JP2004014887A - Installation stand for solar battery panel - Google Patents

Installation stand for solar battery panel Download PDF

Info

Publication number
JP2004014887A
JP2004014887A JP2002167947A JP2002167947A JP2004014887A JP 2004014887 A JP2004014887 A JP 2004014887A JP 2002167947 A JP2002167947 A JP 2002167947A JP 2002167947 A JP2002167947 A JP 2002167947A JP 2004014887 A JP2004014887 A JP 2004014887A
Authority
JP
Japan
Prior art keywords
roof
north
installation table
south
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002167947A
Other languages
Japanese (ja)
Inventor
Kenichi Suzuki
鈴木 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002167947A priority Critical patent/JP2004014887A/en
Publication of JP2004014887A publication Critical patent/JP2004014887A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S25/10Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface
    • F24S25/11Arrangement of stationary mountings or supports for solar heat collector modules extending in directions away from a supporting surface using shaped bodies, e.g. concrete elements, foamed elements or moulded box-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/40Preventing corrosion; Protecting against dirt or contamination
    • F24S40/44Draining rainwater or condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/01Selection of particular materials
    • F24S2080/015Plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve power generation efficiency of the whole solar battery panel by adequately capturing unused scattered light from surrounding cloud, building and atmospheric air. <P>SOLUTION: The solar battery panel is installed on a roof 2 of a south face of a gable house type heptahedral installation stand 1, comprising a plastic material, having a tilt angle corresponding to a latitude. A roof 3 of a north face is made to have the tilt angle larger than that of the south face, and a reflector is bonded on a surface of the roof 3. By arranging a lot of the installation stands 1 on the north, south, east and west, the scattered light from the cloud and the building is made incident to the reflector of the roof 3, and reflected, and then the light is made incident to the solar battery panel of the roof 2 positioned on the north of it, thereby increasing power generation. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、複数の太陽電池パネルを並べて設置する場合の発電効率にすぐれた太陽電池パネルの設置台に関する。
【0002】
【従来の技術】
従来、複数の太陽電池パネルを用いて発電しようとする場合は、南向きの傾斜面を有する取り付け台を複数用意し、その傾斜面に太陽電池パネルを配置していた。また一般に、太陽電池パネルを用いて発電しようとする場合は、発電効率を最大とすることが求められている。そのため、本邦では、傾斜角30度の最適の南向きの傾斜面に、互いに他の太陽電池に影を作らないようにして太陽電池パネルを配設していた。
【0003】
【発明が解決しようとする課題】
しかしながら、太陽電池発電の場合は、気象条件によりその発電効率が大きく変動するため、わずかであっても発電効率を向上させることが必要であった。そこで本発明では、複数の太陽電池パネルを並べて設置する場合の発電効率にすぐれた太陽電池パネルの設置台を提案することを目的とした。
【0004】
【課題を解決するための手段】
上記課題を解決するために、請求項1の発明は、太陽電池パネルに取り付けた多数の設置台を東西・南北方向に近接して配置する太陽電池パネルの設置台において、該設置台の屋根を南面する部分と北面する部分に二分し、設置台の南面の屋根を緯度に応じた傾斜角として太陽電池パネルを設置し、北面の屋根を南面の傾斜角より大きい傾斜としてその表面に反射材を貼設することにより、北面の屋根の反射材に入射した散乱光が反射して北隣の太陽電池パネルに入射するようにしたことを特徴とする。
【0005】
請求項2記載の発明は、設置台をプラスチック材からなる切り妻家屋型の7面体により構成したことを特徴とする。
【0006】
請求項3記載の発明は、前期太陽電池パネルの設置台を多数東西・南北方向に近接して配置する場合に、南北に対向する設置台の北端の垂直壁と南端の垂直壁との間を一定間隔に保持してその間を排水溝としたことを特徴とする。
【0007】
請求項4記載の発明は、設置台の北面部分の傾斜角を60〜90度としたことを特徴とする。
【0008】
【発明の実施の形態】
以下、図に沿って本発明の実施形態を説明する。図1は本発明に係る設置台の実施形態を示す斜視図である。設置台1は、切り妻家屋の形状をした7面体からなり、例えばプラスチック材により中空の箱形に構成される、図では紙面の左側を南、右側を北とし、南面の屋根2は傾斜角が30度であり、表面に太陽電池パネルが設置されている。北面の屋根3は屋根2よりも短くて傾斜が大きく形成され、アルミ箔等の反射剤が貼設されている。なお、南面の屋根2の最適な傾斜角は設置場所の緯度により変化する。この設置台1は、図示しないが、東西南北方向に近接して複数配置される。
【0009】
その結果、太陽からの直射日光は南面の屋根2の太陽電池パネルに直接照射されると同時に、この直射日光の外に、周囲の雲や建築物、大気には散乱光が存在し、その散乱光が北面の屋根3の反射材に入射する。そして、さらにそれが反射材によって反射されて北燐に配置されている他の設置台1の屋根2の太陽電池パネルに入射する。この結果、未利用であった周囲の雲や建築物、大気に存在する散乱光が的確に太陽電池パネルに捉えられ、太陽電池パネル全体の発電量を増大させる。
【00010】
なお、北面の屋根3の反射材からの反射光は、その真北に位置する設置台1の屋根2の太陽電池パネルに入射される以外にその真北の左右両隣にある設置台1の屋根2にも入射される。また、北面の屋根3の反射材には、夏期の日の出、日の入りの時間帯に東北東または西北西方向から日光が直接に入射されて有効な反射光が得られる。同様に、夏至近くの昼間に、太陽高度が高くなり、北面の屋根3の反射材に日光が直接に入射されて有効な反射光が得られる。
【00011】
図2は本発明に係る設置台の他の実施形態を示す斜視図である。設置台4は、図1の設置台1と同様に、切り妻家屋の形状をした7面体からなり、プラスチック材により構成される。南面の屋根5に太陽電池パネルが設置され、北面の屋根6にはアルミ箔等の反射材が貼設されている。異なるところは、屋根5および屋根6の軒下部分に、断面L形の雨樋7,8を延設したことである。この設置台4を東西方向に連続して配置すると、雨樋7,8の部分が東西方向に連続されて排水溝が形成される。その結果、雨天時に、屋根5および屋根6への降雨が、雨樋7,8の排水溝に導かれて排出されるようになり、屋根5および屋根6が冠水することがなくなる。
【0012】
図3は、図1の設置台4を複数並べて配置し、太陽発電を実施している状態を示す模式図である。太陽Sが照っているときは、直射日光が設置台4の屋根5の太陽電池パネルに入射される。同時に、太陽Sから雲・建物Cを照射して反射された散乱光が設置台4の屋根6の反射材に入射されて反射され、北側に設置された設置台4の屋根5の太陽電池パネルに入射される。その結果、屋根5の太陽電池パネルは、屋根6の反射材からの反射光の分、発電電力が増大することになる。また、図4に示す如く、図2の設置台4が複数並べられた場合は、その間に排水溝9が形成されることにより雨水を排出することが可能となる。
【0013】
なお、本発明の発明者は、設置台の北面の屋根に反射板を設置した場合と設置しなかった場合についての比較と、反射板の傾斜と発電力の関係を実験した。表1がその実験結果を示す。
【0014】
【表1】

Figure 2004014887
【0015】
実験の結果では、反射板を設置した場合に発電の増加が見られ、また、反射板の傾斜が60度、90度の場合に発電が大きいことが判明した。これらのことから設置台1の屋根3および設置台4の屋根6の傾斜は、60〜90度の範囲が最適であると思われる。
換言すると、北面の屋根の傾斜は、南面の太陽パネルの南北方向の設置間隔によって決定されてしまう。すなわち、太陽電池パネルの南北方向の設置間隔を狭くする、同然、北面の屋根の傾斜は急になる。しかし、南北方向の設置間隔を狭くしすぎると、冬期に太陽高度が低くなったときに、太陽電池パネルの南端が前の太陽電池パネルの影にはいり、直射日光による発電力を損なうことになる。その反対に、南北方向の設置間隔を広くすると、冬期に太陽高度が低くなったときでも、太陽電池パネルの南北間に直射日光が照射する領域が存在して単位設置面積当たりの発電効率が低下することになり、南北方向の設置間隔を広くすることにも上限がある。これらのことから、本邦では、南面の屋根の太陽電池パネルの傾斜を30度近辺に設定すると、北面の屋根の反射板の傾斜は、60〜90度の範囲が適切となる。
【0016】
なお、上述の実施形態は、設置台の設置地点が北半球にある場合について説明したものであり、設置台が南半球に設置される場合は説明文中の南と北が入れ替わる。
また、実施形態では、設置台の北面の屋根にアルミ箔を貼着して構成したが、他に、プラスチック面にメッキして鏡面を形成し、或いは、光を散乱させ易い白色プラスチックとすること等も可能である。
【0017】
【発明の効果】
以上述べたように本発明によれば、設置台の南面の屋根に太陽電池パネルが設置され、北面の屋根の表面に反射材が形成されることにより、太陽からの直射日光は南面の屋根の太陽電池パネルに照射される。また、北面の屋根の反射材には、周囲の雲や建築物、大気からの日光の反射光が入射され、さらにそれが反射されて北隣に配置されている設置台の太陽電池パネルに入射されることにより、全体の発電量が増大する。
また、南北に対向して配置された設置台の間には排水溝が形成されることにより、雨天時の降水がその排水溝に排水されるため、太陽電池パネルが冠水することから免れる。
【図面の簡単な説明】
【図1】本発明に係る設置台の実施形態を示す斜視図である
【図2】本発明に係る設置台の他の実施形態を示す斜視図である。
【図3】図1の設置台を複数並べて配置した状態を示す模式図である。
【図4】図2の設置台を複数並べて配置した状態を示す模式図である。
【符号の説明】
1 設置台
2 屋根
3 屋根
4 設置台
5 屋根
6 屋根
7,8 雨樋
9 排水溝
C 雲・建物
S 太陽[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a solar cell panel mounting table having excellent power generation efficiency when a plurality of solar cell panels are arranged side by side.
[0002]
[Prior art]
Conventionally, when attempting to generate power using a plurality of solar cell panels, a plurality of mounting bases having a south-facing slope have been prepared, and the solar cell panels have been arranged on the slope. In general, when power is to be generated using a solar cell panel, it is required to maximize the power generation efficiency. For this reason, in Japan, the solar cell panels are arranged on an optimal south-facing inclined surface having an inclination angle of 30 degrees so as not to shadow other solar cells.
[0003]
[Problems to be solved by the invention]
However, in the case of photovoltaic power generation, the power generation efficiency fluctuates greatly depending on weather conditions, and therefore it is necessary to improve the power generation efficiency even if it is slight. In view of the above, an object of the present invention is to propose a solar cell panel installation base having excellent power generation efficiency when a plurality of solar cell panels are arranged side by side.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention of claim 1 provides a solar cell panel installation table in which a large number of installation tables attached to a solar cell panel are arranged close to each other in the east, west, and north and south directions. Divide into two parts, one on the south side and the other on the north side, install the solar panel with the roof on the south side of the installation table as an inclination angle according to the latitude, and set the roof on the north side to an inclination greater than the inclination on the south side and apply a reflective material on the surface. By sticking, the scattered light incident on the reflection material on the roof on the north side is reflected and incident on the solar cell panel on the north side.
[0005]
The invention according to claim 2 is characterized in that the installation table is constituted by a gabled house-shaped seven-sided body made of a plastic material.
[0006]
The invention according to claim 3 is characterized in that, when a large number of solar cell panel installation bases are arranged close to each other in the east-west / north-south direction, the space between the northern vertical wall and the southern vertical wall of the installation base facing north and south is determined. It is characterized in that it is maintained at a constant interval and a drainage ditch is provided between the intervals.
[0007]
The invention according to claim 4 is characterized in that the inclination angle of the north surface portion of the installation table is 60 to 90 degrees.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of an installation base according to the present invention. The mounting table 1 is a heptahedron in the shape of a gabled house, and is formed of, for example, a hollow box made of plastic material. In the figure, the left side of the paper is the south, the right side is the north, and the roof 2 on the south side is the inclination angle. Is 30 degrees, and a solar cell panel is installed on the surface. The roof 3 on the north side is shorter than the roof 2 and has a larger slope, and a reflective agent such as aluminum foil is attached thereto. Note that the optimum inclination angle of the roof 2 on the south side varies depending on the latitude of the installation location. Although not shown, a plurality of the mounting tables 1 are arranged close to the east, west, north and south directions.
[0009]
As a result, the direct sunlight from the sun is directly applied to the solar panel on the roof 2 on the south side, and at the same time, outside the direct sunlight, scattered light exists in the surrounding clouds, buildings, and the atmosphere. Light impinges on the reflector of the roof 3 on the north side. Then, the light is further reflected by the reflector and is incident on the solar cell panel on the roof 2 of another installation table 1 arranged in North Phosphorus. As a result, scattered light existing in unused clouds, buildings, and the atmosphere, which have not been used, is accurately captured by the solar cell panel, and the power generation amount of the entire solar cell panel is increased.
[00010]
The reflected light from the reflection material of the roof 3 on the north side is incident on the solar cell panel on the roof 2 of the installation table 1 located just north of the roof, and the roof of the installation table 1 on both left and right of the north. 2 is also incident. On the reflecting material of the roof 3 on the north side, sunlight is directly incident from the east-northeast or west-northwest direction during the sunrise and sunset times in summer, and effective reflected light is obtained. Similarly, during the daytime near the summer solstice, the sun altitude increases, and sunlight is directly incident on the reflector of the roof 3 on the north side to obtain effective reflected light.
[00011]
FIG. 2 is a perspective view showing another embodiment of the installation base according to the present invention. The installation table 4 is formed of a gabled house-shaped seven-sided body and is made of a plastic material, similarly to the installation table 1 of FIG. A solar panel is installed on the roof 5 on the south side, and a reflective material such as aluminum foil is attached on the roof 6 on the north side. The difference is that rain gutters 7 and 8 having an L-shaped cross section are provided below the eaves of the roof 5 and the roof 6. When the installation table 4 is continuously arranged in the east-west direction, the drain gutters are formed by connecting the rain gutters 7 and 8 in the east-west direction. As a result, during rainy weather, rainfall on the roof 5 and the roof 6 is guided to the drains of the rain gutters 7 and 8 to be discharged, and the roof 5 and the roof 6 are not flooded.
[0012]
FIG. 3 is a schematic diagram showing a state in which a plurality of the installation bases 4 of FIG. 1 are arranged and solar power generation is being performed. When the sun S is shining, direct sunlight is incident on the solar cell panel on the roof 5 of the installation table 4. At the same time, the scattered light reflected by irradiating the cloud / building C from the sun S is incident on the reflecting material of the roof 6 of the installation table 4 and is reflected, and the solar cell panel of the roof 5 of the installation table 4 installed on the north side is reflected. Is incident on. As a result, the power generated by the solar panel on the roof 5 is increased by the amount of light reflected from the reflector on the roof 6. Further, as shown in FIG. 4, when a plurality of the installation bases 4 of FIG. 2 are arranged, it is possible to discharge rainwater by forming the drain grooves 9 therebetween.
[0013]
The inventor of the present invention performed a comparison between a case where the reflector was installed on the northern roof of the installation table and a case where the reflector was not installed, and experimented with the relationship between the inclination of the reflector and the power generation. Table 1 shows the experimental results.
[0014]
[Table 1]
Figure 2004014887
[0015]
According to the results of the experiment, it was found that the power generation increased when the reflector was installed, and that the power generation was large when the inclination of the reflector was 60 degrees or 90 degrees. From these facts, it is considered that the optimum inclination of the roof 3 of the installation table 1 and the roof 6 of the installation table 4 is in the range of 60 to 90 degrees.
In other words, the slope of the northern roof is determined by the north-south installation intervals of the southern solar panels. That is, the interval between the solar cell panels in the north-south direction is narrowed. However, if the interval between the north and south directions is too narrow, the southern edge of the solar panel will fall in the shadow of the previous solar panel when the solar altitude decreases in winter, and the power generated by direct sunlight will be impaired . Conversely, if the installation interval in the north-south direction is widened, even when the solar altitude is low in winter, there is an area where direct sunlight irradiates between the north and south of the solar panel, reducing the power generation efficiency per unit installation area Therefore, there is an upper limit to widening the installation interval in the north-south direction. From these facts, in Japan, if the inclination of the solar cell panel on the southern roof is set to around 30 degrees, the inclination of the reflector on the northern roof is appropriately in the range of 60 to 90 degrees.
[0016]
The above-described embodiment describes a case where the installation table is located in the northern hemisphere. When the installation table is installed in the southern hemisphere, south and north in the description are replaced.
In the embodiment, the aluminum foil is stuck on the roof on the north side of the installation table. Alternatively, a plastic surface may be plated to form a mirror surface, or a white plastic that easily scatters light. Etc. are also possible.
[0017]
【The invention's effect】
As described above, according to the present invention, the solar panel is installed on the roof on the south side of the installation table, and the reflecting material is formed on the surface of the north side roof, so that direct sunlight from the sun can protect the south side roof. Irradiates the solar panel. In addition, reflected light of sunlight from surrounding clouds, buildings, and the atmosphere is incident on the reflective material of the roof on the north side, and it is reflected and incident on the solar cell panel of the installation table located next to the north As a result, the entire power generation amount increases.
In addition, since a drainage groove is formed between the installation tables disposed to face north and south, rain in rainy weather is drained into the drainage groove, thereby preventing the solar cell panel from being flooded.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of an installation table according to the present invention. FIG. 2 is a perspective view showing another embodiment of the installation table according to the present invention.
FIG. 3 is a schematic diagram showing a state in which a plurality of installation tables of FIG. 1 are arranged and arranged.
FIG. 4 is a schematic diagram showing a state in which a plurality of installation tables of FIG. 2 are arranged and arranged.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Installation stand 2 Roof 3 Roof 4 Installation stand 5 Roof 6 Roof 7, 8 Rain gutter 9 Drainage C Cloud / building S Sun

Claims (4)

太陽電池パネルに取り付けた多数の設置台を東西・南北方向に近接して配置する太陽電池パネルの設置台において、
該設置台の屋根を南面する部分と北面する部分に二分し、設置台の南面の屋根を緯度に応じた傾斜角として太陽電池パネルを設置し、北面の屋根を南面の傾斜角より大きい傾斜としてその表面に反射材を形成することにより、北面の屋根の反射材に入射した散乱光が反射して北隣の太陽電池パネルに入射するようにしたことを特徴とする太陽電池パネルの設置台。
In the solar panel installation table where a large number of installation tables attached to the solar panel are arranged close to the east, west, north and south directions,
The roof of the installation table is divided into a southern part and a northern part, solar panels are installed with the southern roof of the installation table as an inclination angle according to latitude, and the northern roof is inclined as a slope greater than the southern inclination angle. A solar cell panel mounting table, wherein a scattered light incident on a reflector on a roof on the north side is reflected and incident on a solar cell panel adjacent to the north by forming a reflector on the surface thereof.
設置台をプラスチック材からなる切り妻家屋型の7面体により構成したことを特徴とする請求項1記載の太陽電池パネルの設置台。2. The solar cell panel installation table according to claim 1, wherein the installation table is formed by a gabled house-shaped seven-sided body made of a plastic material. 南北に対向する設置台の北端の垂直壁と南端の垂直壁との間を一定間隔に保持してその間を排水溝としたことを特徴とする請求項1、2記載の太陽電池パネル設置台。3. The solar cell panel installation table according to claim 1, wherein a space between the north end vertical wall and the south end vertical wall of the installation table facing the north and south is maintained at a predetermined interval, and a space therebetween is formed as a drainage ditch. 設置台の北面部分の傾斜角を60〜90度としたことを特徴とする請求項1〜3のうちいずれか1項記載の太陽電池パネルの設置台。The installation table of a solar cell panel according to any one of claims 1 to 3, wherein an inclination angle of a north surface portion of the installation table is 60 to 90 degrees.
JP2002167947A 2002-06-07 2002-06-07 Installation stand for solar battery panel Pending JP2004014887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002167947A JP2004014887A (en) 2002-06-07 2002-06-07 Installation stand for solar battery panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167947A JP2004014887A (en) 2002-06-07 2002-06-07 Installation stand for solar battery panel

Publications (1)

Publication Number Publication Date
JP2004014887A true JP2004014887A (en) 2004-01-15

Family

ID=30434992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167947A Pending JP2004014887A (en) 2002-06-07 2002-06-07 Installation stand for solar battery panel

Country Status (1)

Country Link
JP (1) JP2004014887A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20090647A1 (en) * 2009-10-07 2011-04-08 Wladimiro Bernardi PLANT WITH HIGH PHOTOVOLTAIC PERFORMANCE PANELS.
EP2466227A1 (en) * 2010-12-18 2012-06-20 Hafenbahn GmbH & Co. KG Device for assembling solar panels and/or heat collectors on a base and a method for producing such a device
JP2013110266A (en) * 2011-11-21 2013-06-06 Panasonic Corp Trestle for solar cell panel, photovoltaic power generation device, and installation structure of photovoltaic power generation device
KR20190076663A (en) * 2017-12-22 2019-07-02 포스코에너지 주식회사 Module for solar energy generation and apparatus having the same
USD1025881S1 (en) 2022-09-29 2024-05-07 Stella Power Inc. Solar panel array
US11990864B2 (en) 2020-06-16 2024-05-21 Stella Power Inc. Three-dimensional solar electrical generation systems and methods of deployment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20090647A1 (en) * 2009-10-07 2011-04-08 Wladimiro Bernardi PLANT WITH HIGH PHOTOVOLTAIC PERFORMANCE PANELS.
EP2466227A1 (en) * 2010-12-18 2012-06-20 Hafenbahn GmbH & Co. KG Device for assembling solar panels and/or heat collectors on a base and a method for producing such a device
WO2012079798A3 (en) * 2010-12-18 2014-03-13 Hafenbahn Gmbh & Co. Kg Device for arranging solar panels and/or thermal collectors on a substrate and method for producing such a device
JP2013110266A (en) * 2011-11-21 2013-06-06 Panasonic Corp Trestle for solar cell panel, photovoltaic power generation device, and installation structure of photovoltaic power generation device
KR20190076663A (en) * 2017-12-22 2019-07-02 포스코에너지 주식회사 Module for solar energy generation and apparatus having the same
KR102058567B1 (en) * 2017-12-22 2019-12-24 포스코에너지 주식회사 Solar energy generation apparatus having solar energy generation module
US11990864B2 (en) 2020-06-16 2024-05-21 Stella Power Inc. Three-dimensional solar electrical generation systems and methods of deployment
USD1025881S1 (en) 2022-09-29 2024-05-07 Stella Power Inc. Solar panel array

Similar Documents

Publication Publication Date Title
EP1688033B1 (en) Cover element for greenhouses or the like
US20090320908A1 (en) Photovoltaic module with drainage frame
US20100313933A1 (en) Reflector-solar receiver assembly and solar module
US8273980B2 (en) Photovoltaic roof ridge cap and installation method
US20090205270A1 (en) Structured Photovoltaic Roofing Elements, Systems and Kits
JP3929711B2 (en) Installation method of solar cell module for roof
US8745938B2 (en) Skylight with improved low angle light capture
JPH11340491A (en) Solar cell device
KR20100020448A (en) Weatherproof building envelope
JP2004014887A (en) Installation stand for solar battery panel
JPS60178671A (en) Solar ray power generation system
RU2702311C1 (en) Solar power plant (versions)
JPH10270740A (en) Light collecting structure of solar battery
JP2005142383A (en) Solar power generation device
CN117836675A (en) Prismatic solar concentrator
US9169647B2 (en) Skylight having multiple stationary tilted reflectors aimed in different compass directions including inverted pyramidal or wedge geometry
JP2000064509A (en) Solar cell loaded roof tile
Waseef Tilt and orientation: a preference factor among photovoltaic roof systems
RU103374U1 (en) ENERGY-EFFICIENT BUILDING &#34;SOLAR-S&#34;
JP2001214585A (en) Solar power generator
JPH06125106A (en) Solar battery installation structure
JP2559186B2 (en) Roof panel with solar cells
JP2005223164A (en) Solar light power generation system and its installation method
JPH08135097A (en) Roof panel and roof construction using it
JP2501724B2 (en) Roof panel with solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104