in different compass directions including inverted pyramidal or wedge geometry |