JPH0545771B2 - - Google Patents

Info

Publication number
JPH0545771B2
JPH0545771B2 JP59012662A JP1266284A JPH0545771B2 JP H0545771 B2 JPH0545771 B2 JP H0545771B2 JP 59012662 A JP59012662 A JP 59012662A JP 1266284 A JP1266284 A JP 1266284A JP H0545771 B2 JPH0545771 B2 JP H0545771B2
Authority
JP
Japan
Prior art keywords
intake
valve
passage
switching
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59012662A
Other languages
Japanese (ja)
Other versions
JPS60156930A (en
Inventor
Junzo Sasaki
Mitsuo Hitomi
Kazuhiko Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59012662A priority Critical patent/JPS60156930A/en
Publication of JPS60156930A publication Critical patent/JPS60156930A/en
Publication of JPH0545771B2 publication Critical patent/JPH0545771B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0257Rotatable plenum chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの吸気装置に関し、特に、
吸気系の気柱振動と吸気期間との同調による慣性
過給を利用して出力の向上を図るようにしたエン
ジンの吸気装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an engine intake device, and in particular,
The present invention relates to an improvement in an engine intake system that improves output by utilizing inertia supercharging by synchronizing the air column vibration of the intake system with the intake period.

(従来技術) 一般に、吸気管内の流れはいわゆる脈動流で、
吸気弁が開き吸入行程が始まると、シリンダ内に
発生する負圧のため吸気管内気柱は加速されシリ
ンダ内に流れ込む。この間シリンダ内圧力および
容積は、ピストン下降運動と共に変化し、同時に
吸気管内圧力および速度も漸次時間的にも場所的
にも変化する。シリンダで発生した圧力波は吸気
管を伝わり、サージタンク部で反射されてシリン
ダに戻るものであつて、吸気系においてはこの現
象が繰り返されている。上記ピストンの下降によ
つて生じる圧力変化の振動数と、吸気管およびシ
リンダ容積で決まる吸気系の固有振動数とを同調
させると吸気慣性効果が得られて、体積効率を向
上させることができ高出力化が実現できることは
よく知られている。
(Prior art) Generally, the flow in the intake pipe is a so-called pulsating flow.
When the intake valve opens and the intake stroke begins, the negative pressure generated within the cylinder accelerates the air column in the intake pipe and flows into the cylinder. During this time, the cylinder internal pressure and volume change with the downward movement of the piston, and at the same time, the intake pipe internal pressure and speed also gradually change both in time and location. The pressure waves generated in the cylinder propagate through the intake pipe, are reflected at the surge tank, and return to the cylinder, and this phenomenon is repeated in the intake system. By synchronizing the frequency of the pressure change caused by the downward movement of the piston with the natural frequency of the intake system, which is determined by the volume of the intake pipe and cylinder, an intake inertia effect can be obtained and the volumetric efficiency can be improved. It is well known that output can be achieved.

上記吸気系の固有振動数は吸気通路の長さと断
面積と吸気期間中の平均シリンダ容積とで定ま
り、この固有振動数と同調するエンジン回転数の
範囲を広くし、吸気慣性効果の利用による出力向
上域を拡大するために、吸気通路長さまたは吸気
通路面積を可変とした技術が種々提案されている
(例えば、特開昭48−58214号、特開昭56−115819
号、特開昭58−119919号)。
The natural frequency of the intake system is determined by the length and cross-sectional area of the intake passage, and the average cylinder volume during the intake period.The range of engine speeds that are synchronized with this natural frequency is widened, and the output is achieved by utilizing the intake inertia effect. In order to expand the improvement range, various techniques have been proposed in which the length or area of the intake passage is variable (for example, Japanese Patent Application Laid-Open Nos. 48-58214 and 115819-1989).
No., Japanese Patent Publication No. 58-119919).

しかるに、これらの先行技術は、吸気慣性効果
の利用による出力向上範囲の拡大作用が小さくて
不十分であり、また、変更範囲を広くするには複
雑な機構を伴うなどの問題があり、簡易な構造で
より広い範囲で大きな同調が得られることが望ま
れている。
However, these prior art techniques have problems such as the effect of expanding the range of output improvement by utilizing the intake inertia effect is small and insufficient, and widening the range of change requires a complicated mechanism. It is hoped that the structure will provide greater tuning over a wider range.

すなわち、例えば、吸気通路の長さを2段階も
しくはそれ以上に切換えて同調範囲の拡大を図る
ようにした機構においては、各通路長さにおいて
それぞれ吸気慣性効果のピークを有し、これを越
えると出力が大きく低下し、切換時点においてト
ルクの落込みが生じるものである。特に、通路長
さの切換えにおいては、低回転域用の吸気通路を
可及的に長くし、切換えの前後での長さの差を大
きくする方が低回転域での出力向上効果が高く、
同調範囲が広い点で好ましい。しかし、切換前後
の長さの差が大きいほど、切換時のトルクの落込
みが大きくなり、運転性に悪影響を与える恐れが
ある。
That is, for example, in a mechanism in which the length of the intake passage is changed over two or more stages to expand the tuning range, each passage length has a peak of the intake inertia effect, and if this is exceeded, This causes a large decrease in output and a drop in torque at the time of switching. In particular, when switching the passage length, making the intake passage for the low rotation range as long as possible and increasing the difference in length before and after switching will have a higher effect on improving output in the low rotation range.
This is preferable because the tuning range is wide. However, the greater the difference in length before and after switching, the greater the drop in torque at the time of switching, which may adversely affect drivability.

(発明の目的) 本発明は上記事情に鑑み、吸気通路形状の切換
えによつて吸気慣性効果の同調範囲を拡大するに
ついて、この吸気通路形状の切換領域において発
生するトルクの落込みを改善し、広に範囲におい
て出力の向上を図るようにしたエンジンの吸気装
置を提供することを目的とするものである。
(Object of the Invention) In view of the above circumstances, the present invention expands the tuning range of the intake inertia effect by switching the intake passage shape, and improves the drop in torque that occurs in the switching region of the intake passage shape, It is an object of the present invention to provide an engine intake device that is capable of improving output over a wide range.

(発明の構成) 本発明の吸気装置は、吸気通路の形状をエンジ
ン回転数に応じて切換える通路形状切換手段を設
けるとともに、吸気弁の少なくとも閉弁時期を変
更するバルブタイミング変更手段を説け、少なく
とも前記吸気通路形状の切換領域で吸気弁のバル
ブタイミングを、この切換領域内の低回転側より
高回転側で吸気弁の閉弁時期が早くなるように変
更することを特徴とするものである。
(Structure of the Invention) The intake device of the present invention is provided with a passage shape switching means for switching the shape of the intake passage according to the engine speed, and also includes a valve timing changing means for changing at least the closing timing of the intake valve. The valve timing of the intake valve is changed in the switching region of the intake passage shape so that the closing timing of the intake valve is earlier on the high rotation side than on the low rotation side within the switching region.

(発明の効果) 本発明によれば、吸気通路形状の切換えによる
吸気慣性効果の同調範囲の拡大に加えて、その切
換領域で吸気弁のバルブタイミングを低回転側よ
り高回転側で吸気弁の閉弁時期が早くなるように
変更して切換時点の出力向上を図つてトルクの落
込みを改善することにより、広い範囲において出
力向上が効果的に図れるものである。
(Effects of the Invention) According to the present invention, in addition to expanding the tuning range of the intake inertia effect by switching the shape of the intake passage, the valve timing of the intake valve is changed from the low rotation side to the high rotation side in the switching region. By changing the valve closing timing to be earlier to improve the output at the time of switching and to improve the drop in torque, it is possible to effectively improve the output over a wide range.

(実施例) 以下、図面により本発明の実施例を説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は吸気装置を備えた多気筒エンジンの要
部断面正面図、第2図は第1図の−線に沿う
断面図である。
FIG. 1 is a sectional front view of a main part of a multi-cylinder engine equipped with an intake system, and FIG. 2 is a sectional view taken along the line - in FIG.

エンジン1の各気筒の燃焼室2には吸気ポート
3および排気ポート4が開口し、両ポート3,4
の燃焼室2への開口部には吸気弁5および排気弁
6が配設されている。上記吸気ポート3に連通す
る吸気通路7は、スロツトル弁8下流にサージタ
ンク9を備え、このサージタンク9下流で分岐さ
れ各気筒に対して独立して結合され、燃料噴射ノ
ズル10が配設されている。
An intake port 3 and an exhaust port 4 are opened in the combustion chamber 2 of each cylinder of the engine 1.
An intake valve 5 and an exhaust valve 6 are disposed at the opening to the combustion chamber 2 . The intake passage 7 communicating with the intake port 3 has a surge tank 9 downstream of the throttle valve 8, is branched downstream of the surge tank 9, and is connected to each cylinder independently, and is provided with a fuel injection nozzle 10. ing.

上記サージタンク9はケーシング11と、これ
に内設された円筒状の筒部材12とによつて形成
され、このサージタンク9に吸気通路7の通路長
さを切換える通路形状切換手段13が構成されて
いる。このケーシング11はエンジン1のシリン
ダヘツド15に締結される吸気マニホールドを形
成し、各気筒に対応してそれぞれ結合された吸気
通路7の延長部分がケーシング11の周方向に沿
つて形成されている。また、筒部材12は内部空
間がスロツトル弁8下流の拡張室、換言すれば吸
気保持空間としての実質的なサージタンクを構成
するものであり、一端面の中心に開口部12aが
開設され、この開口部12aがスロツトル弁8を
備えた上流側の吸気通路7に連通して吸気入口と
なり、筒部材12の円筒状外周面はその内部空間
と外周部の吸気通路7の延長部分7aとを区画す
るとともに、ケーシング11の隣接する気筒に対
する延長部分7aの内壁面に接して各吸気通路を
気筒ごとに独立させている。該筒部材12の周面
には各気筒の吸気通路7に連通する出口側の連通
口12bが開設され、この連通口12bの縁部に
切換弁14が配設されている。該切換弁14は、
筒部材12の連通口12bとサージタンク9下流
の吸気通路7との連通経路を、延長部分7aを介
して連通して長くするか、直接連通して短くする
かを切換えるものであつて、これによつてサージ
タンク9から各気筒に至る独立吸気通路7の長さ
を切換えるように構成されている。
The surge tank 9 is formed by a casing 11 and a cylindrical member 12 installed therein, and a passage shape switching means 13 for switching the passage length of the intake passage 7 is configured in the surge tank 9. ing. This casing 11 forms an intake manifold fastened to the cylinder head 15 of the engine 1, and extended portions of the intake passages 7 connected to each cylinder are formed along the circumferential direction of the casing 11, corresponding to each cylinder. Further, the internal space of the cylindrical member 12 constitutes an expansion chamber downstream of the throttle valve 8, in other words, a substantial surge tank serving as an intake air holding space, and an opening 12a is provided at the center of one end surface. The opening 12a communicates with the upstream intake passage 7 provided with the throttle valve 8 and serves as an intake inlet, and the cylindrical outer circumferential surface of the cylindrical member 12 partitions the internal space and an extension portion 7a of the intake passage 7 at the outer circumference. At the same time, each intake passage is made independent for each cylinder by being in contact with the inner wall surface of the extension portion 7a of the casing 11 for the adjacent cylinders. A communication port 12b on the outlet side communicating with the intake passage 7 of each cylinder is provided on the circumferential surface of the cylindrical member 12, and a switching valve 14 is disposed at the edge of the communication port 12b. The switching valve 14 is
This is for switching the communication path between the communication port 12b of the cylindrical member 12 and the intake passage 7 downstream of the surge tank 9 to be lengthened by communicating through the extension portion 7a or to be shortened by direct communication. The length of the independent intake passage 7 from the surge tank 9 to each cylinder can be changed by changing the length of the independent intake passage 7 from the surge tank 9 to each cylinder.

上記切換弁14はその回転軸14aがアクチユ
エータ16に連係され、このアクチユエータ16
が制御手段21(コントロールユニツト)からの
制御信号によつて駆動制御されて、吸気通路長さ
を切換えるように構成されている。
The switching valve 14 has its rotating shaft 14a linked to an actuator 16.
is configured to be driven and controlled by a control signal from a control means 21 (control unit) to change the length of the intake passage.

上記エンジン1のシリンダヘツド15には、吸
気弁5を開閉制御する吸気側動弁機構22および
排気弁6を開閉制御する排気側動弁機構24が設
けられている。この吸気側動弁機構22には吸気
弁5のバルブタイミングを可変制御するバルブタ
イミング変更手段23が付設されている。
The cylinder head 15 of the engine 1 is provided with an intake side valve mechanism 22 for controlling the opening and closing of the intake valve 5 and an exhaust side valve mechanism 24 for controlling the opening and closing of the exhaust valve 6. This intake side valve operating mechanism 22 is provided with a valve timing changing means 23 that variably controls the valve timing of the intake valve 5.

上記吸気側動弁機構22はエンジン1のクラン
クシヤフト(図示せず)によつて回転駆動される
吸気側のカムシヤフト25を有し、このカムシヤ
フト25の回転によりタペツト26を介して吸気
弁5が開閉される。上記タペツト26は回動部材
27に上下方向に摺動自在に嵌挿保持され、この
回動部材27は円弧状に形成された下面を有し、
上記カムシヤフト25に相互に回転を許すように
回動自在に支承されて該カムシヤフト25の回り
を回動し得るように設けられている。この回動部
材27をエンジンの運転状態に応じてカムシヤフ
ト25の回転軸回りにロツド28を介して揺動さ
せるアクチユエータ29が付設されて、バルブタ
イミング変更手段23が構成されている。該バル
ブタイミング変更手段23のアクチユエータ29
も前記制御手段21(コントロールユニツト)か
らの制御信号によつて駆動制御される。
The intake side valve operating mechanism 22 has an intake side camshaft 25 that is rotationally driven by a crankshaft (not shown) of the engine 1, and the rotation of the camshaft 25 opens and closes the intake valve 5 via a tappet 26. be done. The tappet 26 is fitted into and held by a rotating member 27 so as to be slidable in the vertical direction, and the rotating member 27 has a lower surface formed in an arc shape.
It is rotatably supported by the camshaft 25 so as to allow mutual rotation, and is provided so as to be rotatable around the camshaft 25. An actuator 29 for swinging the rotating member 27 around the rotation axis of the camshaft 25 via a rod 28 according to the operating state of the engine is attached to constitute the valve timing changing means 23. Actuator 29 of the valve timing changing means 23
It is also driven and controlled by a control signal from the control means 21 (control unit).

上記アクチユエータ29の作動によつてロツド
28が図の右方向に移動するように駆動される
と、回動部材27はカムシヤフト25の回転方向
(右回転)と同方向に回動される。上記回動部材
27が回動されると、タペツト26も回動部材2
7とともに移動し、カムシヤフト25の特定角度
位置に対するカム面とタペツト26の上面の接触
位置がカムシヤフト25の回転方向に対して遅れ
側に変化して、吸気弁5のバルブタイミングが遅
れ側にずれるものである。このバルブタイミング
変更手段23では第3図に示すように、実線で示
す低回転時に対して高回転時は鎖線で示すよう
に、吸気弁5の開弁時期も閉弁時期とともに全体
が遅れ側に変更するものであるが、他のバルブタ
イミング変更手段を使用した場合には、第3図中
に破線で示すように、吸気弁5の開弁時期はその
ままで閉弁時期だけを遅れ側に変更するようにす
ることもできる。
When the rod 28 is driven to move rightward in the figure by the operation of the actuator 29, the rotating member 27 is rotated in the same direction as the rotational direction (clockwise rotation) of the camshaft 25. When the rotating member 27 is rotated, the tappet 26 is also rotated by the rotating member 2.
7, the contact position between the cam surface and the upper surface of the tappet 26 relative to a specific angular position of the camshaft 25 changes to the lag side with respect to the rotational direction of the camshaft 25, and the valve timing of the intake valve 5 deviates to the lag side. It is. In this valve timing changing means 23, as shown in FIG. 3, the opening timing of the intake valve 5 is delayed as well as the closing timing as shown by the chain line when the rotation is high compared to when the rotation is low as shown by the solid line. However, if other valve timing changing means are used, the opening timing of the intake valve 5 remains the same and only the closing timing is changed to the delayed side, as shown by the broken line in Fig. 3. You can also do this.

上記制御手段21には回転数センサー31から
のエンジン回転数信号および負荷センサー32か
らの負荷信号が入力され、該制御手段21は少な
くとも高負荷時にエンジン回転数に対応して、前
記通路形状切換手段13による吸気通路長さを吸
気慣性効果が最大となるように切換えるととも
に、上記切換領域でバルブタイミング変更手段2
3による吸気弁5の閉弁時期を変更して出力の向
上を図るものである。
An engine rotational speed signal from a rotational speed sensor 31 and a load signal from a load sensor 32 are inputted to the control means 21, and the control means 21 controls the passage shape switching means according to the engine rotational speed at least when the load is high. The length of the intake passage by 13 is switched so that the intake inertia effect is maximized, and the valve timing changing means 2
3, the closing timing of the intake valve 5 is changed to improve the output.

なお、第1図において、33はシリンダブロツ
ク、34はピストンである。
In FIG. 1, 33 is a cylinder block, and 34 is a piston.

上記制御手段21によるエンジン回転数に対す
る切換弁14の開閉による吸気通路長さの制御、
および吸気弁5の閉弁時期の制御特性を第4図お
よび第5図に沿つて説明する。
Controlling the length of the intake passage by opening and closing the switching valve 14 according to the engine speed by the control means 21;
The control characteristics of the closing timing of the intake valve 5 will be explained with reference to FIGS. 4 and 5.

まず、吸気通路長さ制御は基本的にはエンジン
回転数が低い時には通路長さを長くし、エンジン
回転数が上昇して高回転となつた時には通路長さ
を短縮するものである。エンジン回転数の変動に
対する全開トルク特性は第4図に示すように、長
い吸気通路による吸気供給時の曲線Aと、短い吸
気通路による吸気供給時の曲線Bとは、それぞれ
慣性同調時をピークとしてその前後の回転数でト
ルクが低下し、両曲線A,Bが交差する時点を切
換領域として通路形状切換手段13を作動する。
そして、この切換作動は急激に行うとシヨツクが
大きいので、低回転域では長い通路のみによつて
吸気を供給するように切換弁14が第1図の錯線
側に作動していたものを、エンジン回転数が第1
の設定回転数N1を越えると回転数の上昇ととも
に徐々に切換作動し、第2の設定回転数N2では
切換弁14が第1図の実線側に回動して短い通路
のみによつて吸気を供給するように制御するもの
であつて、上記両設定回転数N1,N2の間が通
路長さを切換える切換領域である。
First, intake passage length control basically increases the passage length when the engine speed is low, and shortens the passage length when the engine speed rises to a high speed. As shown in Figure 4, the full-open torque characteristics with respect to changes in engine speed are curve A when air is supplied through a long intake passage, and curve B when air is supplied through a short intake passage, each with a peak at the time of inertia tuning. The torque decreases at rotational speeds before and after that, and the passage shape switching means 13 is operated with the point where both curves A and B intersect as a switching region.
Since the shock is large if this switching operation is performed suddenly, the switching valve 14 was operated on the side of the parallel line in Fig. 1 so that intake air was supplied only through the long passage in the low rotation range. Engine speed is the first
When the set rotational speed N1 is exceeded, the switching operation is gradually performed as the rotational speed rises, and at the second set rotational speed N2, the switching valve 14 rotates toward the solid line side in Fig. 1 to intake air only through a short passage. The range between the set rotational speeds N1 and N2 is a switching region in which the passage length is switched.

これに対し、吸気弁5の閉弁時期の制御は第5
図に示すように基本的にには、吸気の吹き返しを
防ぐためおよび充填効率の向上を図るために、エ
ンジン回転数の上昇に対して燃焼室圧の上昇が遅
れることから、エンジン回転数の上昇とともに閉
弁時期を遅らせるものであり、また、吸気通路が
短い時より長い時のほうが閉弁時期は相対的に遅
いものである。そして、切換領域における閉弁時
期の要求は、低回転側で通路が長い時にはこの長
い通路の特性に適応した時期において、慣性ピー
クを過ぎても回転上昇に対応して閉弁時期を遅ら
せ、切換弁14が開いて短い通路の影響が出始め
ると、閉弁時期を徐々に進めて早くし、短い通路
が支配的になるに従つてさらに早めて短い通路の
特性に適応した時期とし、切換領域を越えて高回
転側になると回転上昇に対応して遅らせるように
制御するものである。
On the other hand, the control of the closing timing of the intake valve 5 is controlled by the fifth valve.
As shown in the figure, basically, in order to prevent intake air blowback and improve charging efficiency, the rise in combustion chamber pressure is delayed relative to the increase in engine speed, so the increase in engine speed This also delays the valve closing timing, and the valve closing timing is relatively later when the intake passage is long than when it is short. The valve closing timing requirement in the switching region is such that when the passage is long on the low rotation side, the valve closing timing is delayed in response to the increase in rotation, even after the inertia peak, at a timing that adapts to the characteristics of this long passage, and the switching is made. When the valve 14 opens and the effect of the short passage begins to appear, the valve closing timing is gradually advanced and made earlier, and as the short passage becomes predominant, the valve closing timing is further advanced so as to adapt to the characteristics of the short passage, and the switching region When the speed reaches the high speed side, the speed is controlled to be delayed in response to the increase in speed.

上記のように吸気通路長さの切換領域で吸気弁
5の閉じる時期が早くなるように制御することに
より、この切換領域でのトルクの大幅な落込みを
阻止することができる。すなわち、第4図におい
て、吸気弁の閉弁時期を一定としたときが実線
A,Bで示すトルク特性を示す場合に、吸気通路
が長い時に慣性ピークを越えてエンジン回転数の
上昇に対応して閉弁時期を遅らせた場合には鎖線
で示すようにトルクの上昇が図れ、一方、吸気通
路が短い時に慣性ピークに至るまでのエンジン回
転数の低下に対応して閉弁時期を早くした場合に
は破線で示すようにトルクの上昇が図れ、両者の
切換領域で各状態に応じて閉弁時期を変更するこ
とにより、上記トルク上昇に相当する落込みの改
善が行えるものである。
By controlling the intake valve 5 to close earlier in the intake passage length switching region as described above, it is possible to prevent a significant drop in torque in this switching region. In other words, in Fig. 4, when the intake valve closing timing is constant and the torque characteristics shown by solid lines A and B are shown, when the intake passage is long, the inertia peak is exceeded and the engine speed increases. If the valve closing timing is delayed, the torque can be increased as shown by the chain line, whereas if the valve closing timing is advanced in response to the decrease in engine speed until the inertia peak is reached when the intake passage is short. The torque can be increased as shown by the broken line, and by changing the valve closing timing according to each state in both switching regions, it is possible to improve the drop corresponding to the torque increase.

上記実施例の如き吸気弁の閉弁時期の変更手段
に対し、エンジンの燃焼室に2つの吸気ポートを
開口し、一方の吸気ポートを開閉する吸気弁のバ
ルブタイミングは固定式で、他方の吸気ポートを
開閉する吸気弁のバルブタイミングを前例と同様
の変更手段によつて可変とすることにより、吸気
弁全体としての開弁期間を可変としてもよい。こ
のように、開弁期間についても変更することがで
きるものにおいては(第3図に破線で示すものを
含む)、開弁期間の変動に伴つて吸気慣性効果の
同調範囲の拡大が図れる。
In contrast to the means for changing the closing timing of the intake valve as in the above embodiment, two intake ports are opened in the combustion chamber of the engine, and the valve timing of the intake valve that opens and closes one intake port is fixed, and the valve timing of the intake valve that opens and closes the other intake port is fixed. By making the valve timing of the intake valve that opens and closes the port variable using the same changing means as in the previous example, the opening period of the intake valve as a whole may be made variable. In this way, in the case where the valve opening period can also be changed (including the one shown by the broken line in FIG. 3), the tuning range of the intake inertia effect can be expanded as the valve opening period changes.

さらに、上記実施例では、吸気通路長さを変更
する通路形状切換手段13をサージタンク9の周
囲に形成した吸気通路延長部と、これを切換える
切換弁8によつて構成したことにより、全体をコ
ンパクトに形成して構造の簡略化が図れ、確実な
作動を確保することができる。
Furthermore, in the above embodiment, the passage shape switching means 13 for changing the length of the intake passage is constituted by the intake passage extension formed around the surge tank 9 and the switching valve 8 for switching the extension, so that the overall structure can be improved. It can be formed compactly, simplifying the structure, and ensuring reliable operation.

一方、吸気通路形状および吸気弁の開閉時期を
変更駆動する手段としては、前記の如きコントロ
ールユニツトによる制御手段を使用する他、排気
圧力に対応して作動するアクチユエータ等が適宜
採用可能である。
On the other hand, as a means for changing and driving the shape of the intake passage and the opening/closing timing of the intake valve, in addition to using the control means by the control unit as described above, an actuator that operates in response to exhaust pressure or the like can be employed as appropriate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における吸気装置を
有するエンジンの要部断面正面図、第2図は第1
図の−線に沿う断面図、第3図はバルブタイ
ミング変更手段による吸気弁の開閉時期の変動を
示す開弁曲線図、第4図はエンジン回転数と全開
トルクとの関係を示す特性図、第5図は吸気弁の
閉弁時期の変更を示す特性図である。 1……エンジン、3……吸気ポート、5……吸
気弁、7……吸気通路、9……サージタンク、1
3……通路形状切換手段、14……切換弁、21
……制御手段、23……バルブタイミング変更手
段。
FIG. 1 is a cross-sectional front view of main parts of an engine having an intake system according to an embodiment of the present invention, and FIG.
3 is a valve opening curve diagram showing variations in the opening/closing timing of the intake valve due to the valve timing changing means; FIG. 4 is a characteristic diagram showing the relationship between engine speed and full opening torque; FIG. 5 is a characteristic diagram showing changes in the closing timing of the intake valve. 1...Engine, 3...Intake port, 5...Intake valve, 7...Intake passage, 9...Surge tank, 1
3...Passage shape switching means, 14...Switching valve, 21
. . . control means, 23 . . . valve timing changing means.

Claims (1)

【特許請求の範囲】[Claims] 1 気筒に至る吸気通路形状を切換える通路形状
切換手段を設け、エンジン回転数と気柱振動数と
を同調させて吸気慣性効果を得るべくエンジン回
転数の上昇に対応して吸気通路形状を気柱振動数
が高くなるように上記通路形状切換手段を作動制
御するようにしたエンジンの吸気装置において、
吸気弁の少なくとも閉弁時期を変更するバルブタ
イミング変更手段を備え、少なくとも前記通路形
状切換手段による吸気通路形状の切換領域で、こ
の切換領域内の低回転側より高回転側で吸気弁の
閉弁時期が早くなるように前記バルブタイミング
変更手段を作動する制御手段を設けたことを特徴
とするエンジンの吸気装置。
1. A passage shape switching means is provided to change the shape of the intake passage leading to the cylinder, and the shape of the intake passage is changed to the air column in response to an increase in the engine rotation speed in order to synchronize the engine rotation speed and the air column vibration frequency and obtain an intake inertia effect. In an engine intake system in which the operation of the passage shape switching means is controlled to increase the vibration frequency,
Valve timing changing means for changing at least the closing timing of the intake valve is provided, and the intake valve is closed at least on the high rotation side from the low rotation side within the switching area, at least in the switching region of the intake passage shape by the passage shape switching means. An intake system for an engine, comprising a control means for operating the valve timing changing means so that the timing is earlier.
JP59012662A 1984-01-26 1984-01-26 Suction device for engine Granted JPS60156930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59012662A JPS60156930A (en) 1984-01-26 1984-01-26 Suction device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59012662A JPS60156930A (en) 1984-01-26 1984-01-26 Suction device for engine

Publications (2)

Publication Number Publication Date
JPS60156930A JPS60156930A (en) 1985-08-17
JPH0545771B2 true JPH0545771B2 (en) 1993-07-12

Family

ID=11811571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59012662A Granted JPS60156930A (en) 1984-01-26 1984-01-26 Suction device for engine

Country Status (1)

Country Link
JP (1) JPS60156930A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751894B2 (en) * 1984-02-08 1995-06-05 マツダ株式会社 Engine intake system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104717A (en) * 1983-11-11 1985-06-10 Nissan Motor Co Ltd Internal-combustion engine equipped with supercharger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104717A (en) * 1983-11-11 1985-06-10 Nissan Motor Co Ltd Internal-combustion engine equipped with supercharger

Also Published As

Publication number Publication date
JPS60156930A (en) 1985-08-17

Similar Documents

Publication Publication Date Title
US4592310A (en) Intake device for internal combustion engine
JPH0545771B2 (en)
JPH0578651B2 (en)
JPH0550574B2 (en)
JPH071009B2 (en) Engine intake control device
JPH0545769B2 (en)
JPH0621564B2 (en) Engine intake system
JPS60166707A (en) Suction device of engine
JP4385585B2 (en) Internal combustion engine
JPH0823294B2 (en) Engine intake system
JPH062550A (en) Intake control device for internal combustion engine
JPH0578646B2 (en)
JPH0686811B2 (en) Engine intake system
JPH10299491A (en) Intake device for internal combustion engine
JP2500928B2 (en) Engine intake system
JPH01316A (en) engine intake system
JPH0578647B2 (en)
JPH0587645B2 (en)
JPS60166706A (en) Suction device of engine
JPH0553931B2 (en)
JPH0128265Y2 (en)
JPS60159333A (en) Suction device for engine
JPH0742860B2 (en) Engine intake system
JPH09268930A (en) Intake valve control device for internal combustion engine and intake valve controlling method
JPH0380966B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term