JPH0545667B2 - - Google Patents

Info

Publication number
JPH0545667B2
JPH0545667B2 JP61136253A JP13625386A JPH0545667B2 JP H0545667 B2 JPH0545667 B2 JP H0545667B2 JP 61136253 A JP61136253 A JP 61136253A JP 13625386 A JP13625386 A JP 13625386A JP H0545667 B2 JPH0545667 B2 JP H0545667B2
Authority
JP
Japan
Prior art keywords
chamber
roll
plating
steel sheet
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61136253A
Other languages
Japanese (ja)
Other versions
JPS62294161A (en
Inventor
Takehiko Ito
Norio Tsukiji
Takuya Aiko
Seiichi Nagameguri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP13625386A priority Critical patent/JPS62294161A/en
Publication of JPS62294161A publication Critical patent/JPS62294161A/en
Publication of JPH0545667B2 publication Critical patent/JPH0545667B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<技術分野> 本発明は真空蒸着亜鉛メツキにおいて、差厚メ
ツキ鋼板をメツキライン内で加熱ロールを用いて
加熱処理することにより薄目付側を合金化させる
片面合金化亜鉛メツキ鋼板の製造方法とその装置
に関する。 合金化亜鉛メツキ鋼板は合金化しない通常の亜
鉛メツキを比べ、(イ)スポツト溶接における連続操
業性がよい、(ロ)電着塗装における塗装密着性が良
好であり、従つて電着塗装後の耐食性も良好であ
る、という利点から、広く一般に使用されてい
る。 従来、合金化亜鉛メツキ鋼板の製造方法として
は次の方法が知られている。 (a) 溶融亜鉛メツキの直後にメツキされた亜鉛が
凝固しない内に加熱処理して合金化する方法。 (b) 電気亜鉛メツキ鋼板を再加熱処理して合金化
する方法。 ところが、(a)の方法は溶融メツキを利用する方
法であるので片面あたり30g/m2以下の均一な薄
メツキを得ることが困難でありまた片面メツキを
得ることはきわめて困難であるという欠点を有す
る。また(b)の方法は、電気亜鉛メツキされたコイ
ルをバツチ型焼鈍炉によつて250〜350℃の温度範
囲で長時間熱処理を施して合金化させる方法が主
であるが、この方法は、(i)バツチ型焼鈍炉を使用
しているので、工程が複雑であり、製造時間が長
くなる。更に、(ii)品質のばらつきが大きく、品質
管理が面倒である。などの問題点を有している。
また、(b)の方法はさらに、素材として電気亜鉛メ
ツキ鋼板を使用するため通常40g/m2以下の付着
量の制限される。付着量が40g/m2を越えると電
気亜鉛メツキで製造することはコスト上好ましく
ないからである。 一方上記溶融メツキおよび電気メツキの他に蒸
着メツキが実用化の段階にあり、蒸着メツキにお
いて片面を合金化した蒸着亜鉛メツキ鋼板の製造
方法が知られている。該方法は差厚メツキした鋼
板をバツチ焼鈍炉内で加熱処理し、或いはライン
内焼鈍炉を設けて後加熱により片面を合金化して
いる。 ところが、バツチ処理は工程が煩雑であり、し
かも温度が不均一になるため合金化の斑を生じや
すく、またライン内に焼鈍炉を設ける場合には設
備が非常に大きくなる問題がある。 <問題解決の手段> 本発明者は真空蒸着亜鉛メツキ時の凝縮熱によ
る鋼帯温度の上昇を利用し、薄目付側のメツキ層
を加熱ロールにより加熱処理すれば厚目付側の合
金層は発達せず、薄目付側のメツキ層のみ表面ま
で合金化できる知見を得た。 本発明は上記知見に基づき、真空蒸着亜鉛メツ
キに於て、ライン内に焼鈍炉を設けずに合金化処
理を出来る製造方法とその装置を達成したもので
ある。 本発明によれば、鋼板の両面に真空蒸着亜鉛の
差厚メツキを施した後、薄目付側のメツキ面を加
熱ローラに巻付けて加熱処理し、表面まで合金化
することを特徴とする片面合金化蒸着亜鉛メツキ
鋼板の製造方法が提供される。 また本発明によれば、前処理炉、賦圧室、第1
シールロール室、第1真空蒸着室、第2真空蒸着
室、第2シールロール室、および冷却室とが順次
連続して設けられ、更に該第2シールロール室と
冷却室との間に鋼帯の薄目付側を巻付ける加熱ロ
ール室が介設されていることを特徴とする片面合
金化蒸着亜鉛メツキ鋼板の製造装置が提供され
る。 以下、本発明を実施例と共に図面を参照しなが
ら説明する。 連続式真空蒸着メツキ装置にはいくつかの様式
が提案されているが、第1図に例示するものは両
面メツキを行なうために蒸着室を2室有するもの
であり、前処理炉2、ガスジエツトクーラ3、賦
圧室4、多数のシールロールを有する第1および
第2のシールロール室5a,5b、鋼帯の両面に
それぞれ真空メツキするための第1真空蒸着メツ
キ室6a、第2真空蒸着メツキ室6b、およびメ
ツキ後の鋼帯を冷却する冷却室7を具えている。
尚、蒸着メツキ室6a,6bには巻付けロール8
a,8bおよび亜鉛の蒸発槽(図示せず)が設け
られている。 本発明を実施する装置は更に第2図に示すよう
に、第2シールロール室5bと冷却室7との間に
加熱ロール室9が介設されており、該加熱ロール
室9にはメツキ鋼板の薄目付側の巻付る加熱ロー
ル9aと厚目付側を巻付る冷却ロール9bとが設
けられている。 冷間圧延されたままの鋼帯1は前処理炉2に連
続的に導入され、焼鈍と同時にガス還元による前
処理を施される。鋼種により差はあるが、鋼帯が
焼鈍されるためには600〜900℃の温度範囲で20〜
180秒の保持時間が必要である。前処理炉2の後
半部分で鋼帯は冷却され、さらにガスジエツトク
ーラ3によつて冷却された後、賦圧室4および第
1シールロール室5aを経由して、第1真空蒸着
室6aに導入される。蒸着室内において巻付ロー
ル8aの反対側の表面に蒸発槽から導入された亜
鉛蒸気が付着する。ついで、鋼帯1は第2真空蒸
着室6bに導かれ、その上面の下面を逆転して巻
付ロール8bに巻付られ、前述と同様に、鋼帯の
もう一つの面に亜鉛蒸気が蒸着メツキされる。前
記のように、本発明では真空蒸着室内に巻付けロ
ール8a,8bを設けて、被メツキ鋼帯を通過さ
せ、ロールの反対側から蒸気を行なうため、巻付
けロールと鋼帯との接触面には金属蒸着は行なわ
れず、後述の第2表に示すように、両面とも、板
幅端部を含めて付着量が均一となる。メツキ後の
鋼帯1は引続き第2真空シールロール室5bを経
て加熱ロール室9導かれる。該加熱ロール室9に
おいて鋼帯1はその薄目付側が加熱ロール9aに
巻付られ、加熱処理される。真空蒸着メツキされ
た鋼帯は亜鉛の凝縮熱と蒸着室内の巻付ロールか
らの熱伝達とにより板温が上昇しており、該加熱
ロール9aが加熱処理することにより薄目付側の
メツキ層を表面まで合金化することが出来る。 例えば、次の操業条件において真空蒸着亜鉛メ
ツキを行なう場合、メツキ後の鋼帯の板温上昇量
ΔTは、亜鉛の付着量に比例し、付着量が10/10
g/m2のとき約14℃、付着量が100/100g/m2
とき約137℃である。 鋼帯:0.6mm厚さ×300mm幅の低炭素鋼 通板速度:15m/min 賦圧ガス:N2 蒸着真空度:0.01〜0.1Torr 蒸着亜鉛:市販電解亜鉛 一方、蒸着亜鉛めつき鋼板を再加熱して合金化
処理する条件は亜鉛めつきの付着量のよつて異な
る。例えば、片面付着量10g/m2の場合温度340
℃で60秒以上、温度420℃で5秒以上の保持時間
があれば、亜鉛めつきの最表層まで合金化が完了
し、均一で美麗の肌をもつた合金化亜鉛めつき鋼
板が得られる。同様に片面付着量が100g/m2
場合、420℃で60秒以上500℃で5秒以上の保持時
間があれば、均一で美麗な肌をもつた合金化亜鉛
めつき鋼板が得られる。 本発明はメツキ後の再加熱を加熱ロール9aに
よつて行なう。即ち、メツキ鋼板の薄目付側を加
熱ロール9aに巻付けて加熱処理する。加熱ロー
ルを加熱する手段は、ロールシエル内にシースヒ
ーターを均等に配し、通電して電気抵抗発熱によ
りロール表面を加熱する。この場合、薄目付側の
み加熱ロール9aに接触して加熱されるので、厚
目付側には合金層が発達せず、薄目付側のみ表面
まで合金化することが出来る。また加熱ロールの
接触による加熱処理を行なうので、均一な合金層
が得られる。 上記加熱ロールによる加熱処理の際、第2図に
示すように加熱ロール9aに連続して厚目付側を
巻付ける冷却ロール9bを設けるとよい。この場
合厚目付側の冷却が促進され、合金化が確実に防
止される。 加熱ロール室9で加熱処理された鋼帯は冷却室
7を経て系外に搬送される。 このようにして製造された片面合金化亜鉛メツ
キ鋼板は片面が亜鉛メツキ、他方の面が合金の均
一で美麗な肌をもち、メツキ層の加工性も良好で
ある。 <実施例> 連続真空蒸着亜鉛メツキを次に示す操業条件で
実施した。結果を第1表に示す。 前処理炉:ガス還元焼鈍炉 加熱ロール径:2m ロール巻付角:180度
<Technical field> The present invention relates to a method and apparatus for manufacturing single-sided alloyed galvanized steel sheets in which the thinner side is alloyed by heat-treating differentially-thickness plated steel sheets using heating rolls in a plating line in vacuum evaporation galvanizing. Regarding. Compared to normal galvanized steel sheets that are not alloyed, alloyed galvanized steel sheets have (a) good continuous operability in spot welding, and (b) good paint adhesion in electrodeposition coating, so they are easier to use after electrodeposition coating. It is widely used because of its good corrosion resistance. Conventionally, the following method is known as a method for manufacturing an alloyed galvanized steel sheet. (a) A method of heat-treating and alloying the plated zinc immediately after hot-dip galvanizing before it solidifies. (b) A method of reheating and alloying electrogalvanized steel sheets. However, since method (a) uses melt plating, it has the disadvantage that it is difficult to obtain a uniform thin plating of 30 g/m 2 or less per side, and it is extremely difficult to obtain plating on one side. have In addition, method (b) is mainly a method in which electrogalvanized coils are subjected to long-term heat treatment in a batch-type annealing furnace at a temperature range of 250 to 350°C to form an alloy. (i) Since a batch-type annealing furnace is used, the process is complicated and the manufacturing time is long. Furthermore, (ii) the quality varies widely and quality control is troublesome. It has problems such as:
Furthermore, since method (b) uses electrogalvanized steel sheet as the material, the amount of coating is usually limited to 40 g/m 2 or less. This is because if the coating weight exceeds 40 g/m 2 , manufacturing by electrogalvanizing is not preferable in terms of cost. On the other hand, in addition to the hot-dip plating and electroplating described above, vapor deposition plating is at the stage of practical use, and a method for manufacturing a vapor deposited galvanized steel sheet in which one side is alloyed in vapor deposition plating is known. In this method, a differentially plated steel plate is heat treated in a batch annealing furnace, or an in-line annealing furnace is provided and one side is alloyed by post-heating. However, batch processing is a complicated process, and because the temperature is non-uniform, unevenness of alloying is likely to occur.Additionally, when an annealing furnace is provided in the line, the equipment becomes very large. <Means for solving the problem> The inventor of the present invention utilizes the rise in steel strip temperature due to heat of condensation during vacuum evaporation galvanizing, and heat-treats the plating layer on the thinner side with a heating roll, thereby developing the alloy layer on the thicker side. We obtained the knowledge that only the plating layer on the thinner side can be alloyed to the surface. The present invention is based on the above findings and has achieved a manufacturing method and an apparatus for performing alloying treatment in vacuum evaporation galvanizing without providing an annealing furnace in the line. According to the present invention, after plating both sides of a steel sheet with differential thickness of vacuum-deposited zinc, the plating surface on the thinner coating side is wrapped around a heating roller and heat-treated to alloy the surface. A method of manufacturing an alloyed galvanized steel sheet is provided. Further, according to the present invention, the pretreatment furnace, the pressure chamber, the first
A seal roll chamber, a first vacuum deposition chamber, a second vacuum deposition chamber, a second seal roll chamber, and a cooling chamber are successively provided, and a steel strip is further provided between the second seal roll chamber and the cooling chamber. Provided is an apparatus for producing a single-sided alloyed, vapor-deposited galvanized steel sheet, characterized in that a heated roll chamber for winding the thinner side of the sheet is provided. Hereinafter, the present invention will be described with reference to embodiments and drawings. Several types of continuous vacuum evaporation plating equipment have been proposed, but the one shown in Figure 1 has two evaporation chambers for double-sided plating, and is equipped with a pretreatment furnace 2, a gas An exhaust cooler 3, a pressure chamber 4, first and second seal roll chambers 5a and 5b having a large number of seal rolls, a first vacuum deposition plating chamber 6a for vacuum plating both sides of the steel strip, and a second vacuum plating chamber. It is equipped with a vapor deposition plating chamber 6b and a cooling chamber 7 for cooling the steel strip after plating.
Incidentally, a winding roll 8 is provided in the vapor deposition plating chambers 6a and 6b.
a, 8b and a zinc evaporation tank (not shown). As shown in FIG. 2, the apparatus for carrying out the present invention further includes a heating roll chamber 9 interposed between the second sealing roll chamber 5b and the cooling chamber 7, and the heating roll chamber 9 is provided with a plated steel plate. A heating roll 9a around which the light weight side is wound and a cooling roll 9b around which the thick weight side is wound are provided. The cold-rolled steel strip 1 is continuously introduced into a pretreatment furnace 2, and is subjected to pretreatment by gas reduction simultaneously with annealing. There are differences depending on the steel type, but in order for a steel strip to be annealed, it must be heated at a temperature range of 600 to 900℃ for 20 to 20 minutes.
A holding time of 180 seconds is required. The steel strip is cooled in the latter half of the pretreatment furnace 2, further cooled by the gas jet cooler 3, and then passed through the pressure chamber 4 and the first seal roll chamber 5a to the first vacuum evaporation chamber 6a. will be introduced in Zinc vapor introduced from the evaporation tank adheres to the opposite surface of the winding roll 8a in the vapor deposition chamber. Next, the steel strip 1 is guided to the second vacuum deposition chamber 6b, and is wound around the winding roll 8b with the upper surface and lower surface reversed, and zinc vapor is deposited on the other surface of the steel strip in the same manner as described above. It will be marked. As mentioned above, in the present invention, the winding rolls 8a and 8b are provided in the vacuum deposition chamber, and the steel strip to be plated is passed through, and steam is applied from the opposite side of the rolls, so that the contact surface between the winding roll and the steel strip is No metal vapor deposition is performed on the plate, and as shown in Table 2 below, the amount of metal deposited is uniform on both sides, including the width edges of the plate. The plated steel strip 1 is then led to the heating roll chamber 9 via the second vacuum sealing roll chamber 5b. In the heating roll chamber 9, the thinner side of the steel strip 1 is wound around a heating roll 9a and heat treated. The temperature of the vacuum-deposited steel strip increases due to the condensation heat of the zinc and the heat transfer from the wrapping rolls in the deposition chamber, and the heating roll 9a heat-treats the plated layer on the thinner side. It is possible to alloy up to the surface. For example, when performing vacuum evaporation galvanizing under the following operating conditions, the plate temperature increase ΔT of the steel strip after plating is proportional to the amount of zinc deposited, and the amount of deposited zinc is 10/10.
g/m 2 and about 137° C. when the adhesion amount is 100/100 g/m 2 . Steel strip: 0.6 mm thick x 300 mm wide low carbon steel Threading speed: 15 m/min Pressurizing gas: N 2 Vacuum degree: 0.01 to 0.1 Torr Vapor deposited zinc: Commercially available electrolytic zinc Meanwhile, the vapor deposited galvanized steel sheet was recycled. The conditions for heating and alloying treatment vary depending on the amount of zinc plating deposited. For example, if the coating amount on one side is 10g/ m2, the temperature is 340
If the holding time is 60 seconds or more at ℃ and 5 seconds or more at 420℃, alloying will be completed to the outermost layer of galvanization, and an alloyed galvanized steel sheet with a uniform and beautiful skin will be obtained. Similarly, when the coating weight on one side is 100 g/m 2 , an alloyed galvanized steel sheet with a uniform and beautiful skin can be obtained if the holding time is at least 60 seconds at 420°C and at 500°C for at least 5 seconds. In the present invention, reheating after plating is performed using a heating roll 9a. That is, the thin side of the plated steel plate is wound around a heating roll 9a and heat treated. As a means for heating the heating roll, sheath heaters are evenly distributed within the roll shell, and electricity is applied to heat the roll surface by electrical resistance heat generation. In this case, since only the light weight side is heated by contacting the heating roll 9a, an alloy layer does not develop on the thick weight side, and only the thin weight side can be alloyed to the surface. Further, since the heat treatment is performed by contact with a heating roll, a uniform alloy layer can be obtained. During the heat treatment using the heating roll, as shown in FIG. 2, it is preferable to provide a cooling roll 9b that wraps the thick side continuously around the heating roll 9a. In this case, cooling of the thick side is promoted and alloying is reliably prevented. The steel strip heat-treated in the heating roll chamber 9 is conveyed to the outside of the system via the cooling chamber 7. The single-sided alloyed galvanized steel sheet produced in this manner has a uniform and beautiful skin with galvanization on one side and alloy on the other side, and the workability of the plating layer is also good. <Example> Continuous vacuum evaporation galvanizing was carried out under the following operating conditions. The results are shown in Table 1. Pretreatment furnace: Gas reduction annealing furnace Heating roll diameter: 2m Roll wrapping angle: 180 degrees

【表】【table】

【表】 (注) 合金化の状態:×は表面まで
非合金化
○は表面まで合
金化
前記条件で行なつた本発明による片面合金化蒸
着亜鉛メツキ鋼板のメツキ付着量およびメツキ層
中の平均Fe含有量率の一例を第2表に示す。メ
ツキ付着量測定試料は、第3図に示される試料の
位置で採取した。
[Table] (Note) Alloying state: × means non-alloyed to the surface
◯ indicates alloying up to the surface Table 2 shows an example of the amount of plating and the average Fe content rate in the plating layer of the single-sided alloyed vapor-deposited galvanized steel sheet according to the present invention, which was conducted under the above conditions. Samples for measuring the plating amount were taken at the sample positions shown in FIG.

【表】 また、合金化蒸着亜鉛メツキ層と合金化溶融亜
鉛メツキ層との耐パウダリング性の試験結果を第
3表に示す。耐パウダリング性は第4図の手法で
テストした。
[Table] Table 3 also shows the powdering resistance test results of the alloyed vapor-deposited galvanized layer and the alloyed hot-dip galvanized layer. Powdering resistance was tested using the method shown in Figure 4.

【表】【table】

【表】 この結果から明らかなように本発明の方法によ
れば、両面メツキ鋼板の片面のみが選択的に合金
化される。 <発明の効果> 本発明は、以上説明したように構成されている
から、連続真空蒸着亜鉛メツキラインにおいて、
ライン内に設けた加熱ロールにより両面メツキ鋼
板の片面を加熱処理することにより片面合金化処
理を行なうことが出来、設備が簡便であり、しか
も均一な加熱処理がなされるので得られる合金層
およびメツキ層が美麗であり、かつ密着性も良
く、産業上極めて有用である。
[Table] As is clear from the results, according to the method of the present invention, only one side of the double-sided plated steel plate is selectively alloyed. <Effects of the Invention> Since the present invention is configured as described above, in a continuous vacuum evaporation galvanizing line,
It is possible to perform single-sided alloying treatment by heat-treating one side of a double-sided plated steel plate using a heating roll installed in the line.The equipment is simple and the heat treatment is uniform, resulting in an alloy layer and a plated plate. The layer is beautiful and has good adhesion, making it extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る連続式真空蒸着亜鉛メツ
キ装置の概略図、第2図は冷却ロール室の概略
図、第3図はメツキ付着量およびメツキ層中の平
均Fe含有量率測定試料を採取した鋼板の斜視図
および第4図は耐パウダリング性テストの順序を
示す説明図である。 図面中、1……鋼板、2……前処理炉、3……
ガスジエツト室、4……賦圧室、5a,5b……
真空シールロール室、6a,6b……真空蒸着
室、7……冷却室、8a,8b……巻付ロール、
9……加熱ロール室、9a……加熱ロール、9b
……冷却ロール。
Fig. 1 is a schematic diagram of a continuous vacuum evaporation galvanizing apparatus according to the present invention, Fig. 2 is a schematic diagram of a cooling roll chamber, and Fig. 3 is a sample for measuring the amount of plating deposited and the average Fe content rate in the plating layer. A perspective view of the sampled steel plate and FIG. 4 are explanatory diagrams showing the order of the powdering resistance test. In the drawings, 1... steel plate, 2... pretreatment furnace, 3...
Gas jet chamber, 4... Pressure chamber, 5a, 5b...
Vacuum seal roll chamber, 6a, 6b... Vacuum deposition chamber, 7... Cooling chamber, 8a, 8b... Wound roll,
9...Heating roll chamber, 9a...Heating roll, 9b
...Cooling roll.

Claims (1)

【特許請求の範囲】 1 連続鋼板の両面に真空蒸着亜鉛メツキの差厚
メツキを施した後、薄目付側のメツキ面を加熱ロ
ールに巻付けて加熱処理し、表面まで合金化する
ことを特徴とする片面合金化蒸着亜鉛メツキ鋼板
の製造方法。 2 真空蒸着室内に鋼帯巻付けロールを設け、ロ
ールの反対側に蒸着源を設置してメツキを行なう
特許請求の範囲第1項記載の片面合金蒸着亜鉛メ
ツキ鋼板の製造方法。 3 薄目付側のメツキ面を加熱ロールに巻付けて
加熱処理する際、厚目付側のメツキ面を冷却ロー
ルに巻付けて、厚目付側メツキ層の合金化を防止
する特許請求の範囲第1項または第2項記載の片
面合金化蒸着亜鉛メツキ鋼板の製造方法。 4 前処理炉、賦圧室、第1シールロール室、第
1真空蒸着室、第2真空蒸着室、第2シールロー
ル室および冷却室とが順次連続して設けられ、さ
らに前記第2シールロール室と冷却室との間に鋼
帯の薄目付側を巻付ける加熱ロール室が介在設置
されていることを特徴とする連続片面合金化蒸着
亜鉛メツキ鋼板の製造装置。 5 真空蒸着室内に鋼帯巻付けロールを設け、ロ
ールの反対側に蒸着源を設置した特許請求の範囲
第4項記載の連続片面合金化蒸着亜鉛メツキ鋼板
の製造装置。
[Claims] 1. After plating both sides of a continuous steel sheet with differential thickness of vacuum-deposited galvanizing, the plating surface on the thinner coating side is wrapped around a heating roll and heat-treated to alloy the surface. A method for producing a single-sided alloyed galvanized steel sheet. 2. The method for manufacturing a single-sided alloy vapor-deposited galvanized steel sheet according to claim 1, wherein a roll for winding a steel strip is provided in a vacuum deposition chamber, and a vapor deposition source is installed on the opposite side of the roll for plating. 3. When the plating surface on the thinner coating side is wound around a heating roll and heat treated, the plating surface on the thicker coating side is wound around a cooling roll to prevent alloying of the plating layer on the thicker coating side. A method for producing a single-sided alloyed vapor deposited galvanized steel sheet according to item 1 or 2. 4. A pretreatment furnace, a pressure chamber, a first seal roll chamber, a first vacuum deposition chamber, a second vacuum deposition chamber, a second seal roll chamber, and a cooling chamber are successively provided, and the second seal roll An apparatus for manufacturing a continuous single-sided alloyed galvanized steel sheet, characterized in that a heating roll chamber for winding the light weight side of the steel strip is interposed between the chamber and the cooling chamber. 5. The apparatus for manufacturing a continuous single-sided alloyed and vapor-deposited galvanized steel sheet according to claim 4, wherein a roll for winding a steel strip is provided in the vacuum deposition chamber, and a vapor deposition source is provided on the opposite side of the roll.
JP13625386A 1986-06-13 1986-06-13 Method and apparatus for producing vapor deposited and galvanized steel sheet alloyed on one side Granted JPS62294161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13625386A JPS62294161A (en) 1986-06-13 1986-06-13 Method and apparatus for producing vapor deposited and galvanized steel sheet alloyed on one side

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13625386A JPS62294161A (en) 1986-06-13 1986-06-13 Method and apparatus for producing vapor deposited and galvanized steel sheet alloyed on one side

Publications (2)

Publication Number Publication Date
JPS62294161A JPS62294161A (en) 1987-12-21
JPH0545667B2 true JPH0545667B2 (en) 1993-07-09

Family

ID=15170860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13625386A Granted JPS62294161A (en) 1986-06-13 1986-06-13 Method and apparatus for producing vapor deposited and galvanized steel sheet alloyed on one side

Country Status (1)

Country Link
JP (1) JPS62294161A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490024A (en) * 1977-11-30 1979-07-17 Inland Steel Co Method of molten immesion zinc plating and alloying
JPS54110143A (en) * 1978-02-17 1979-08-29 Mitsubishi Heavy Ind Ltd Zinc vacuum plating method and equipment
JPS56108873A (en) * 1980-01-30 1981-08-28 Nisshin Steel Co Ltd Aftertreatment of continuously vacuum plated steel strip
JPS6059057A (en) * 1983-09-13 1985-04-05 Nippon Kokan Kk <Nkk> Production of steel sheet alloyed on one side to different thickness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490024A (en) * 1977-11-30 1979-07-17 Inland Steel Co Method of molten immesion zinc plating and alloying
JPS54110143A (en) * 1978-02-17 1979-08-29 Mitsubishi Heavy Ind Ltd Zinc vacuum plating method and equipment
JPS56108873A (en) * 1980-01-30 1981-08-28 Nisshin Steel Co Ltd Aftertreatment of continuously vacuum plated steel strip
JPS6059057A (en) * 1983-09-13 1985-04-05 Nippon Kokan Kk <Nkk> Production of steel sheet alloyed on one side to different thickness

Also Published As

Publication number Publication date
JPS62294161A (en) 1987-12-21

Similar Documents

Publication Publication Date Title
FI83671B (en) FOERFARANDE FOER BELAEGGNING AV FERRITKROMLEGERINGSSTAOLBAND OCH GENOM DETTA FOERFARANDE BELAGT BAND.
US4883723A (en) Hot dip aluminum coated chromium alloy steel
US2111826A (en) Galvanizing process
JP2768871B2 (en) Melt coating method for chromium-containing steel
US4285995A (en) Process for increasing alloying rate of galvanized coating on steel
JPH0545667B2 (en)
JPH07126863A (en) Flexible production equipment for metallic sheet and plated metallic sheet
JPH02194162A (en) Production of zn-mg alloy plated metallic material
JPS60116787A (en) Method and device for plating
JPS60224791A (en) Installation for producing double-layered galvanized steel sheet
JPH02258962A (en) Equipment for producing galvanizing steel sheet having excellent weldability
JPH051357A (en) Hot-dip metal coating method
JPS6157905B2 (en)
JPS5834167A (en) Treatment for fe-zn alloying of zinc hot dipped steel plate
JPH0428852A (en) Method and device for producing hot-dip coated band steel
JPH0660396B2 (en) Method for producing alloyed vapor-deposited zinc plated steel strip
KR950004778B1 (en) Method for making a galvannealed steel sheet with an excellant anti-powdering
JPS61195966A (en) Method and device for producing alloyed and galvanized steel sheet
JPH04276054A (en) Manufacture of galvanized steel sheet
JPS5834168A (en) Treatment for fe-zn alloying of zinc hot dipped steel plate
JPH0424429B2 (en)
JPH05222550A (en) Multiple layer alloy plated steel sheet and its manufacture
JPH07268604A (en) Production of zn-mg vapor deposition-coated steel sheet
JPH04224668A (en) Galvannealed steel sheet
JPS61195965A (en) Production of alloyed and galvanized steel sheet