JPH0550574B2 - - Google Patents

Info

Publication number
JPH0550574B2
JPH0550574B2 JP59020620A JP2062084A JPH0550574B2 JP H0550574 B2 JPH0550574 B2 JP H0550574B2 JP 59020620 A JP59020620 A JP 59020620A JP 2062084 A JP2062084 A JP 2062084A JP H0550574 B2 JPH0550574 B2 JP H0550574B2
Authority
JP
Japan
Prior art keywords
intake
intake passage
valve
sectional area
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59020620A
Other languages
Japanese (ja)
Other versions
JPS60164610A (en
Inventor
Mitsuo Hitomi
Junzo Sasaki
Kazuhiko Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59020620A priority Critical patent/JPS60164610A/en
Publication of JPS60164610A publication Critical patent/JPS60164610A/en
Publication of JPH0550574B2 publication Critical patent/JPH0550574B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0257Rotatable plenum chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0231Movable ducts, walls or the like
    • F02B27/0236Movable ducts, walls or the like with continuously variable adjustment of a length or width
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0263Plenum chambers; Resonance chambers or resonance pipes the plenum chamber and at least one of the intake ducts having a common wall, and the intake ducts wrap partially around the plenum chamber, i.e. snail-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0289Intake runners having multiple intake valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0294Actuators or controllers therefor; Diagnosis; Calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/08Modifying distribution valve timing for charging purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジンの吸気装置に関し、とくに吸
気慣性効果を利用して出力の向上を図る装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for an engine, and more particularly to a system that utilizes the intake inertia effect to improve output.

(従来技術) 従来、特開昭48−58214号公報にみられるよう
に、吸気通路の長さおよび断面積をエンジン回転
数に応じて変更することにより、吸気通路内の圧
力変動を利用して種々のエンジン回転数領域で吸
入効率を高め、出力の向上を図るようにした装置
が知られている。つまり、エンジンの作動に伴い
吸気が間欠的に行われることに起因して吸気通路
内に圧力振動が生じるので、その圧力波のうちの
正圧波を適正なタイミングでシリンダ内に導入す
れば吸入効率を高めることができる。そして、正
圧波をシリンダ内に導入するタイミングは吸気通
路の長さによつて調整することができるため、エ
ンジンの運転状態の変化に応じて吸気通路の長さ
を変えることにより、種々の運転領域において、
上記の現像によるいわゆる吸気の動的効果すなわ
ち慣性効果や脈動効果を有効に利用し、吸入効率
を高めることができる。なお、このような吸気の
動的効果は吸気通路の断面積を変えることによつ
ても調整することができる。
(Prior art) Conventionally, as seen in Japanese Patent Application Laid-open No. 48-58214, the length and cross-sectional area of the intake passage are changed according to the engine speed, thereby making use of pressure fluctuations in the intake passage. 2. Description of the Related Art Devices are known that increase suction efficiency in various engine speed ranges and improve output. In other words, pressure oscillations occur in the intake passage due to intermittent intake as the engine operates, so if positive pressure waves are introduced into the cylinder at the appropriate timing, the intake efficiency will be improved. can be increased. The timing at which positive pressure waves are introduced into the cylinder can be adjusted by the length of the intake passage, so by changing the length of the intake passage according to changes in engine operating conditions, various operating ranges can be adjusted. In,
The so-called dynamic effect of intake air, that is, the inertial effect and pulsation effect due to the above-mentioned development can be effectively utilized to increase the intake efficiency. Note that such a dynamic effect of intake air can also be adjusted by changing the cross-sectional area of the intake passage.

ところで、従来のこの種装置では吸気弁の開閉
タイミングは一定とし、BDC(ピストン下死点)
より所定クランク角だけ遅れたところで吸気弁を
閉じるようにしている。このような条件下では、
吸気通路の長さまたは断面積の調整によつてでき
るだけ正圧波による動的効果を高めるような同調
を行つても、エンジンの運転状態にたとえばエン
ジン回転数の変化に伴つてシリンダ内圧力の特性
が変化することにより、低回転時には吸気弁が閉
じられる前にシリンダ内圧力が上昇して吹き返し
を生じ、高回転時には逆にシリンダ内圧力が低く
てなお吸気の導入が可能な状態で吸気弁が閉じら
れてしまうこととなる。また機構的およびスペー
ス的に吸気通路の長さの調整範囲はある程度制限
されるため、広い回転数域にわたつて吸気の動的
効果を高めることは難しい。
By the way, in conventional devices of this type, the opening and closing timing of the intake valve is fixed, and the BDC (piston bottom dead center)
The intake valve is closed after a predetermined crank angle delay. Under such conditions,
Even if tuning is performed to enhance the dynamic effect of positive pressure waves as much as possible by adjusting the length or cross-sectional area of the intake passage, the characteristics of the cylinder pressure may change due to engine operating conditions, for example, as the engine speed changes. As a result, at low speeds, the pressure inside the cylinder increases before the intake valve closes, causing blowback, and at high speeds, the intake valve closes even though the cylinder pressure is low and intake air can still be introduced. This will result in being damaged. Furthermore, because the adjustment range of the length of the intake passage is limited to some extent due to mechanical and spatial considerations, it is difficult to enhance the dynamic effect of intake air over a wide rotational speed range.

一方、吸気通路の長さおよび断面積が固定され
ている場合の吸入効率改善手段としては、吸気弁
の開閉タイミングとくに閉弁タイミングをエンジ
ンの運転状態に応じて調整する方法がある。この
方法による場合、シリンダ内圧力と吸気弁直前の
吸気通路内圧力とが等しくなる時点で吸気弁が閉
じられるように、エンジンの運転状態に応じて吸
気弁の少なくとも閉弁タイミングを制御すればよ
い。ただしこの場合、吸気通路の長さおよび断面
積との関係で、吸気通路内に生じる正圧波が最も
有効に利用されるような同調状態となるのは特定
の運転領域に限られ、これ以外の領域では上記正
圧波による動的効果が低下する。従つて吸気弁の
開閉タイミングの調整によつても吸入効率の向上
には限界がある。またこの吸気弁の開閉タイミン
グを広範囲に調整することは機構的に難しい。
On the other hand, as a means for improving intake efficiency when the length and cross-sectional area of the intake passage are fixed, there is a method of adjusting the opening/closing timing of the intake valve, particularly the valve closing timing, depending on the operating state of the engine. When using this method, it is sufficient to control at least the closing timing of the intake valve according to the operating state of the engine so that the intake valve is closed when the pressure inside the cylinder and the pressure inside the intake passage immediately before the intake valve become equal. . However, in this case, due to the length and cross-sectional area of the intake passage, the synchronized state in which the positive pressure waves generated in the intake passage are utilized most effectively is limited to a specific operating range; In this region, the dynamic effect of the positive pressure wave is reduced. Therefore, there is a limit to the improvement in intake efficiency even by adjusting the opening/closing timing of the intake valve. Furthermore, it is mechanically difficult to adjust the opening/closing timing of the intake valve over a wide range.

(発明の目的) 本発明はこのような事情に鑑み、広いエンジン
運転領域にわたり、吸気慣性効果を有効に利用し
て吸入効率を向上し、従来と比べて種々のエンジ
ン運転領域での出力性能を格段に高めることがで
きるエンジンの吸気装置を提供するものである。
(Objective of the Invention) In view of these circumstances, the present invention effectively utilizes the intake inertia effect over a wide range of engine operating ranges to improve intake efficiency, and improves output performance in various engine operating ranges compared to conventional methods. The present invention provides an engine intake system that can be significantly improved.

(発明の構成) 本発明は、吸気通路の長さを変更可能にする吸
気通路長可変手段と、吸気通路の断面積を変更可
能にする吸気通路断面積可変手段と、吸気弁の少
なくとも閉弁タイミングを変更可能にするタイミ
ング可変手段と、エンジンの運転状態に応じて上
記各可変手段を相互に関連づけて制御する制御装
置とを設けたものである。つまり吸気通路の長さ
および断面積の両方をエンジンの運転状態に応じ
て調整することにより、広いエンジン運転領域に
わたつて吸気慣性を同調状態もしくはこれに近似
する状態に調整するとともに、これに対応づけて
吸気慣性効果を有効に利用するように吸気タイミ
ングを補正し、吸入効率を高めることができるよ
うにしたものである。
(Structure of the Invention) The present invention provides an intake passage length variable means that makes it possible to change the length of the intake passage, an intake passage cross-sectional area variable means that makes it possible to change the cross-sectional area of the intake passage, and an intake passage that at least closes the intake valve. The engine is equipped with a timing variable means that allows the timing to be changed, and a control device that controls the variable means in relation to each other depending on the operating state of the engine. In other words, by adjusting both the length and cross-sectional area of the intake passage according to the engine operating conditions, the intake inertia can be adjusted to a tuned state or a state close to this over a wide range of engine operating conditions, and the intake inertia can be adjusted accordingly. In addition, the intake timing is corrected to effectively utilize the intake inertia effect, thereby increasing intake efficiency.

なお、この構成における吸気通路の断面積およ
び長さとは、実質的に吸気慣性効果に寄与する流
通路の断面積および長さをいうものである。
Note that the cross-sectional area and length of the intake passage in this configuration refer to the cross-sectional area and length of the flow passage that substantially contributes to the intake inertia effect.

(実施例) 第1図および第2図は本発明の第1実施例を示
す。これらの図において、1は複数のシリンダ2
を備えたエンジン本体であつて、シリンダブロツ
ク3、シリンダヘツド4およびシリンダヘツドカ
バー5等で構成されており、各シリンダ2にはピ
ストン6が挿入され、ピストン6の上方に燃焼室
7が形成されている。この各燃焼室7にはそれぞ
れ、点火プラグ8が装備されるとともに、シリン
ダヘツド4に形成された2個ずつの吸気ポート
9,10と排気ポート11,12とが開口してお
り、これらのポート9〜12が第1および第2の
吸気弁13,14と第1および第2の排気弁1
5,16とによつて開閉されるようになつてい
る。上記両吸気ポート9,10は、シリンダヘツ
ド4の側端部付近において互いに連通し、この連
通部17に燃料噴射弁18が装備されている。
(Embodiment) FIGS. 1 and 2 show a first embodiment of the present invention. In these figures, 1 represents a plurality of cylinders 2
The engine body is composed of a cylinder block 3, a cylinder head 4, a cylinder head cover 5, etc. A piston 6 is inserted into each cylinder 2, and a combustion chamber 7 is formed above the piston 6. ing. Each combustion chamber 7 is equipped with a spark plug 8, and two intake ports 9, 10 and two exhaust ports 11, 12 formed in the cylinder head 4 are open. 9 to 12 are first and second intake valves 13 and 14 and first and second exhaust valves 1
5 and 16 to be opened and closed. Both intake ports 9 and 10 communicate with each other near the side end portion of the cylinder head 4, and a fuel injection valve 18 is installed in this communication portion 17.

上記エンジン本体1に対する吸気系には、吸気
通路長可変手段20と吸気通路断面積可変手段2
1とが設けられており、これらは次のように構成
されている。すなわち、前記両吸気ポート9,1
0の連通部17には各シリンダ別に形成された分
岐管22が接続され、これらの分岐管22はケー
シング23に一体に連結されており、このケーシ
ング23の内部に円筒状のサージタンク24が回
転可能に保持されるとともに、サージタンク24
の周囲において上記ケーシング23に渦巻状の吸
気通路延長部25が形成されている。この吸気通
路延長部25は、ケーシング23の上方外側に位
置する下流側端部が前記分岐管22に連通し、こ
の位置からサージタンク24の周囲に回りこんで
ケーシング23の上方内側にまで達し、その上流
側端部がサージタンク24に接するシール壁26
で封鎖されている。そしてケーシング23に設け
られた仕切枠27により、上記吸気通路延長部2
5が分岐管22に対応してシリンダ別に区画形成
されている。また上記サージタンク24には図外
のエアクリーナからスロツトル弁28を介して空
気が導入されるようにするとともに、その周壁
に、吸気通路延長部25に開口する開口部29が
設けられている。このサージタンク24の一端に
は回転軸30が連結され、この回転軸30はケー
シング23を貫通してその外部に突出し、ギヤ3
1,32を介してサージタンク駆動用のモータ3
3に連動連結されている。こうして、モータ33
によつてサージタンク24が回動されることによ
り、サージタンク24の開口部29から吸気ポー
ト9,10の燃焼室側開口部までの実質的な吸気
通路長が無段階に変更可能となるようにし、吸気
通路長可変手段20が構成されている。
The intake system for the engine body 1 includes an intake passage length variable means 20 and an intake passage cross-sectional area variable means 2.
1 are provided, and these are configured as follows. That is, both the intake ports 9, 1
Branch pipes 22 formed separately for each cylinder are connected to the communication portion 17 of 0, and these branch pipes 22 are integrally connected to a casing 23, and a cylindrical surge tank 24 is installed inside the casing 23. The surge tank 24
A spiral intake passage extension 25 is formed in the casing 23 around the periphery of the casing 23 . The intake passage extension 25 has a downstream end located on the upper outer side of the casing 23 that communicates with the branch pipe 22, and from this position wraps around the surge tank 24 to reach the upper inner side of the casing 23. A seal wall 26 whose upstream end touches the surge tank 24
is blocked off. A partition frame 27 provided in the casing 23 allows the intake passage extension 2 to
5 is divided into cylinders corresponding to the branch pipes 22. Further, air is introduced into the surge tank 24 from an air cleaner (not shown) via a throttle valve 28, and an opening 29 that opens into the intake passage extension 25 is provided in the peripheral wall of the surge tank 24. A rotating shaft 30 is connected to one end of this surge tank 24, and this rotating shaft 30 penetrates through the casing 23 and protrudes to the outside of the casing 23.
Motor 3 for driving the surge tank via 1 and 32
It is linked to 3. In this way, the motor 33
By rotating the surge tank 24, the substantial length of the intake passage from the opening 29 of the surge tank 24 to the combustion chamber side openings of the intake ports 9 and 10 can be changed steplessly. In addition, an intake passage length variable means 20 is configured.

さらに前記分岐管22および吸気通路延長部2
5は、これらの内部に設けられた仕切壁35によ
り、第1吸気通路36と第2吸気通路37とに区
画されており、第2吸気通路37には開閉弁38
が設けられている。この開閉弁38は、軸39、
レバー40およびロツド41を介してアクチユエ
ータ42により開閉作動されるようにしている。
こうして吸気通路断面積可変手段21が構成さ
れ、この手段によると、開閉弁38が閉じられて
いるときは第1吸気通路36のみから前記両吸気
ポート9,10に吸気が供給されて、この第1吸
気通路36の断面積が実質的な吸気通路断面積と
なり、開閉弁38が開かれたときは両吸気通路3
6,37から吸気が供給されて、この両吸気通路
36,37の断面積の和が実質的な吸気通路断面
積となる。従つて吸気通路断面積が2段階に変更
可能となつている。
Furthermore, the branch pipe 22 and the intake passage extension 2
5 is divided into a first intake passage 36 and a second intake passage 37 by a partition wall 35 provided therein, and the second intake passage 37 has an on-off valve 38.
is provided. This on-off valve 38 has a shaft 39,
It is opened and closed by an actuator 42 via a lever 40 and a rod 41.
In this way, the intake passage cross-sectional area variable means 21 is constructed, and according to this means, when the on-off valve 38 is closed, intake air is supplied to both the intake ports 9 and 10 only from the first intake passage 36, The cross-sectional area of one intake passage 36 becomes the substantial intake passage cross-sectional area, and when the on-off valve 38 is opened, both intake passages 3
Intake air is supplied from the intake passages 6 and 37, and the sum of the cross-sectional areas of both the intake passages 36 and 37 becomes the substantial cross-sectional area of the intake passage. Therefore, the cross-sectional area of the intake passage can be changed in two stages.

また、前記吸、排気弁13〜16に対する動弁
機構として、シリンダヘツド4上にはクランク軸
(図示せず)によつて回転駆動される吸気弁用と
排気弁用の各カム軸44,46が配置され、各カ
ム軸44,46にはカム45,47が配設されて
いる。そして、排気弁15,16はカム47によ
りタペツト48を介して一定のタイミングで開閉
され、同様に第1吸気弁13も一定のタイミング
で開閉されるが、第2吸気弁14は、次のような
タイミング可変手段50によつて作動のタイミン
グが変更可能とされている。すなわち第2吸気弁
14に対しては、カム軸44を中心に回転可能な
回動部材51が装備され、この回動部材51の下
部にタペツト部材52が保持されている。このタ
ペツト部材52は、カム軸44に設けられたカム
45と接触する上面52aがフラツトに、下面5
2bがカム軸を中心とする円弧面もしくは球面状
にそれぞれ形成されており、この下面52bに第
2吸気弁14のバルブステム14aの上端が当接
している。また上記回動部材51の上端突出部5
3にはカム軸44と平行な制御ロツド54が貫通
し、この制御ロツド54に制御レバー55が係合
している。この制御レバー55は、制御ロツド5
4の軸方向と直交する方向に摺動可能とされ、シ
リンダヘツドカバー5の側壁に取付けられたアク
チユエータ56によつて作動されるようにしてあ
る。
Further, as a valve operating mechanism for the intake and exhaust valves 13 to 16, camshafts 44 and 46 for intake valves and exhaust valves, which are rotationally driven by a crankshaft (not shown), are mounted on the cylinder head 4. are arranged, and cams 45, 47 are arranged on each cam shaft 44, 46. The exhaust valves 15 and 16 are opened and closed at a constant timing by a cam 47 via a tappet 48, and the first intake valve 13 is similarly opened and closed at a constant timing, but the second intake valve 14 is opened and closed at a constant timing. The timing of operation can be changed by a timing variable means 50. That is, the second intake valve 14 is equipped with a rotating member 51 that is rotatable about the camshaft 44, and a tapepet member 52 is held at the lower part of the rotating member 51. This tappet member 52 has a flat upper surface 52a that contacts the cam 45 provided on the camshaft 44, and a lower surface 52a that contacts the cam 45 provided on the camshaft 44.
2b is formed in an arcuate or spherical shape centered on the camshaft, and the upper end of the valve stem 14a of the second intake valve 14 is in contact with the lower surface 52b. Further, the upper end protrusion 5 of the rotating member 51
3 is penetrated by a control rod 54 parallel to the camshaft 44, with which a control lever 55 engages. This control lever 55 is connected to the control rod 5
The cylinder head cover 5 is slidable in a direction perpendicular to the axial direction of the cylinder head cover 5, and is actuated by an actuator 56 attached to a side wall of the cylinder head cover 5.

このような手段によれば、上記アクチユエータ
56により制御レバー55および制御ロツド54
を介して回動部材51が回動されると、それに伴
つて上記タペツト部材52とカム45との相対位
相が変更されて、第2吸気弁14の開閉タイミン
グが変更される。つまり、回動部材51がカム軸
44の回転方向Xと同方向に回動されたときには
上記開閉タイミングが遅らされ、これと逆の方向
に回動されたときには上記開閉タイミングが早め
られる。
According to such means, the control lever 55 and the control rod 54 are controlled by the actuator 56.
When the rotating member 51 is rotated via the cam 45, the relative phase between the tappet member 52 and the cam 45 is changed, and the opening/closing timing of the second intake valve 14 is changed. That is, when the rotating member 51 is rotated in the same direction as the rotational direction X of the camshaft 44, the opening/closing timing is delayed, and when the rotating member 51 is rotated in the opposite direction, the opening/closing timing is advanced.

このタイミング可変手段50による場合、第3
図に示すように、排気弁15,16および第1吸
気弁13がそれぞれ所定のタイミングで開閉され
るのに対し、第2吸気弁14は第1吸気弁13と
同一タイミングからこれより遅れる方向へ開閉タ
イミングが変更可能とされることにより、第1吸
気弁13による吸気弁開弁タイミングが一定に保
たれながら、第2吸気弁14によつて決まる吸気
弁閉弁タイミングが調整されることとなる。
In the case of this timing variable means 50, the third
As shown in the figure, while the exhaust valves 15 and 16 and the first intake valve 13 are opened and closed at predetermined timings, the second intake valve 14 is opened and closed at the same timing as the first intake valve 13 and later than the first intake valve 13. By making the opening/closing timing changeable, the intake valve closing timing determined by the second intake valve 14 can be adjusted while the intake valve opening timing by the first intake valve 13 is kept constant. .

60は前記の各可変手段20,21,50を制
御する制御回路(制御装置)であつて、エンジン
回転数センサ61からの検出信号を入力し、前記
モータ33および各アクチユエータ42,56に
制御信号を出力している。そしてこの制御回路6
0により、エンジン回転数に応じて、後述する吸
気慣性同調状態もしくはこれに近似する状態が得
られるように吸気通路長可変手段20および吸気
通路断面積可変手段21を制御するとともに、こ
れらと関連づけて吸気弁の少なくとも閉弁タイミ
ングを最適値に補正するように、タイミング可変
手段50を制御している。具体的には第4図に示
すようにエンジン回転数に応じて吸気通路長(線
L)、吸気通路断面積(線S)および閉弁タイミ
ング(線T)を制御している。すなわち吸気通路
長は、設定回転数Ra未満のときに最大長とし、
設定回転数Ra以上ではエンジン回転数が高くな
るにつれて次第に短くするようにしており、吸気
通路断面積は、設定回転数Ra未満のとき小さく
し、設定回転数Ra以上のとき大きくするうよう
にしている。また閉弁タイミングは、低回転側か
ら上記設定回転数Ra付近までエンジン回転数が
高くなるにつれて次第に遅らせ、設定回転数Ra
付近で所定値だけ進み側に移してから、さらにエ
ンジン回転数が高くなるとそれにつれて遅らせる
ようにしている。
Reference numeral 60 denotes a control circuit (control device) for controlling each variable means 20, 21, 50, which inputs a detection signal from an engine rotation speed sensor 61 and sends a control signal to the motor 33 and each actuator 42, 56. is outputting. And this control circuit 6
0, the intake passage length variable means 20 and the intake passage cross-sectional area variable means 21 are controlled so as to obtain an intake inertia tuning state described later or a state similar thereto according to the engine speed, and in association with these. The timing variable means 50 is controlled so as to correct at least the closing timing of the intake valve to an optimal value. Specifically, as shown in FIG. 4, the intake passage length (line L), intake passage cross-sectional area (line S), and valve closing timing (line T) are controlled according to the engine speed. In other words, the intake passage length is the maximum length when the rotation speed is less than the set rotation speed Ra,
When the engine speed is higher than the set rotation speed Ra, it is gradually shortened as the engine speed increases, and the cross-sectional area of the intake passage is made smaller when the rotation speed is lower than the set rotation speed Ra, and increases when the rotation speed is higher than the set rotation speed Ra. There is. In addition, the valve closing timing is gradually delayed as the engine speed increases from the low speed side to around the set speed Ra above.
It is moved to the advance side by a predetermined value in the vicinity, and then is delayed as the engine speed increases further.

次にこの吸気装置の作用を、第5図および第6
図の特性図を利用して説明する。
Next, the action of this intake device will be explained in Figures 5 and 6.
This will be explained using the characteristic diagram shown in the figure.

第5図は、横軸をクランク角として、特定エン
ジン回転数におけるシリンダ内圧力の変動特性
と、後に定義するような吸気慣性同調状態での吸
気作用により発生する負圧波、該負圧波に伴う反
射波の変動特性および上記負圧波と反射波の合成
圧力、すなわち吸気通路における吸気バルブ直前
の圧力の変動特性を示す。上記シリンダ内圧力は
この図に曲線Aで示すように、吸気開弁時点IO
後のTDC時点から次第に低下し、ピストン下降
途中で負圧がピークとなつてから次第に圧力上昇
して、BDC時点を過ぎてから正圧となる。一方、
吸気工程でのピストンの下降運動により吸気弁直
前にはこの図に曲線Bで示す負圧波が生じ、この
負圧波が吸気通路内を伝播し、吸気通路の上流側
開放端(サージタンク24への開放端)で正負が
反転して反射されることにより、この第1反射波
は曲線Cで示すように正圧波となつてシリンダ側
に返つてくる。また第2反射波は曲線Dで示すよ
うに負圧波となつて返つてくる。これらの曲線
B,C、Dで示す圧力波を合成したものが、吸気
弁直前の圧力(曲線E)となる。そして吸気通路
自体による吸気慣性同調状態とは、この図のよう
に、吸気弁直前での第1反射波の波形が、TDC
とBDCとの中間点付近から現われ始めてBDCを
過ぎた特定時点でピークとなり、この第1反射波
によつて吸気通路自体による吸気慣性効果が最大
に高められる状態をいう。つまり吸気弁直前圧力
がBDC後の適正時期に最大限に高められて、吸
気慣性効果にとつて最適な特性となる状態をい
い、この状態では燃焼室容積が大きいBDCおよ
びそれ以後の時期まで、曲線Eで示す吸気弁直前
圧力がシリンダ内圧力より充分大きくなつてシリ
ンダ内に吸気を多く流入させることができ、吸気
慣性効果を高めることができる。第1反射波が返
つてくるタイミングが上記同調状態より遅れる
と、吸気弁直前の圧力上昇が遅れてBDC付近で
のシリンダ内圧力との圧力差が小さくなるため吸
入効率が低下する傾向を生じ、また上記タイミン
グが同調状態より早くなると、第2反射波による
影響で吸気弁直前圧力のピーク値が低下するため
やはり吸入効率が低下する傾向を生じる。なお、
ICは吸気弁の最適閉弁時期を示しており、この
時期はBDC以後であつて、吸気弁直前圧力とシ
リンダ内圧力とがほぼ一致する時期である。
Figure 5 shows the fluctuation characteristics of the cylinder pressure at a specific engine speed, the negative pressure waves generated by the intake action in the intake inertia tuning state as defined later, and the reflections accompanying the negative pressure waves, with the horizontal axis as the crank angle. 2 shows the wave fluctuation characteristics and the combined pressure of the negative pressure wave and the reflected wave, that is, the fluctuation characteristics of the pressure immediately before the intake valve in the intake passage. As shown by curve A in this figure, the above cylinder internal pressure is IO at the time of intake valve opening.
The pressure gradually decreases from the later TDC point, reaches a peak during the downward movement of the piston, and then gradually increases, and becomes positive pressure after the BDC point. on the other hand,
The downward movement of the piston during the intake stroke generates a negative pressure wave shown by curve B in this figure just before the intake valve. The first reflected wave becomes a positive pressure wave as shown by curve C and returns to the cylinder side. Further, the second reflected wave returns as a negative pressure wave as shown by curve D. The pressure waves shown by these curves B, C, and D are combined to form the pressure immediately before the intake valve (curve E). As shown in this figure, the intake inertia tuning state due to the intake passage itself means that the waveform of the first reflected wave just before the intake valve is TDC
This is a state in which the first reflected wave begins to appear near the midpoint between and BDC and peaks at a specific point past BDC, and the intake inertia effect of the intake passage itself is maximized by this first reflected wave. In other words, it is a state in which the pressure just before the intake valve is maximized at the appropriate time after BDC, resulting in the optimum characteristics for the intake inertia effect. The pressure immediately before the intake valve shown by curve E becomes sufficiently larger than the cylinder internal pressure, so that a large amount of intake air can flow into the cylinder, and the intake inertia effect can be enhanced. If the timing at which the first reflected wave returns is delayed from the synchronized state, the pressure rise just before the intake valve will be delayed, and the pressure difference with the cylinder pressure near BDC will become smaller, resulting in a tendency for the suction efficiency to decrease. Furthermore, if the timing is earlier than the synchronized state, the peak value of the pressure immediately before the intake valve decreases due to the influence of the second reflected wave, so that the suction efficiency tends to decrease as well. In addition,
IC indicates the optimal closing timing of the intake valve, and this timing is after BDC, and is the time when the pressure just before the intake valve and the cylinder pressure almost match.

第6図は種々のエンジン回転数でのシリンダ内
圧力の変動特性および吸気弁直前圧力の変動特性
を示している。この図において、破線で表わした
曲線A1,A2,A3はそれぞれエンジン低速回転
時、中速回転時および高速回転時でのシリンダ内
圧力の変動特性を示しており、このようにエンジ
ン回転数が高くなるほど、クランク軸回転周期が
短縮されることにより相対的にシリンダ内圧力の
上昇が遅れ側にずれる傾向がある。またこの図で
は、前述のように吸気慣性が同調状態にあるとき
の吸気弁直前圧力の変動特性を実線で表わした曲
線Eで示すとともに、エンジン中速回転時に吸気
慣性が同調するように吸気通路の断面積および長
さが固定されているとした場合の、低速回転時お
よび高速回転時の吸気弁直前圧力の変動特性をそ
れぞれ2点鎖線で表わした曲線El,Ehで示して
いる。このように吸気通路の断面積および長さが
固定されていると、前記第1反射波がシリンダ側
に返るタイミングは主にエンジン回転数の変化に
よつて変わるため、高速回転時には吸気弁直前圧
力の上昇が遅れ、低速回転時には吸気弁直前圧力
が早期に減衰されてしまう。
FIG. 6 shows the fluctuation characteristics of the cylinder internal pressure and the fluctuation characteristics of the pressure immediately before the intake valve at various engine speeds. In this figure, the curves A 1 , A 2 , and A 3 indicated by broken lines indicate the fluctuation characteristics of the cylinder pressure at low speed, medium speed, and high speed, respectively, and thus the engine speed changes. As the number increases, the crankshaft rotation period is shortened, and the increase in cylinder pressure tends to be relatively delayed. Additionally, in this figure, the fluctuation characteristics of the pressure immediately before the intake valve when the intake inertia is in the synchronized state as described above is shown by a solid line curve E, and the intake passage is The fluctuation characteristics of the pressure just before the intake valve during low-speed rotation and high-speed rotation are shown by curves El and Eh, respectively, represented by two-dot chain lines, assuming that the cross-sectional area and length of are fixed. If the cross-sectional area and length of the intake passage are fixed in this way, the timing at which the first reflected wave returns to the cylinder side changes mainly depending on changes in engine speed, so the pressure immediately before the intake valve increases at high speeds. The rise in the intake valve is delayed, and the pressure immediately before the intake valve is attenuated early at low speed rotation.

そこで前記制御回路60においては、吸気通路
の長さおよび断面積をエンジン回転数に応じて前
記の第4図に折れ線L,Sで示したように調整し
ている。つまり、前記第1反射波がシリンダ側に
返つてくるタイミングは吸気通路断面積を大きく
すると早められ、また吸気通路長を短くしても早
められるため、前記設定回転数Ra以上の回転数
域では前記開閉弁38が開かれて吸気通路断面積
が大きくされ、かつエンジン回転数が高くなるに
つれて吸気通路長を短くする方向に前記サージタ
ンク24が回動される。これにより上記回転数域
では、エンジン回転数が変動しても吸気慣性同調
状態が維持される。また吸気通路長を長くする方
向への調整は機構的に制限されるため、低回転数
域では吸気通路長が最大長に保たれるが、設定回
転数Ra未満のとき前記開閉弁38が閉じられて
吸気通路断面積が小さくされることにより、第4
図に符号Rbで示した低回転数でも吸気慣性同調
状態となる。なお、設定回転数Ra未満の回転数
域であつても上記低回転数Ra以上の領域では、
第4図に2点鎖線Laで示すように吸気通路長を
調整するようにしてもよい。
Therefore, in the control circuit 60, the length and cross-sectional area of the intake passage are adjusted as indicated by the polygonal lines L and S in FIG. 4 in accordance with the engine speed. In other words, the timing at which the first reflected wave returns to the cylinder side is advanced by increasing the cross-sectional area of the intake passage, and also by shortening the length of the intake passage, so that in the rotation speed range above the set rotation speed Ra, The on-off valve 38 is opened to increase the cross-sectional area of the intake passage, and as the engine speed increases, the surge tank 24 is rotated in a direction to shorten the length of the intake passage. As a result, in the above rotation speed range, the intake inertia tuning state is maintained even if the engine speed changes. Furthermore, since adjustment in the direction of lengthening the intake passage length is mechanically restricted, the intake passage length is maintained at the maximum length in the low rotation speed range, but when the rotation speed is less than the set rotation speed Ra, the on-off valve 38 closes. By reducing the cross-sectional area of the intake passage, the fourth
The intake inertia tuning state is reached even at a low rotational speed indicated by the symbol Rb in the figure. In addition, even if the rotation speed is lower than the set rotation speed Ra, in the area above the low rotation speed Ra,
The length of the intake passage may be adjusted as shown by the two-dot chain line La in FIG.

このようにして種々のエンジン回転数域で吸気
慣性効果が高められる。とくに、吸気通路長なら
びに吸気通路断面積の可変範囲は機構的およびス
ペース的に制約されるため、その一方を調整する
だけでは吸気慣性を同調させることのできる回転
数もある程度制限されるが、吸気通路長と吸気通
路断面積の双方を調整すれば、より広い回転数域
にわたつて吸気慣性を同調させ、もしくは同調状
態に近付けることができる。
In this way, the intake inertia effect is enhanced in various engine speed ranges. In particular, the variable range of the intake passage length and intake passage cross-sectional area is mechanically and spatially constrained, so adjusting only one of them will limit to some extent the rotational speed at which intake inertia can be synchronized. By adjusting both the passage length and the cross-sectional area of the intake passage, it is possible to tune the intake inertia over a wider rotational speed range, or to bring it closer to a tuned state.

また第6図においてIC2は中速回転時での最適
な吸気弁閉弁タイミングを示し、このタイミング
は中速回転時のシリンダ内圧力と吸気弁直前圧力
とが一致する時期(曲線Eと曲線A2とが交叉す
る時期)に相当し、このようにすれば中速回転時
の吸入効率が最大となる。ただし、このタイミン
グIC2に固定されている場合は、吸気慣性を同調
させても、前述のようにシリンダ内圧力の特性が
エンジン回転数によつて変るため、高速回転時に
は、曲線Eと曲線A3とが交叉する時期以前の圧
力的になお吸入可能な時点で吸気弁が閉じられ、
低速回転時には、曲線Eと曲線A1とが交叉する
時期よりも後のシリンダ内圧力が高い状態、従つ
て吸気系の吹き返しが生じる状態となつてから吸
気弁が閉じられる。
In addition, in Fig. 6, IC 2 indicates the optimal intake valve closing timing at medium speed rotation, and this timing is the timing when the cylinder pressure at medium speed rotation and the pressure immediately before the intake valve coincide (curve E and curve This corresponds to the time when A 2 intersects with A 2 ), and if this is done, the suction efficiency at medium speed rotation will be maximized. However, if the timing is fixed at IC 2 , even if the intake inertia is synchronized, the characteristics of the cylinder pressure will change depending on the engine speed as described above, so at high speeds, curve E and curve A will change. The intake valve is closed at a time when it is still possible to inhale due to pressure, before the time when 3 intersects,
During low-speed rotation, the intake valve is closed after the cylinder pressure is high after the time when curve E and curve A1 intersect, and therefore, when blowback in the intake system occurs.

そこで前記制御回路60においては、吸気通路
長および吸気通路断面積の各可変手段20,21
の制御に加え、これらと関連づけてタイミング可
変手段50を制御することにより、最大の吸入効
率が得られるように吸気タイミングを補正してい
る。つまり、制御回路60からの信号を受けるア
クチユエータ56で前記回動部材51が回動され
ることにより、常に、吸気慣性の調整が行われた
状態での吸気弁直前圧力とシリンダ内圧力とが一
致する時点で第2吸気弁14が閉じられ、従つて
高速回転時にはほぼ曲線Eと曲線A3とが交叉す
る時点IC3まで閉弁タイミングが遅らされ、低速
回転時にはほぼ曲線Eと曲線A1とが交叉する時
点IC1まで閉弁タイミングが進められる。このよ
うにして、吸気通路による吸気慣性の調整と閉弁
タイミングの調整との相乗作用により吸入効率を
最大限に高めることができる。
Therefore, in the control circuit 60, each of the intake passage length and intake passage cross-sectional area variable means 20, 21
In addition to these controls, the timing variable means 50 is controlled in conjunction with these controls, thereby correcting the intake timing so as to obtain the maximum intake efficiency. In other words, by rotating the rotating member 51 by the actuator 56 that receives a signal from the control circuit 60, the pressure immediately before the intake valve and the cylinder internal pressure always match when the intake inertia is adjusted. The second intake valve 14 is closed at the point when the second intake valve 14 is closed, and therefore, during high speed rotation, the valve closing timing is delayed until the time point IC3 when the curve E and the curve A3 intersect, and when the rotation speed is low, the closing timing is delayed until the time point IC3 when the curve E and the curve A1 almost intersect. The valve closing timing is advanced until the time point IC 1 when . In this way, the intake efficiency can be maximized through the synergistic effect of adjusting the intake inertia by the intake passage and adjusting the valve closing timing.

また、吸気通路の断面積および長さを固定した
ままで吸気弁閉弁タイミングのみを高速回転時に
は曲線Ehと曲線A3と交叉時点IC3′、低速回転時
には曲線Elと曲線A1との交叉時点IC1′となるよう
に制御する場合と比べても、吸気慣性を調整しつ
つこれに関連づけて閉弁タイミングを調整するこ
とにより、BDC前後における吸気弁直前圧力と
シリンダ内圧力との圧力差が大きくなるため吸入
効率が大幅に高められる。さらに、吸気弁閉弁タ
イミングのみを調整する場合は、エンジン回転数
の変動に応じて閉弁タイミングを比較的広範囲に
調整する必要があるが、閉弁タイミングを広範囲
にわたつて変更可能にすることは機構的に非常に
難しい。これに対し、吸気慣性を同調させた上で
閉弁タイミングを調整すれば閉弁タイミング調整
量を小さくすることができ、機構的にも有利であ
る。
In addition, with the cross-sectional area and length of the intake passage fixed, only the intake valve closing timing is determined at the point IC 3 ' where curve Eh intersects with curve A 3 during high-speed rotation, and at the intersection between curve El and curve A 1 during low-speed rotation. Compared to the case where control is performed so that the timing IC 1 ' is reached, by adjusting the intake inertia and adjusting the valve closing timing in relation to this, the pressure difference between the pressure just before the intake valve and the cylinder pressure before and after BDC can be reduced. Since this increases, the suction efficiency is greatly increased. Furthermore, when adjusting only the intake valve closing timing, it is necessary to adjust the valve closing timing over a relatively wide range according to fluctuations in engine speed, but it is possible to change the valve closing timing over a wide range. is mechanically very difficult. On the other hand, if the valve closing timing is adjusted after the intake inertia is synchronized, the valve closing timing adjustment amount can be reduced, which is mechanically advantageous.

なお、このような吸入効率の向上が要求される
のは主に高負荷運転域であるため、エンジン負荷
が所定値以上のときにのみエンジン回転数に応じ
た吸気慣性の同調およびこれに対応させた吸気弁
閉弁タイミングの調整を行い、低負荷時にはポン
ピングロス低減等のため吸気慣性を同調させない
ように制御してもよい。この場合、前記制御回路
60には、エンジン回転数センサ61からの検出
信号に加えて、第1図および第2図に2点鎖線で
示す負荷センサ62からの検出信号を入力させて
おけばよい。
Note that this improvement in intake efficiency is required mainly in high-load operating ranges, so the intake inertia is tuned according to the engine speed only when the engine load is above a predetermined value. In addition, the intake valve closing timing may be adjusted so that the intake inertia is not synchronized to reduce pumping loss during low load. In this case, in addition to the detection signal from the engine rotation speed sensor 61, the control circuit 60 may be provided with a detection signal from the load sensor 62, which is indicated by a two-dot chain line in FIGS. 1 and 2. .

第7図および第8図は本発明の第2実施例を示
す。この実施例において、シリンダ別の分岐管2
2を連設したケーシング23にサージタンク24
が回転可能に保持されるとともに、ケーシング2
3に吸気通路延長部25を形成して、サージタン
ク24の回動により吸気通路長を変更することが
できるように吸気通路長可変手段20が構成され
ている点は第1実施例と同様であるが、吸気通路
断面積可変手段71は可動壁72によつて吸気通
路断面積を連続的に無段階に変更可能としてい
る。すなわち、上記吸気通路延長部25の下流端
部付近から分岐管22および吸気ポート9,10
の燃焼室側開口部近傍にまでわたる部分の内部に
可動壁72が設けられ、この可動壁72の一端が
ケーシング23の内部壁に回動可能な小壁73を
介して取付けられ、可動壁72の中間部がロツド
74を介してアクチユエータ75に連結されてい
る。こうして上記可動壁72により、各シリンダ
2に対する吸気通路の大部分が、サージタンク2
4に連通する実質的な吸気通路76とサージタン
ク24に連通しない非通路部77とに区画され、
アクチユエータ75によつて可動壁72が揺動さ
れることにより、上記の実質的な吸気通路76の
断面積が変更されるようになつている。そして上
記アクチユエータ75に制御回路60から制御信
号が出力されている。閉弁タイミング可変手段5
0等の構造は第1実施例と同様である。
7 and 8 show a second embodiment of the invention. In this embodiment, branch pipe 2 for each cylinder
A surge tank 24 is installed in a casing 23 in which 2 are connected.
is rotatably held, and the casing 2
This embodiment is similar to the first embodiment in that an intake passage extension portion 25 is formed in the third embodiment, and the intake passage length variable means 20 is configured so that the intake passage length can be changed by rotating the surge tank 24. However, the intake passage cross-sectional area variable means 71 is capable of continuously and steplessly changing the intake passage cross-sectional area by means of a movable wall 72. That is, from near the downstream end of the intake passage extension 25, the branch pipe 22 and the intake ports 9, 10 are connected.
A movable wall 72 is provided inside a portion extending to the vicinity of the combustion chamber side opening, and one end of this movable wall 72 is attached to the inner wall of the casing 23 via a rotatable small wall 73. An intermediate portion of the actuator 75 is connected to an actuator 75 via a rod 74. In this way, the movable wall 72 allows most of the intake passage for each cylinder 2 to be connected to the surge tank 2.
4 and a non-passage portion 77 that does not communicate with the surge tank 24,
By swinging the movable wall 72 by the actuator 75, the substantial cross-sectional area of the intake passage 76 is changed. A control signal is output from the control circuit 60 to the actuator 75. Valve closing timing variable means 5
The structure of 0, etc. is the same as in the first embodiment.

この実施例においても、エンジン回転数に応
じ、吸気慣性を同調状態もしくはこれに近似する
状態に維持するように、吸気通路の長さおよび断
面積が制御される。この場合、エンジン搭載上の
制約から吸気通路長可変範囲は制限されるため、
吸気通路長は第9図に線L1で示すように、所定
回転数以下の低回転数域では最大長に保つて、所
定回転数以上でエンジン回転数が高くなるにつれ
て短くするように制御し、一方、吸気通路断面積
は線S1で示すように、低回転数域でエンジン回転
数が高くなるにつれて大きくなるように制御する
ことにより、広範囲にわたつて吸気慣性を適切に
調整することができる。ただし調整の仕方はこの
例に限定されず、エンジンおよび吸気系の寸法や
出力上の要求等との関係で、例えば吸気通路長を
線L2で示すように比較的低い回転数域で調整す
るとともに、吸気通路断面積を線S2で示すように
比較的高い回転数域で調整するようにし、あるい
は吸気通路断面積を線S3で示すように全回転数域
にわたつて調整するようにしてもよい。また吸入
効率は吸気流速にも影響され、この吸気流速は吸
気通路断面積と関係するので、吸気流速を最適値
に調整しつつ吸気慣性を同調させるように、吸気
通路断面積と吸気通路長とを互いに関連づけて制
御すればより効果的である。
In this embodiment as well, the length and cross-sectional area of the intake passage are controlled in accordance with the engine speed so as to maintain the intake inertia in a synchronized state or a state approximating it. In this case, the range of variable intake passage length is limited due to engine mounting constraints, so
As shown by line L1 in Figure 9, the intake passage length is controlled to be kept at the maximum length in the low rotation speed range below a predetermined rotation speed, and to be shortened as the engine speed increases above the predetermined rotation speed. , On the other hand, by controlling the intake passage cross-sectional area to increase as the engine speed increases in the low speed range, as shown by line S1 , it is possible to appropriately adjust the intake inertia over a wide range. can. However, the method of adjustment is not limited to this example, and depending on the dimensions of the engine and intake system and output requirements, for example, the length of the intake passage may be adjusted in a relatively low rotation speed range as shown by line L2 . At the same time, the cross-sectional area of the intake passage is adjusted in a relatively high rotation speed range as shown by line S2 , or the cross-sectional area of the intake passage is adjusted over the entire rotation speed range as shown by line S3 . It's okay. Intake efficiency is also affected by the intake flow rate, and this intake flow rate is related to the intake passage cross-sectional area, so the intake passage cross-sectional area and intake passage length should be adjusted so that the intake flow rate is adjusted to an optimal value and the intake inertia is synchronized. It will be more effective if these are controlled in relation to each other.

そしてこの実施例による場合も、吸気慣性の調
整に加え、これと関連づけて吸気弁の閉弁タイミ
ングが制御されることにより、より一層吸入効率
が高められることとなる。
Also in this embodiment, in addition to adjusting the intake inertia, the closing timing of the intake valve is controlled in conjunction with this adjustment, thereby further increasing the intake efficiency.

第10図および第11図は本発明の第3実施例
を示す。この実施例では吸気通路断面積可変手段
81として、吸気ポート9aの燃焼室側開口部に
近い位置の吸気通路内に、部分的に吸気通路断面
積を変更可能とする可動板82が設けられてい
る。この可動板82の一端は分岐管22の下流側
端部近傍の側壁内面に回転可能に取付けられてお
り、制御回転60からの制御信号を受けるアクチ
ユエータ83によりロツド84を介して上記可動
板82が作動され、これによつて吸気通路下流端
付近の吸気通路断面積が調整されるようにしてい
る。吸気通路長可変手段20およびタイミング可
変手段50等の構造は第1、第2実施例とほぼ同
様である。なお、第11図ではシリンダ2の燃焼
室7に吸気ポート9aと排気ポート11aとを1
個ずつ開口させた構造を示しており、この場合に
閉弁タイミング可変手段として図示の構造の代り
に後述する立体カム等を用いることにより、1個
の吸気弁13aに対してその開弁時期を遅らさず
に閉弁時期を遅らせるようにすることもできる。
10 and 11 show a third embodiment of the invention. In this embodiment, as the intake passage cross-sectional area variable means 81, a movable plate 82 is provided in the intake passage at a position close to the combustion chamber side opening of the intake port 9a to partially change the intake passage cross-sectional area. There is. One end of the movable plate 82 is rotatably attached to the inner surface of the side wall near the downstream end of the branch pipe 22, and the movable plate 82 is moved via a rod 84 by an actuator 83 that receives a control signal from the control rotation 60. The cross-sectional area of the intake passage near the downstream end of the intake passage is thereby adjusted. The structures of the intake passage length variable means 20, timing variable means 50, etc. are substantially the same as those in the first and second embodiments. In addition, in FIG. 11, the combustion chamber 7 of the cylinder 2 has an intake port 9a and an exhaust port 11a.
The figure shows a structure in which each intake valve 13a is opened one by one.In this case, a three-dimensional cam, etc., which will be described later, is used as the valve closing timing variable means instead of the structure shown in the figure, so that the opening timing can be adjusted for each intake valve 13a. It is also possible to delay the valve closing timing without delaying it.

この実施例による場合、上記可動板82を作動
させてシリンダ2に近い位置で吸気通路断面積を
調整すると、吸気弁直前位置での第1反射波の振
幅が変化することとなり、これによつても吸気慣
性効果を調整することができる。従つて、これと
吸気通路長可変手段20とを併用することによつ
て吸気慣性効果を高め、さらに閉弁タイミングを
制御することによつて吸入効率を一層高めること
ができる。
In this embodiment, when the movable plate 82 is operated to adjust the cross-sectional area of the intake passage at a position close to the cylinder 2, the amplitude of the first reflected wave at the position immediately before the intake valve changes. Also the intake inertia effect can be adjusted. Therefore, by using this together with the intake passage length variable means 20, the intake inertia effect can be enhanced, and by controlling the valve closing timing, the intake efficiency can be further enhanced.

なお、本発明装置の具体的構造は上記各実施例
のほかにも種々変更可能であり、例えばタイミン
グ可変手段としては、立体カムを用いてその軸方
向位置を調整可能とし、またはプツシユロツド式
動弁機構に油圧等で作動する動弁調整部材を介在
させ、あるいはクランク軸とカム軸との間のベル
ト伝動機構に位相差調整手段を組込む等の構造も
採用することができる。また前記実施例では、2
個の吸気ポート9,10を有する構造において吸
気弁閉弁タイミングをずらすようにしているが、
立体カム等を用いることにより第12図に示すよ
うに吸気弁の開閉タイミングならびにバルブリフ
ト量を調整可能としてもよい。
Note that the specific structure of the device of the present invention can be modified in various ways other than the above-mentioned embodiments. For example, as the timing variable means, a three-dimensional cam may be used to adjust the axial position, or a push rod type valve train may be used. It is also possible to employ a structure in which a valve operating adjustment member operated by hydraulic pressure or the like is interposed in the mechanism, or a phase difference adjustment means is incorporated into a belt transmission mechanism between the crankshaft and the camshaft. Further, in the above embodiment, 2
In a structure having two intake ports 9 and 10, the intake valve closing timing is shifted.
By using a three-dimensional cam or the like, the opening/closing timing of the intake valve and the amount of valve lift may be adjustable as shown in FIG.

(発明の効果) 以上のように本発明は、エンジンの運転状態に
応じて吸気慣性を同調状態とし、もしくはこれに
近付けるように吸気通路の長さと断面積とを調整
し、かつこれと関連づけて吸気慣性効果を最大限
に利用することができるように吸気弁の少なくと
も閉弁タイミングを調整しているため、種々のエ
ンジン運転領域での吸入効率を大幅に高め、出力
を向上することができる。従つて吸気通路長、吸
気通路断面積ならびに吸気弁の少なくとも閉弁タ
イミングの各可変範囲が機構的およびスペース的
に制限されていても、これら三者の調整により相
乗効果を発揮させることができるため、極めて広
いエンジン運転領域にわたつて出力を向上するこ
とができるものである。
(Effects of the Invention) As described above, the present invention adjusts the length and cross-sectional area of the intake passage so that the intake inertia is in a synchronized state or approaches it in accordance with the operating state of the engine, and in relation to this. Since at least the closing timing of the intake valve is adjusted to make maximum use of the intake inertia effect, it is possible to significantly increase intake efficiency in various engine operating ranges and improve output. Therefore, even if the variable ranges of the intake passage length, intake passage cross-sectional area, and at least the closing timing of the intake valve are mechanically and spatially limited, synergistic effects can be achieved by adjusting these three. , it is possible to improve output over an extremely wide range of engine operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の第1実施例を示す垂直断
面図、第2図は第1図の−線に沿つた断面
図、第3図は吸、排気弁の開閉タイミングを示す
説明図、第4図はエンジン回転数に応じた吸気通
路長および吸気通路断面積と閉弁タイミングの各
調整例を示す説明図、第5図はシリンダ内圧力お
よび吸気弁直前の各種圧力波の特性図、第6図は
種々のエンジン回転数域でのシリンダ内圧力およ
び吸気弁直前圧力の特性図、第7図は本発明装置
の第2実施例を示す垂直断面図、第8図は第7図
の−線に沿つて見た部分底面図、第9図は第
2実施例による場合の吸気通路長および吸気通路
断面積の調整例を示す説明図、第10図は本発明
装置の第3実施例を示す垂直断面図、第11図は
第10図のXI−XI線に沿つた部分断面図、第12
図は吸、排気弁の開閉タイミングの別の例を示す
説明図である。 1……エンジン本体、9,10,9a……吸気
ポート、13,14,13a……吸気弁、20…
…吸気通路長可変手段、21,71,81……吸
気通路断面積可変手段、50……タイミング可変
手段、60……制御回路。
FIG. 1 is a vertical sectional view showing a first embodiment of the device of the present invention, FIG. 2 is a sectional view taken along the - line in FIG. Fig. 4 is an explanatory diagram showing examples of adjusting the intake passage length, intake passage cross-sectional area, and valve closing timing according to the engine speed, and Fig. 5 is a characteristic diagram of the cylinder pressure and various pressure waves immediately before the intake valve. FIG. 6 is a characteristic diagram of the cylinder pressure and the pressure immediately before the intake valve in various engine speed ranges, FIG. 7 is a vertical sectional view showing the second embodiment of the device of the present invention, and FIG. 9 is an explanatory diagram showing an example of adjusting the intake passage length and cross-sectional area of the intake passage according to the second embodiment, and FIG. 10 is a third embodiment of the device of the present invention. 11 is a partial sectional view taken along the line XI-XI in FIG. 10, and FIG.
The figure is an explanatory diagram showing another example of the opening/closing timing of the intake and exhaust valves. 1... Engine body, 9, 10, 9a... Intake port, 13, 14, 13a... Intake valve, 20...
...Intake passage length variable means, 21, 71, 81... Intake passage cross-sectional area variable means, 50... Timing variable means, 60... Control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 吸気通路の長さを変更可能にする吸気通路長
可変手段と、吸気通路の断面積を変更可能にする
吸気通路断面積可変手段と、吸気弁の少なくとも
閉弁タイミングを変更可能にするタイミング可変
手段と、エンジンの運転状態に応じて上記各可変
手段を相互に関連づけて制御する制御装置とを設
けたことを特徴とするエンジンの吸気装置。
1. Intake passage length variable means that allows the length of the intake passage to be changed; intake passage cross-sectional area variable means that allows the cross-sectional area of the intake passage to be changed; and timing variable means that allows at least the closing timing of the intake valve to be changed. What is claimed is: 1. An intake system for an engine, characterized in that it is provided with: and a control device that controls the variable means in relation to each other according to the operating state of the engine.
JP59020620A 1984-02-06 1984-02-06 Suction device for engine Granted JPS60164610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59020620A JPS60164610A (en) 1984-02-06 1984-02-06 Suction device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59020620A JPS60164610A (en) 1984-02-06 1984-02-06 Suction device for engine

Publications (2)

Publication Number Publication Date
JPS60164610A JPS60164610A (en) 1985-08-27
JPH0550574B2 true JPH0550574B2 (en) 1993-07-29

Family

ID=12032285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59020620A Granted JPS60164610A (en) 1984-02-06 1984-02-06 Suction device for engine

Country Status (1)

Country Link
JP (1) JPS60164610A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62203921A (en) * 1986-03-04 1987-09-08 Mazda Motor Corp Intake device for engine
US5005532A (en) * 1989-02-22 1991-04-09 Siemens-Bendix Automotive Electronics Limited Integrated tuned induction system
JPH039021A (en) * 1989-06-05 1991-01-16 Honda Motor Co Ltd Control method of intake device for internal combustion engine
JP2519619B2 (en) * 1991-12-10 1996-07-31 本田技研工業株式会社 Internal combustion engine
JPH0735727B2 (en) * 1992-06-22 1995-04-19 本田技研工業株式会社 Engine intake control device
DE10235998A1 (en) * 2002-08-06 2004-02-19 Otto Altmann Suction device, especially combustion engine induction system, has induction pipe pulse switching units with controllers that produce high pressure charging pulses by opening/closing switching units.

Also Published As

Publication number Publication date
JPS60164610A (en) 1985-08-27

Similar Documents

Publication Publication Date Title
US4592310A (en) Intake device for internal combustion engine
JPS6148614B2 (en)
WO2012026059A1 (en) Multi-cylinder spark ignition engine
US7444975B2 (en) Control of engine intake system
US5211146A (en) Inlet control mechanism for internal combustion engine
JP2006329022A (en) Intake control device for internal combustion engine
JP2002256905A (en) Intake control device of internal combustion engine
US7073469B2 (en) Intake system for an internal combustion engine
JPH0550574B2 (en)
JP2002227667A (en) Variable valve device for internal combustion engine
JPS60166707A (en) Suction device of engine
JPH0686811B2 (en) Engine intake system
JP2500928B2 (en) Engine intake system
JP4385585B2 (en) Internal combustion engine
JPS60166706A (en) Suction device of engine
JPH0639898B2 (en) Engine intake system
JP3536519B2 (en) Intake valve control device and control method for internal combustion engine
JP3819475B2 (en) Multi-cylinder internal combustion engine
JPS60166709A (en) Suction device of engine
JP2000248948A (en) Exhaust control method of engine and device thereof
JPH0545769B2 (en)
JPH01316A (en) engine intake system
JPH0621564B2 (en) Engine intake system
JPH0545771B2 (en)
JPH0823294B2 (en) Engine intake system