JPH0545912B2 - - Google Patents

Info

Publication number
JPH0545912B2
JPH0545912B2 JP57212439A JP21243982A JPH0545912B2 JP H0545912 B2 JPH0545912 B2 JP H0545912B2 JP 57212439 A JP57212439 A JP 57212439A JP 21243982 A JP21243982 A JP 21243982A JP H0545912 B2 JPH0545912 B2 JP H0545912B2
Authority
JP
Japan
Prior art keywords
sample
iron
sample water
connector
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57212439A
Other languages
Japanese (ja)
Other versions
JPS59102160A (en
Inventor
Minoru Hirata
Yoshio Kudo
Yorio Tarukimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57212439A priority Critical patent/JPS59102160A/en
Publication of JPS59102160A publication Critical patent/JPS59102160A/en
Publication of JPH0545912B2 publication Critical patent/JPH0545912B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
    • G01N31/166Continuous titration of flowing liquids

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】 本発明は各種プラントにおいて、コロイド状の
鉄分を含む水溶液中の全鉄を、連続的にイオン化
させたのち、比色法により連続分析を可能とする
装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an apparatus that enables continuous analysis of total iron in an aqueous solution containing colloidal iron using a colorimetric method after continuous ionization in various plants. It is.

水溶液中の鉄分分析装置としては、従来、第1
図に例示図で示すような装置がある。第1図にお
いて、1は試料水、2は試料水1を入れた試料
瓶、3は試料水を吸引するための秤量ポンプ、4
は試料瓶中の試料を送入するための試料水の流路
となる導管、5は加熱溶解槽、6A,6B,6C
は試料水と試薬を反応させるための混合器、7は
呈色反応を起こした鉄分の吸光度を測定するため
の比色計、L1は試料水中の鉄分をイオン化させ
るためのチオグリコール酸の注入ライン、L2
還元剤およびPH緩衝液の注入ライン、L3は呈色
用指示薬の注入ライン、8A,8B,8Cはそれ
ぞれ試薬を系統に注入するための薬注ポンプであ
る。この分析装置においては、試料水1は秤量ポ
ンプ3によつて導管4を介して吸引され、薬注ポ
ンプ8A及びラインL1を介して添加されたチオ
グリコール酸とともに混合器6Aに送り込まれ
る。混合器6Aで混合された試料水とチオグリコ
ール酸は、次に95℃に設定された加熱溶解槽5に
導かれ、コロイド状の鉄分をイオン化する。次に
冷却された冷却液に、薬注ポンプ8B及びライン
L2を介して塩酸ヒドロキシルアミンと酢酸アン
モニウムを添加し、混合器6Bで鉄分の還元ヒPH
の調整を行つたのち、薬注ポンプ8C及びライン
L3を介してT.P.T.Z(2・4・6−トリピリジル
−S−トリアジン)溶液を添加し、混合器6Cで
鉄イオンとの間に呈色反応を起こさせ、呈色した
青色のキレート化合物の吸光度を比色計7で測定
して鉄分を定量する。
Conventionally, the first iron analyzer for aqueous solutions was
There is a device as shown by way of example in the figure. In Fig. 1, 1 is sample water, 2 is a sample bottle containing sample water 1, 3 is a weighing pump for suctioning sample water, and 4 is a sample bottle containing sample water 1.
5 is a conduit serving as a flow path for sample water for sending the sample in a sample bottle, 5 is a heating dissolution tank, 6A, 6B, 6C
is a mixer for reacting the sample water and reagent, 7 is a colorimeter for measuring the absorbance of iron that has caused a color reaction, and L 1 is an injection of thioglycolic acid to ionize the iron in the sample water. The line L2 is an injection line for reducing agent and PH buffer, L3 is an injection line for a coloring indicator, and 8A, 8B, and 8C are chemical injection pumps for injecting reagents into the system, respectively. In this analyzer, sample water 1 is sucked through conduit 4 by weighing pump 3 and sent into mixer 6A together with thioglycolic acid added through dosing pump 8A and line L1 . The sample water and thioglycolic acid mixed in the mixer 6A are then led to a heating dissolution tank 5 set at 95° C. to ionize colloidal iron. Next, the chemical injection pump 8B and the line are added to the cooled coolant.
Hydroxylamine hydrochloride and ammonium acetate are added through L 2 , and the iron is reduced to PH in mixer 6B.
After adjusting the chemical dosing pump 8C and line
Add TPTZ (2,4,6-tripyridyl-S-triazine) solution through L 3 , cause a color reaction with iron ions in mixer 6C, and absorbance of the colored blue chelate compound. The iron content is determined by measuring with a colorimeter 7.

従来の分析装置においては、バツチ式に試料を
採取し、手作業で前処理操作を行つたのち、バツ
チ式に用意した試料水を対象として分析を行つて
いた。従つて、運転中のプラントにおいて、経時
的に量的な変化を伴なう鉄分の濃度を連続的に測
定することは不可能である。
In conventional analyzers, samples are collected in batches, pretreatment is performed manually, and then the sample water prepared in batches is analyzed. Therefore, it is impossible to continuously measure the iron concentration, which changes quantitatively over time, in an operating plant.

本発明者等は、従来の分析装置の前述の欠点を
改良し、連続分析を可能とする装置を開発するた
めに鋭意研究を重ねた結果、サンプリングノズル
及びコネクターを介して試料を配管から連続的に
採取し、前処理することによりその目的を満たす
ことを見出し、その知見に基づいて本発明をなす
に至つた。すなわち本発明はプラント配管に配設
され同配管から試料水を定量採取するサンプリン
グノズルと、該サンプリングノズルの試料吐出口
に連結された試料の分岐径路と塩酸注入口とを併
せもつたコネクターと、該コネクターに後設され
た加熱溶解槽と、該加熱溶解槽に後設された冷却
器と、該冷却器に連結された鉄イオン濃度分析計
とからなることを特徴とする水溶液中の全鉄の連
続分析装置を提供するものである。
The inventors of the present invention have conducted intensive research to improve the above-mentioned drawbacks of conventional analyzers and to develop a device that enables continuous analysis. The inventors have discovered that the objective can be achieved by collecting and pre-treating the sample, and based on this finding, the present invention has been completed. That is, the present invention provides a sampling nozzle disposed in a plant piping for collecting a fixed amount of sample water from the piping, a connector having both a sample branch path and a hydrochloric acid injection port connected to a sample discharge port of the sampling nozzle, A total iron in an aqueous solution comprising a heating dissolution tank installed after the connector, a cooler installed after the heating melting tank, and an iron ion concentration analyzer connected to the cooler. This provides a continuous analysis device.

以下、本発明について詳細に説明する。本発明
の装置によれば試料採取点に装着され、試料水を
連続的に、しかも微粒子状の鉄分をも採取できる
等速吸引型のサンプリングノズルによつて試料水
を採取し、該サンプリングノズルより採取した試
料水の流れを分岐させるための分岐径路とともに
鉄の溶解液である塩酸の注入口とを併せもつたコ
ネクターによつて試料水の前処理を行ない、導管
壁への鉄分付着を防止するために該コネクター直
後に設けられた加熱溶解槽において、早期に鉄分
のイオン化を行つた後冷却し公知の鉄イオン化色
法により、全鉄濃度を測定するものである。
The present invention will be explained in detail below. According to the device of the present invention, sample water is collected by a sampling nozzle of a constant velocity suction type that is attached to a sample collection point and can collect sample water continuously and even fine particulate iron, and from the sampling nozzle. The sample water is pretreated using a connector that has a branch path for branching the flow of the collected sample water and an inlet for hydrochloric acid, which is an iron solution, to prevent iron from adhering to the pipe wall. Therefore, the iron content is ionized at an early stage in a heated melting tank provided immediately after the connector, and then cooled, and the total iron concentration is measured by a known iron ionization color method.

次に図面によつて、本発明の装置の実施態様例
を説明する。第2図は、本発明による全鉄の連続
分析装置の例示図である。第2図において11は
試料水を有するプラントの配管、12はプラント
配管11の中に挿入して試料を採取するためのサ
ンプリングノズルであり、試料水の流速を遅くさ
せるために中央部の内径をプラント配管11の内
径よりも大きくしている。このサンプリングノズ
ル12において、12Aは試料吸引口であり、試
料を等速吸引させるために口径を小さくしてあ
る。12Bは試料吐出口である。13はサンプリ
ングノズル12をプラント配管11に装着し、固
定させるための締付用治具、14は試料の流れを
分岐させるとともに、コロイド状の鉄分を溶解さ
せるための塩酸の注入口を併わせもつた管内径1
mm程度のコネクター、コネクター14において、
14Aは試料流入口、14Bは、薬注ポンプ8A
を介して塩酸の注入ラインL1は接続される塩酸
注入口、14Cは全鉄分析用の試料吐出口、14
Dは他成分分析用試料吐出口であり、全鉄のみを
分析する場合は開閉バルブ16を閉じておく。1
4Eはサンプリングノズル12の試料吸引口12
Aにおける試料水の流速を調節するための試料排
出口であり、流量調整ポンプ8Eを介して排出ラ
インL5に接続される。4は各部分を接続して試
料水の流路となる導管、5は加熱溶解槽、15は
試料水の液温を下げるための冷却器、10は本発
明に適応されるべく、一部に配置換えを施した市
販の鉄分分析計であり、3は試料水を連続的に定
量吸引する試料吸引ポンプ、6B,6Cは試料水
と試薬の混合器、7は比色計、8B,8Cは試薬
を定量的に吸引・注入する薬注ポンプ、8Dは空
気を定量的に吸引・注入する空気ポンプ、9は比
色計7で得られた吸光度を連続的に記録させる記
録計、L2,L3は試薬の注入ライン、L4は空気の
注入ラインである。
Next, embodiments of the apparatus of the present invention will be described with reference to the drawings. FIG. 2 is an illustrative diagram of a continuous total iron analysis apparatus according to the present invention. In Fig. 2, 11 is a plant pipe containing sample water, and 12 is a sampling nozzle for inserting into the plant pipe 11 to collect a sample. It is made larger than the inner diameter of the plant piping 11. In this sampling nozzle 12, 12A is a sample suction port, which has a small diameter in order to suck the sample at a constant velocity. 12B is a sample discharge port. 13 is a tightening jig for attaching and fixing the sampling nozzle 12 to the plant piping 11; 14 is a tightening jig for branching the sample flow and also has a hydrochloric acid injection port for dissolving colloidal iron. Pipe inner diameter 1
mm connector, connector 14,
14A is the sample inlet, 14B is the chemical injection pump 8A
The hydrochloric acid injection line L1 is connected to the hydrochloric acid inlet, 14C is the sample outlet for total iron analysis, 14
D is a sample discharge port for analyzing other components, and when only total iron is to be analyzed, the opening/closing valve 16 is closed. 1
4E is the sample suction port 12 of the sampling nozzle 12
This is a sample discharge port for adjusting the flow rate of sample water in A, and is connected to the discharge line L5 via a flow rate adjustment pump 8E. 4 is a conduit that connects each part and becomes a flow path for sample water; 5 is a heating dissolution tank; 15 is a cooler for lowering the temperature of the sample water; 10 is a part that is adapted to the present invention; This is a commercially available iron analyzer that has been rearranged. 3 is a sample suction pump that continuously sucks sample water, 6B and 6C are sample water and reagent mixers, 7 is a colorimeter, and 8B and 8C are 8D is an air pump that aspirates and injects air quantitatively, 9 is a recorder that continuously records the absorbance obtained by colorimeter 7, L 2 , L 3 is the reagent injection line, and L 4 is the air injection line.

以上のような構成において、本発明装置による
試料水中の全鉄の連続的分析方法を以下に説明す
る。試料水が流れるプラントの配管11に、試料
吸引口12Aを試料水の流れに正しく向けてサン
プリングノズル12を装着し、締付け用治具13
で固定する。試料を採取する場合、試料吸引ポン
プ3・薬注ポンプ8Aおよび流量調整ポンプ8E
を同時に駆動させることによつて、試料水はサン
プリングノズル12の試料吸引口12Aから試料
吐出口12Bを経て、コネクター14の試料流入
口14Aに吸引される。コネクター14では薬注
ポンプ8AおよびラインL1を介して一定流量の
塩酸(濃度:6規定)が塩酸注入口14Bより連
続注入される。一方、試料吸引ポンプ3の吸引流
量を塩酸流量の2倍量に設定する。その結果、試
料水はコネクター14の試料流入口14Aから全
鉄分析用試料吐出口14Cを経て、加熱溶解槽5
に吸引される。なお、試料水中のヒドラジン及び
アンモニア等の他の成分を分析する場合には、コ
ネクター14の分岐径路で試料水の流れを分岐し
他成分分析用試料吐出口14Dを経て、試料水を
分取できるが、他成分の分析を必要としない場合
は、開閉バルブ16を閉じるか、若しくは他成分
分析用試料吐出口14Dが無いコネクターを使用
する。また、コネクター14の試料排出口14E
からは余剰の試料を常時排出させておくが、サン
プリングノズル12の試料吸引口12A内の試料
水の流速が遅い場合には、流量調整ポンプ8Eに
よつて採取する試料水流量の増大を図る。次にコ
ネクター14の全鉄分析用試料吐出口14Cを出
た試料水と塩酸との混合液(塩酸濃度:3規定)
は、導管4を介して105℃前後に設定された加熱
溶解槽5に入り、ここでコロイド状の鉄分は溶解
されてイオン状となる。加熱溶解槽5を出た試料
水と塩酸との混合液は、冷却器15でその液温を
室温まで下げられたのち、吸引ポンプ3を介し
て、鉄分分析計10に導入される。反応系統へ送
り込まれた混合液は、空気ポンプ8Dを介して送
入された気泡によつて分節化される。ついで、塩
酸ヒドロキシルアミンと酢酸アンモニウムが薬注
ポンプ8B及びラインL4を介して混合液に添加
され、混合器6Bで鉄分を還元するとともに、PH
を4〜5に調整したのち薬注ポンプ8C及びライ
ンL3を介してT.P.T.Z溶液を添加し、混合器6C
で鉄イオンとの間に呈色反応を起こさせ、鉄分濃
度に応じて呈色した青のキレート化合物の吸光度
を比色計7で測定して、鉄分を定量し、記録計9
に連続的に記録される。混合液は気泡によつて一
時的に分節されるが、気泡は比色計7の中で除去
されたのち、吸光度が測定されるので、結果的に
連続的なチヤートが得られる。本発明の装置を使
用した分析結果は、JIS・B8224の全鉄分析方法
で求めた分析値に相当する測定値が得られ、しか
も経時変化に適応した記録計のチヤートが得ら
れ、ボイラ給復水の中の全鉄について、連続分析
を可能ならしめた。
A method for continuously analyzing total iron in sample water using the apparatus of the present invention in the above configuration will be described below. The sampling nozzle 12 is attached to the pipe 11 of the plant through which the sample water flows, with the sample suction port 12A facing the flow of the sample water correctly, and the tightening jig 13 is attached.
Fix it with. When collecting a sample, use the sample suction pump 3, chemical injection pump 8A, and flow rate adjustment pump 8E.
By simultaneously driving the sample water, the sample water is sucked into the sample inlet 14A of the connector 14 via the sample suction port 12A of the sampling nozzle 12, the sample discharge port 12B. In the connector 14, a constant flow rate of hydrochloric acid (concentration: 6 normal) is continuously injected from the hydrochloric acid inlet 14B via the chemical injection pump 8A and the line L1 . On the other hand, the suction flow rate of the sample suction pump 3 is set to twice the flow rate of hydrochloric acid. As a result, the sample water passes from the sample inlet 14A of the connector 14 to the total iron analysis sample outlet 14C, and then passes through the heating dissolution tank 5.
is attracted to. In addition, when analyzing other components such as hydrazine and ammonia in the sample water, the flow of the sample water is branched at the branch path of the connector 14, and the sample water can be fractionated through the sample discharge port 14D for analyzing other components. However, if analysis of other components is not required, close the on-off valve 16 or use a connector that does not have a sample discharge port 14D for analyzing other components. In addition, the sample outlet 14E of the connector 14
Although the excess sample is always discharged from the sampling nozzle 12, if the flow rate of the sample water in the sample suction port 12A of the sampling nozzle 12 is slow, the flow rate of the sample water collected is increased by the flow rate adjustment pump 8E. Next, a mixed solution of sample water and hydrochloric acid (hydrochloric acid concentration: 3 normal) exited from the total iron analysis sample outlet 14C of the connector 14.
enters a heating melting tank 5 set at around 105° C. via a conduit 4, where the colloidal iron is melted into ionic form. The mixed liquid of sample water and hydrochloric acid leaving the heated dissolution tank 5 is cooled down to room temperature by a cooler 15, and then introduced into the iron analyzer 10 via the suction pump 3. The mixed liquid sent to the reaction system is segmented by air bubbles sent through the air pump 8D. Hydroxylamine hydrochloride and ammonium acetate are then added to the mixture via dosing pump 8B and line L4 to reduce iron in mixer 6B and reduce the pH.
After adjusting the temperature to 4 to 5, add the TPTZ solution via chemical injection pump 8C and line L 3 , and add the TPTZ solution to mixer 6C.
to cause a color reaction with iron ions, and measure the absorbance of the blue chelate compound that changed color depending on the iron concentration using a colorimeter 7 to quantify the iron content.
are recorded continuously. The mixed liquid is temporarily segmented by air bubbles, but after the air bubbles are removed in the colorimeter 7, the absorbance is measured, resulting in a continuous chart. The analysis results using the device of the present invention are equivalent to the analysis values determined by the JIS B8224 total iron analysis method, and recorder charts that are adapted to changes over time are obtained. Continuous analysis of total iron in water was made possible.

以上詳細に説明したように、本発明の装置によ
れば試料水の全鉄分を連続的かつ容易に正確に分
析できる効果を奏する。
As described above in detail, the apparatus of the present invention has the effect of being able to continuously, easily, and accurately analyze the total iron content of sample water.

次に実施例により本発明の効果を更に詳細に説
明する。
Next, the effects of the present invention will be explained in more detail with reference to Examples.

実施例 第3図は、試運転中の発電プラントの水質につ
いて、JIS・B8224で規定された全鉄分析方法の
うち、T.P.T.Z(2・4・6−トリピリジル−S
−トリアジン)法によつて求めた分析値と、本発
明装置を使用した全鉄分析による分析値の相関性
を示したものである。第3図において横軸は
JIS・B8224T.P.T.Z法による全鉄分析値、縦軸は
本発明の装置による全鉄分析値を示す。これより
明らかなように両分析値間の相関性は良いことを
示しており、本発明装置による分析精度の高さを
示すものである。
Example Figure 3 shows the TPTZ (2,4,6-tripyridyl-S
This figure shows the correlation between the analytical values obtained by the -triazine) method and the analytical values obtained by total iron analysis using the apparatus of the present invention. In Figure 3, the horizontal axis is
The total iron analysis value by the JIS/B8224T.PTZ method, and the vertical axis shows the total iron analysis value by the apparatus of the present invention. As is clear from this, the correlation between the two analytical values is good, which indicates the high accuracy of analysis by the apparatus of the present invention.

第4図は、本発明装置を使用した鉄分分析によ
る発電プラントにおける実測チヤートである。第
4図において、プラントの運転状況の変化に即応
した分析値は手分析値との相関性も良く、しかも
連続的に分析値を得ることができた。
FIG. 4 is a chart actually measured in a power plant by iron analysis using the apparatus of the present invention. In FIG. 4, the analytical values that immediately responded to changes in the operating conditions of the plant had a good correlation with the manual analytical values, and moreover, the analytical values could be obtained continuously.

以上のべたように、本発明は火力発電プラント
をはじめ、各種プラントにおいて試料水中の全鉄
濃度を経時的な変化に対応して連続的に自動分析
することができる産業上有用な全鉄の連続分析装
置を提供するものである。
As described above, the present invention is an industrially useful method for automatically analyzing total iron concentration in sample water in various plants, including thermal power plants, in response to changes over time. The purpose is to provide an analytical device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水溶液中の全鉄分析装置の例示
図、第2図は本発明による試料水中の全鉄連続分
析装置の例示図、第3図はJIS・B8224で規定さ
れた全鉄分析のうち、T.P.T.Z法によつて求めた
分析値と、本発明装置を使用した全鉄分析による
分析値の相関性を示した図。第4図は本発明装置
を使用した鉄分分析による発電プラントにおける
実測チヤートである。
Figure 1 is an example diagram of a conventional total iron analyzer in aqueous solution, Figure 2 is an example diagram of a continuous total iron analyzer in sample water according to the present invention, and Figure 3 is a total iron analysis specified in JIS B8224. A diagram showing the correlation between the analytical values obtained by the TPTZ method and the analytical values obtained by total iron analysis using the apparatus of the present invention. FIG. 4 is a chart actually measured in a power plant by iron analysis using the apparatus of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 プラント配管に配設され同配管から試料水を
定量採取するサンプリングノズルと、該サンプリ
ングノズルの試料吐出口に連結された試料の分岐
径路と塩酸注入口とを併せもつたコネクターと、
該コネクターに後設された加熱溶解槽と、該加熱
溶解槽に後設された冷却器と、該冷却器に連結さ
れた鉄イオン濃度分析計とからなることを特徴と
する水溶液中の全鉄の連続分析装置。
1. A sampling nozzle disposed in a plant piping for collecting a fixed amount of sample water from the piping, a connector having both a sample branch path and a hydrochloric acid inlet connected to a sample discharge port of the sampling nozzle,
A total iron in an aqueous solution comprising a heating dissolution tank installed after the connector, a cooler installed after the heating melting tank, and an iron ion concentration analyzer connected to the cooler. continuous analyzer.
JP57212439A 1982-12-03 1982-12-03 Continuous analyzer for total iron component in aqueous solution Granted JPS59102160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57212439A JPS59102160A (en) 1982-12-03 1982-12-03 Continuous analyzer for total iron component in aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57212439A JPS59102160A (en) 1982-12-03 1982-12-03 Continuous analyzer for total iron component in aqueous solution

Publications (2)

Publication Number Publication Date
JPS59102160A JPS59102160A (en) 1984-06-13
JPH0545912B2 true JPH0545912B2 (en) 1993-07-12

Family

ID=16622620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57212439A Granted JPS59102160A (en) 1982-12-03 1982-12-03 Continuous analyzer for total iron component in aqueous solution

Country Status (1)

Country Link
JP (1) JPS59102160A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889463B1 (en) * 2005-08-03 2008-04-04 Valeo Systemes Thermiques DEVICE FOR IONIZING PARTICLES VEHICLED IN AN AIR FLOW, FOR A VENTILATION, HEATING AND / OR AIR CONDITIONING INSTALLATION IN PARTICULAR.
JP6208027B2 (en) * 2014-01-27 2017-10-04 公立大学法人大阪府立大学 Chemiluminescent COD measuring apparatus and measuring method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213891B2 (en) * 1972-03-08 1977-04-18

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245267Y2 (en) * 1972-12-16 1977-10-14
JPS5545318Y2 (en) * 1975-07-16 1980-10-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213891B2 (en) * 1972-03-08 1977-04-18

Also Published As

Publication number Publication date
JPS59102160A (en) 1984-06-13

Similar Documents

Publication Publication Date Title
CN107764933A (en) A kind of titration outfit and the titration method applied to analyzer
JPH0256637B2 (en)
JPH048736B2 (en)
CN104849422A (en) Ammonia nitrogen on-line monitoring system and method thereof
CN210222042U (en) Online intelligent air quality formaldehyde tester
US6058789A (en) Sampling device for gas analyzers
CN100557422C (en) A kind of flow injection colorimetric of measuring cyanide content is surveyed the cyanogen method
US4314824A (en) Programmable, continuous flow analyzer
US5604319A (en) Sampling device for gas analyzers
US2967764A (en) Apparatus for analysis and other processing of fluids
CN211627359U (en) Detecting system for sulfur trioxide content in flue gas
US7087434B2 (en) Automatic portable formaldehyde analyzer
JPH0545912B2 (en)
Jackson et al. Versatile Multirange Analytical Manifold for Automated Analysis of Nitrate‐Nitrogen
Carneiro et al. Individual sample conditioning in flow analysis. Determination of N-total in plant materials
KR100827418B1 (en) A sampling system and method for acidic gases using a cooling and alkaline absorbing solution and a monitoring system
CA1118330A (en) Apparatus and method for measuring aerosols and gases with detector tubes
Riley et al. Controlled dispersion analysis: flow-injection analysis without injection.
CN110927235A (en) On-line analyzer and measuring method for trace iodine
JPH11118782A (en) Ammoniacal nitrogen measuring apparatus
Lolekha et al. Improved automated method for determining serum albumin with bromcresol green
JPS62226A (en) System for controlling nutrient solutin culture
CN218629835U (en) Solution pH value on-line measuring system
Trimble et al. Continuous colorimetric monitoring of vapour-phase urea and cyanates
RU2043629C1 (en) Process of determination of iron (iii) and aluminium (iii) in acid liquors