JPS62226A - System for controlling nutrient solutin culture - Google Patents

System for controlling nutrient solutin culture

Info

Publication number
JPS62226A
JPS62226A JP60138603A JP13860385A JPS62226A JP S62226 A JPS62226 A JP S62226A JP 60138603 A JP60138603 A JP 60138603A JP 13860385 A JP13860385 A JP 13860385A JP S62226 A JPS62226 A JP S62226A
Authority
JP
Japan
Prior art keywords
ion
culture
nutrient solution
analyzer
solutin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60138603A
Other languages
Japanese (ja)
Inventor
英夫 島地
肇 小林
梶原 久雄
晶子 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP60138603A priority Critical patent/JPS62226A/en
Publication of JPS62226A publication Critical patent/JPS62226A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、植物の養液栽培における養液補給管理の自動
化に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to automation of nutrient solution supply management in hydroponic cultivation of plants.

〈従来技術〉 養液栽培では、養液補給管理をそのpH(IIIとEC
(電気伝導度)の測定に頼ってぎたが、その必須成分、
特に肥料の3第成分といわれるN、P。
<Conventional technology> In hydroponic cultivation, nutrient solution supply management is based on its pH (III and EC).
We have relied on the measurement of (electrical conductivity), but its essential components,
In particular, N and P are said to be the third components of fertilizer.

1くの割合いなどはこの方法では管理できない。各要素
の割合いを知るには、従来でぼ吸光又は炎光光度法等に
よる面倒な分析が必要で実用的ではなく、現場はもちろ
んのこと研究実験の時でも不満足ながらpH,ECの測
定で済すのが現状であった。
A percentage of 100% cannot be managed using this method. In order to know the proportions of each element, conventional methods require troublesome analysis using absorption or flame photometry, which is not practical, and it is difficult to measure pH and EC not only in the field but also in research experiments. The current situation was to do it.

〈発明が解決しようとする問題点〉 第4図、第5図は従来の管理手段で養液を補給した場合
の各要素のイオン濃度の測定例である。
<Problems to be Solved by the Invention> FIGS. 4 and 5 are examples of measuring the ion concentration of each element when nutrient solution is replenished by conventional management means.

第4図は硝酸イオンNOx−’a度の推移を示し、点線
は成分の補給を示す。第5図はりん駿イオンPO4−,
カリウムイオンに+、アンモニアイオンNH4+濃度の
推移を示し、点線は同じく成分の補給を示す。
FIG. 4 shows the change in nitrate ion NOx-'a degree, and the dotted line shows the replenishment of components. Figure 5 shows Rinshun ion PO4-,
The graph shows changes in potassium ion + and ammonia ion NH4+ concentrations, and the dotted line also shows component replenishment.

養分の吸収は、植物の種類、育成段階及び環境条件によ
り興なり、ある場合には大切な要素のうちまだあると思
っていた成分が吸収されつくされてゼロになたったまま
のときもある事が判明した。
Nutrient absorption varies depending on the type of plant, growth stage, and environmental conditions, and in some cases, important elements that were thought to be still present may be completely absorbed and remain at zero. There was found.

第5図によって、カリウムイオン、アンモニアイオンに
おいてその傾向が強い゛ことが分る。
It can be seen from FIG. 5 that this tendency is strong for potassium ions and ammonia ions.

即ちpHとECのみで養液管理を行なうことは、目安に
はなっても肥料の3第成分の管理には不十分であって、
各成分の分析を実施してその結果を養液管理に反映させ
なければならない。
In other words, managing the nutrient solution using only pH and EC may be a guideline, but it is insufficient for managing the third component of fertilizer.
Each component must be analyzed and the results reflected in nutrient solution management.

このためには、次の条件を満足する分析計が必要となる
For this purpose, an analyzer that satisfies the following conditions is required.

a>i続測定かつ自動運転できること(分析に当たって
火や不安定な反応試薬を使用しない事)b)装置が小型
であること(N、P、に成分が一台の分析計で同時に出
来ること) C)複雑な前処理なしに短時間で分析出来ることしかし
ながら従来のN、Pの分析手段である吸光光度法では、
測定したい成分により試薬が異なり、あるいは前処理が
必要とされる。またKの分析手段である突先光度計では
、火を用いるので自動運転は困難である。更に両手段と
も装置が大型となる欠点がある。
a) Continuous measurement and automatic operation (does not use fire or unstable reaction reagents for analysis) b) Small size of the device (can simultaneously measure N, P, and other components with one analyzer) C) Can be analyzed in a short time without complicated pretreatments However, with the conventional method of analyzing N and P, spectrophotometry,
Reagents vary depending on the component you want to measure, or pretreatment is required. Additionally, the tip photometer, which is K's analytical means, uses fire, making automatic operation difficult. Furthermore, both methods have the disadvantage of requiring large-sized devices.

本発明は近年開発されたイオンクロマトアナライザを利
用してこの問題を解決した制御システムの提供を目的と
する。
The present invention aims to provide a control system that solves this problem by using a recently developed ion chromato analyzer.

〈問題点を解決するための手段〉 本発明の構成上の特徴は、養液を用いた栽培において、
上記養液の必須成分のイオン濃度を測定する分析手段と
、この分析手段の出力に基づいて上記各成分を上記養液
に補給する手段を具備せしめた点にある。
<Means for solving the problems> The structural feature of the present invention is that in cultivation using a nutrient solution,
The present invention includes an analysis means for measuring the ion concentration of essential components of the nutrient solution, and a means for replenishing each of the components to the nutrient solution based on the output of the analysis means.

〈実施例〉 第1図により本発明の一実施例を説明する。1は栽培槽
、2は培養液、3は培養液を栽培槽1に供給するための
管路、48〜4eは必須成分を収納したタンク、5a〜
5eは各タンク内の成分を管路3に供給するための制御
弁、Va〜Veはこれら制御弁への操作信号を示す。
<Example> An example of the present invention will be described with reference to FIG. 1 is a cultivation tank, 2 is a culture solution, 3 is a pipe for supplying the culture solution to the cultivation tank 1, 48 to 4e are tanks containing essential components, 5a to
Reference numeral 5e indicates a control valve for supplying the components in each tank to the pipe line 3, and Va to Ve indicate operation signals to these control valves.

6は培養液のサンプル3mの導入管路、7はこのサンプ
ル液中の特定成分のイオン濃度を分析するイオンクロマ
トアナライザ、Eaはその分析出力である。
Reference numeral 6 denotes an introduction pipe for introducing a 3 m sample of the culture solution, 7 an ion chromato analyzer for analyzing the ion concentration of a specific component in the sample solution, and Ea the analysis output thereof.

8は制御弁5a〜5eへの操作信号Va〜■eを発信す
るコントローラであり、各成分の分析出力leaと各成
分の設定値5a−8eとの偏差に基づき、一定時間オン
信号又は偏差比例オンオフ操作信号を発信する。
8 is a controller that sends operation signals Va to ■e to the control valves 5a to 5e, and based on the deviation between the analytical output lea of each component and the set value 5a to 8e of each component, an ON signal for a certain period of time or a deviation proportional Sends on/off operation signals.

イオンクロマトアナライザの分析時間は通常的10程度
度であり、一方植物の育成上の分析間隔は1〜2日に1
回で充分であるから、一台のアナライザを切替えて多数
の栽培槽の培養液の分析が可能である。
The analysis time of an ion chromato analyzer is usually about 10 degrees, while the analysis interval for growing plants is once every 1 to 2 days.
Since one analyzer is sufficient, it is possible to analyze the culture solution of many cultivation tanks by switching one analyzer.

イオンクロマトアナライザの構成及び動作については、
例えば特開昭56−135156号で開示されており周
知のものであるが、第2図により原理構成を簡単に説明
する。9は、培養液を一定量採取するサンプルインジェ
クタ、 10は溶離液Wa(例えばNaHCOa等)を
サンプルインジェクタに圧送する溶離液ポンプ、11は
分離カラム、12はサプレッサ、13は導電率によりイ
オン濃度を測定する検出器、14は除去液Wb(例えば
DBS−H)をサプレッサ12へ溶離液とは逆方向に供
給する除去液ポンプである。サンプルインジェクタ9は
所定の内容1(例えば100μl)を有するループを具
備し、このループ内に注入されたサンプルSmを採取出
来るようになっている。
Regarding the configuration and operation of the ion chromato analyzer,
For example, this is disclosed in Japanese Patent Application Laid-open No. 135156/1983 and is well known, but the principle structure will be briefly explained with reference to FIG. 9 is a sample injector that collects a certain amount of culture solution; 10 is an eluent pump that pumps eluent Wa (for example, NaHCOa, etc.) to the sample injector; 11 is a separation column; 12 is a suppressor; 13 is a device that controls ion concentration by conductivity. The measuring detector 14 is a removal liquid pump that supplies the removal liquid Wb (for example, DBS-H) to the suppressor 12 in a direction opposite to that of the eluent. The sample injector 9 is equipped with a loop having a predetermined content 1 (for example, 100 μl), and is adapted to collect a sample Sm injected into this loop.

分離カラムは11は、イオン交換樹脂が充填されており
、搬入されるサンプル中の目的イオン種を分離出来るよ
うになっている。サプレッサ12はイオン交換膜チュー
ブと外側チューブよりなる2重構造となっており、内側
に溶離液が流れ、外側に除去液が流れるようになってい
る。検出器13はサプレッサの内側から導かれる溶離液
の導電率を検出する事により目的イオン種を定量出来る
ようになっている。
The separation column 11 is filled with ion exchange resin, and is capable of separating the target ion species in the sample being carried in. The suppressor 12 has a double structure consisting of an ion exchange membrane tube and an outer tube, with the eluent flowing inside and the removal liquid flowing outside. The detector 13 is capable of quantifying the target ion species by detecting the conductivity of the eluent introduced from inside the suppressor.

このような構成のイオンクロマトアナライザは、複雑な
前処理なしに複数の成分の同時分析が高速度で処理可能
である。第3図は分析結果の一例を示す出力の記録例で
あり、(Δ)はPO48I−。
The ion chromato analyzer with such a configuration can perform simultaneous analysis of multiple components at high speed without complicated pretreatment. FIG. 3 is an example of a recorded output showing an example of an analysis result, and (Δ) is PO48I-.

NO3−の測定例、(B)はに+の測定例であり、いす
りも10分程度の分析時間で測定が可能である。
This is an example of measurement of NO3- and (B) is an example of measurement of NO3-, and Isuri can also be measured in an analysis time of about 10 minutes.

〈発明の効果〉 以上説明したように、本発明によれば次のような効果が
期待出来る。
<Effects of the Invention> As explained above, according to the present invention, the following effects can be expected.

(a)植物の肥料成分ごとのの吸収量が分るので成育状
態を常時チェックすることが出来る。
(a) Since the amount of absorption of each fertilizer component by plants can be determined, the growth status can be constantly checked.

(b)!液中に肥料成分の欠乏してきたものが分るので
、それだけの分を補給すればよく、これは従来のEC,
pHだけの管理よりはるかに合理的である。
(b)! Since you can see which fertilizer components are deficient in the liquid, you only need to replenish that amount, which is different from conventional EC,
This is much more rational than managing only pH.

(C)肥料の合理的使用と節約が可能となる。(C) It becomes possible to use fertilizers rationally and save money.

(d)今まであまり明瞭でなかった植物の成育と肥料の
吸収の関係も明らかになるので、育成を盛んにするため
の最適培養液管理を実現することが可能となる。
(d) Since the relationship between plant growth and fertilizer absorption, which has not been very clear until now, will be clarified, it will become possible to realize optimal culture solution management to promote growth.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図はイオ
ンクロマトアナライザの原理を説明する構成図、第3図
は分析結果の示す出力記録例、第4図、第5図は従来の
管理手段を用いた場合の養液内の各成分の推移例を示す
説明図である。 1・・・栽培槽  2・・・培養液  3・・・成分供
給管路4a〜4e・・・成分収納タンク  5a〜5e
・・・ 制御弁  6・・・サンプル導入管路  7・
・・イオンク ロマトアナライザ  8・・・コントロ
第1図 第2図 (A) □1C1 (B)
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a block diagram explaining the principle of an ion chromato analyzer, Fig. 3 is an example of output recording of analysis results, and Figs. 4 and 5 are It is an explanatory view showing an example of changes in each component in a nutrient solution when conventional management means are used. 1...Cultivation tank 2...Culture solution 3...Component supply pipe lines 4a to 4e...Component storage tank 5a to 5e
...Control valve 6...Sample introduction pipe 7.
...Ion chromato analyzer 8...Control Figure 1 Figure 2 (A) □1C1 (B)

Claims (1)

【特許請求の範囲】[Claims] 養液を用いた栽培において、上記養液の必須成分のイオ
ン濃度を測定する分析手段と、この分析手段の出力に基
づいて上記各成分を上記養液に補給する手段を具備した
養液栽培制御システム。
In cultivation using a nutrient solution, a hydroponic cultivation control comprising an analysis means for measuring the ion concentration of essential components of the nutrient solution, and a means for replenishing each of the above components to the nutrient solution based on the output of the analysis means. system.
JP60138603A 1985-06-25 1985-06-25 System for controlling nutrient solutin culture Pending JPS62226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60138603A JPS62226A (en) 1985-06-25 1985-06-25 System for controlling nutrient solutin culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60138603A JPS62226A (en) 1985-06-25 1985-06-25 System for controlling nutrient solutin culture

Publications (1)

Publication Number Publication Date
JPS62226A true JPS62226A (en) 1987-01-06

Family

ID=15225946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60138603A Pending JPS62226A (en) 1985-06-25 1985-06-25 System for controlling nutrient solutin culture

Country Status (1)

Country Link
JP (1) JPS62226A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215223A (en) * 1988-02-20 1989-08-29 Toshiba Corp Hydroponic culture system apparatus
JPH04141031A (en) * 1990-10-03 1992-05-14 Toshiba Corp Apparatus for solution culture
WO2001078498A1 (en) * 2000-04-18 2001-10-25 Techno Medica Co., Ltd. Sample liquid analyzing apparatus for nutriculture
WO2001091540A1 (en) * 2000-06-01 2001-12-06 Techno Medica Co., Ltd. Apparatus for diagnosis of growing state of plant under raising in nutriculture
WO2012133199A1 (en) * 2011-03-30 2012-10-04 シャープ株式会社 Plant cultivator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215223A (en) * 1988-02-20 1989-08-29 Toshiba Corp Hydroponic culture system apparatus
JPH04141031A (en) * 1990-10-03 1992-05-14 Toshiba Corp Apparatus for solution culture
WO2001078498A1 (en) * 2000-04-18 2001-10-25 Techno Medica Co., Ltd. Sample liquid analyzing apparatus for nutriculture
JP4621404B2 (en) * 2000-04-18 2011-01-26 株式会社テクノメデイカ Solution analyzer for hydroponics
WO2001091540A1 (en) * 2000-06-01 2001-12-06 Techno Medica Co., Ltd. Apparatus for diagnosis of growing state of plant under raising in nutriculture
JP4677164B2 (en) * 2000-06-01 2011-04-27 株式会社テクノメデイカ Plant growth diagnostic device for hydroponics
WO2012133199A1 (en) * 2011-03-30 2012-10-04 シャープ株式会社 Plant cultivator

Similar Documents

Publication Publication Date Title
Baykov et al. A simple and sensitive apparatus for continuous monitoring of orthophosphate in the presence of acid-labile compounds
de Castro et al. Simultaneous determinations in flow injection analysis. A review
Hansen et al. Rapid determination of nitrogen, phosphorus and potassium in fertilisers by flow injection analysis
JPH048736B2 (en)
US4849110A (en) Method and apparatus for liquid chromatography
Van der Linden Flow injection analysis in on-line process control
US5240681A (en) Apparatus for injection analysis of total inorganic phosphate
CN100557422C (en) A kind of flow injection colorimetric of measuring cyanide content is surveyed the cyanogen method
CA1315422C (en) Detection system for chemical analysis of zinc phosphate coating solutions
Malcus et al. Automated trace enrichment and determination of metals using a combination of supported liquid membrane for sample pretreatment and graphite furnace atomic absorption spectrometry for the determination
Fogg et al. Sequential flow injection voltammetric determination of phosphate and nitrite by injection of reagents into a sample stream
Miró et al. What flow injection has to offer in the environmental analytical field
Meyerhoff et al. Disposable potentiometric ammonia gas sensors for estimation of ammonia in blood
JPS62226A (en) System for controlling nutrient solutin culture
US5976465A (en) Apparatus and method for the determination of substances in solution suspension or emulsion by differential pH measurement
Silva et al. Standard additions in flow injection analysis based on merging zones and gradient exploitation: application to copper determination in spirits
Frenzel Potential of modified reverse flow injection analysis for continuous monitoring and process control
Izquierdo et al. Ion‐sensitive field‐effect transistors and ion‐selective electrodes as sensors in dynamic systems
CN104316713B (en) Device and the measuring method thereof of zinc in flow Injection Spectrophotometry for Determination water gaging body
US3930957A (en) Apparatus and method for biological analysis
Mozzhukhin et al. Stepwise injection analysis as a new method of flow analysis
Silva et al. Implementation of a generalized standard addition method in a flow injection system using merging-zones and gradient exploitation
Alexander et al. Flow-injection determination of phosphate species in detergents with a calciumion-selective electrode
Staden Simultaneous Determination of Protein (Nitrogen), Phosphorus, and Calcium in Animal Feedstuffs by Multichannel Flow-Injection Analysis
US5106413A (en) Measurement method, adjustment method and adjustment system for the concentrations of ingredients in electroless plating solution