JPH0545359A - Sample measuring apparatus - Google Patents

Sample measuring apparatus

Info

Publication number
JPH0545359A
JPH0545359A JP24692991A JP24692991A JPH0545359A JP H0545359 A JPH0545359 A JP H0545359A JP 24692991 A JP24692991 A JP 24692991A JP 24692991 A JP24692991 A JP 24692991A JP H0545359 A JPH0545359 A JP H0545359A
Authority
JP
Japan
Prior art keywords
gap
carrier particles
sample
measuring device
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24692991A
Other languages
Japanese (ja)
Other versions
JP2691266B2 (en
Inventor
Matsuomi Nishimura
松臣 西村
Kazusane Tanaka
和實 田中
Takeshi Miyazaki
健 宮崎
Toshiichi Onishi
敏一 大西
Hideto Takayama
秀人 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3246929A priority Critical patent/JP2691266B2/en
Priority to EP91116757A priority patent/EP0479231B1/en
Priority to US07/769,366 priority patent/US5427959A/en
Priority to DE69118295T priority patent/DE69118295T2/en
Publication of JPH0545359A publication Critical patent/JPH0545359A/en
Application granted granted Critical
Publication of JP2691266B2 publication Critical patent/JP2691266B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To separate coagulation of carrier particles to highly accurately measure immunological activation. CONSTITUTION:A wedge-shaped transparent cover member 2 with a recess 2a provided at the center on an inner side is tightly attached on a flat substrate 1 formed of a. transparent member wherein a slit is formed by the recess 2a. Height of the slit between the recess 2a and the substrate 1 is designed to be reduced uniformly. Carrier particles F are sensitized with an immunological active substance, and when a reagent wherein the carrier particles F are dispersed in a liquid medium mainly comprising water is mixed with a sample, reaction occurs so that a plurality of immunological active substances and the carrier particles F form coagulated bodies G. If the reactant solution L is injected into the slit between the substrate 1 and the recess 2a, the reactant solution L enters toward a B direction where a vertical distance is narrow due to surface tension. Since non-coagulated carrier particles F are smaller in diameter, they can move into depth, while the coagulated bodies G are trapped in the midway and suspended depending on their size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、検体中の目的物質を定
性的又は定量的に検出する検体測定装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample measuring device for qualitatively or quantitatively detecting a target substance in a sample.

【0002】[0002]

【従来の技術】検体中の目的物質、例えば抗原、抗体等
の免疫学的活性物質を検出する方法としては、ラテック
ス粒子、ガラス粒子、セラミック球、カオリン、カーボ
ンブラック、赤血球等の動物血液成分等のコロイド粒子
等の担体粒子に免疫学的活性物質を感作させ、その担体
粒子を液体媒体中で検体と反応させて、反応液の凝集状
態を観察、確認して免疫学的活性物質を定性的に検出す
る方法が良く知られている。
2. Description of the Related Art Latex particles, glass particles, ceramic spheres, kaolin, carbon black, animal blood components such as red blood cells, etc. can be used as a method for detecting an immunologically active substance such as an antigen or an antibody in a sample. The carrier particles such as colloidal particles are sensitized with the immunologically active substance, and the carrier particles are reacted with the sample in the liquid medium to observe and confirm the agglutination state of the reaction solution to qualify the immunologically active substance. It is well known how to detect automatically.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上述の従
来例においては、凝集状態を肉眼で判断する場合には、
定量性に乏しい検出しかできず、検出結果の精度、信頼
性を欠いている。
However, in the above-mentioned conventional example, when the aggregated state is visually judged,
Only detection with poor quantitativeness is possible, and the accuracy and reliability of detection results are lacking.

【0004】本発明の目的は、簡素な構造で、高精度に
定性的又は定量的検出が可能な検体測定装置を提供する
ことにある。
An object of the present invention is to provide a sample measuring device having a simple structure and capable of qualitative or quantitative detection with high accuracy.

【0005】[0005]

【課題を解決するための手段】上述の構成を有する本発
明に係る検体測定装置は、特定物質と特異的に結合する
物資を担持させた担体粒子と検体との反応液中における
該担体粒子の凝集の程度により、検体中の前記特定物質
の測定を行う装置であって、前記担体粒子の径よりも大
きい最大間隔から一様又は段階的に間隙が減少し、該最
大間隔部から前記反応液が浸入し得る間隙部を有するこ
とを特徴とするものである。
The sample measuring device according to the present invention having the above-mentioned structure is provided with a carrier particle carrying a substance that specifically binds to a specific substance and a carrier particle in a reaction solution of the sample. A device for measuring the specific substance in a sample according to the degree of agglomeration, in which the gap decreases uniformly or stepwise from a maximum interval larger than the diameter of the carrier particles, and the reaction solution starts from the maximum interval. Is characterized in that it has a gap that can penetrate.

【0006】上記特定発明と関連する本発明に係る検体
測定装置は、特定物質と特異的に結合する物資を担持さ
せた担体粒子と検体との反応液中における該担体粒子の
凝集の程度により、検体中の前記特定物質の測定を行う
装置であって、前記担体粒子の径よりも大きい最大間隔
から一様又は段階的に間隙が減少し、該最大間隙部から
前記反応液が浸入し得る間隙部と、該間隙部内に浸入し
た反応液中の担体粒子を検出する検出手段と、該検出手
段の出力を基に前記特定物質の定量的又は定性的な測定
の演算を行う演算手段とを有することを特徴とするもの
である。
The analyte measuring device according to the present invention related to the above-mentioned specific invention is characterized by the degree of aggregation of the carrier particles in the reaction solution of the carrier particles carrying the substance that specifically binds to the specific substance and the sample. A device for measuring the specific substance in a sample, wherein a gap decreases uniformly or stepwise from a maximum gap larger than the diameter of the carrier particles, and a gap into which the reaction solution can enter from the maximum gap portion. Part, a detection means for detecting carrier particles in the reaction liquid that has penetrated into the gap, and an operation means for performing a quantitative or qualitative measurement operation of the specific substance based on the output of the detection means. It is characterized by that.

【0007】[0007]

【作用】上述の構成を有する検体測定装置は、最大間隙
部の開口から間隙内に反応液を注入すると、間隔差によ
って大きさが異なる担体粒子、凝集体が分離され、凝集
程度を明瞭に判別識別できる。
In the analyte measuring device having the above-mentioned configuration, when the reaction solution is injected into the gap from the opening of the maximum gap part, carrier particles and aggregates having different sizes are separated due to the difference in spacing, and the degree of aggregation is clearly discriminated. Can be identified.

【0008】[0008]

【実施例】本発明を図示の実施例に基づいて詳細に説明
する。図1は第1の実施例の試料台の外観斜視図であ
り、図2は図1のA−B方向の縦断面図である。透明部
材によって形成された平板状の基板1の上には、透明な
部材によって形成され、中央内側に凹部2aを設けた楔
状のカバー部材2が密着され、凹部2aにより間隙が形
成されている。この凹部2aは図2に示すように、凹部
2aと基板1との間隙の高さがA方向からB方向へ一様
に減少するようにされ、端部の開口の垂直間隔DBは使用
する担体粒子Fの径Rよりも小さくされており、方向端
部の開口の垂直間隔DAは凝集体Gも通過できるように、
垂直間隔DBの数倍〜数100倍程度とされている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on the illustrated embodiments. FIG. 1 is an external perspective view of the sample table of the first embodiment, and FIG. 2 is a vertical sectional view taken along the line AB of FIG. A wedge-shaped cover member 2 formed of a transparent member and having a recess 2a inside the center thereof is closely adhered onto a flat plate-shaped substrate 1 formed of a transparent member, and a gap is formed by the recess 2a. As shown in FIG. 2, the recess 2a is formed so that the height of the gap between the recess 2a and the substrate 1 is uniformly reduced from the A direction to the B direction, and the vertical spacing DB of the end opening is the carrier used. The diameter is smaller than the diameter R of the particle F, and the vertical gap DA of the opening at the end of the direction is such that the aggregate G can also pass through.
It is set to several times to several hundred times the vertical interval DB.

【0009】着色した担体粒子Fにモノクローナル抗体
等の免疫学的活性物質を感作させ、その担体粒子Fを水
を主体とする液体媒体中に分散させた試薬と血清等の検
体とを混合すると血清中にモノクローナル抗体と特異的
に反応する抗原が存在した場合には抗原−抗体反応が起
こり、複数個の免疫学的活性物質と担体粒子Fとが凝集
体Gを形成する。十分に反応させた後に、図3に示すよ
うにこの反応液Lを基板1と凹部2aとの間の間隙にA
方向から注入すると、表面張力によって反応液Lは垂直
間隔の狭いB方向に侵入してゆく。未凝集の単一担体粒
子Fは径が小さいのでB方向の奥まで移動できるが、凝
集体Gはその大きさに依存して途中でトラップされて移
動できなくなる。
When the colored carrier particles F are sensitized with an immunologically active substance such as a monoclonal antibody and the carrier particles F are dispersed in a liquid medium mainly composed of water and a specimen such as serum is mixed. When an antigen that specifically reacts with a monoclonal antibody is present in the serum, an antigen-antibody reaction occurs, and a plurality of immunologically active substances and carrier particles F form aggregates G. After sufficiently reacting, as shown in FIG. 3, the reaction liquid L is applied to the gap A between the substrate 1 and the recess 2a.
When injected from the direction, the reaction liquid L intrudes in the direction B with a narrow vertical interval due to the surface tension. Since the unaggregated single carrier particles F have a small diameter, they can move deep in the B direction, but the agglomerates G are trapped and cannot move depending on their size.

【0010】1個の凝集体Gを構成する担体粒子Fの個
数によって定まる凝集体Gの径、及び或る間隙にトラッ
プされる凝集体Gの数は、反応液L中に含有される免疫
学的活性物質の性質及びその個数、即ち反応によって生
成した凝集体Gの凝集状態と相関関係を有する。従っ
て、このような間隙に反応液Lを流入すると、単一の担
体粒子Fの径Rと等しい間隙Rにトラップされている担
体粒子Fの量と、凝集体Gがトラップされている位置及
びその量も目視によって容易に判別、識別することがで
き、免疫学的活性物質の定性的又は定量的検出を行うこ
とができる。実際には、既知の免疫学的活性物質を含有
する検量用検体と反応させた反応液Lによって、予め検
量線を作成しておき、それと比較することによって定量
を行う。
The diameter of the aggregate G determined by the number of carrier particles F constituting one aggregate G and the number of the aggregates G trapped in a certain gap are determined by the immunology contained in the reaction solution L. And the number of the chemically active substance, that is, the aggregation state of the aggregate G produced by the reaction. Therefore, when the reaction liquid L flows into such a gap, the amount of the carrier particles F trapped in the gap R equal to the diameter R of the single carrier particle F, the position where the aggregate G is trapped, and the position thereof. The amount can also be easily discriminated and identified visually, and qualitative or quantitative detection of the immunologically active substance can be performed. In practice, a calibration curve is prepared in advance from the reaction solution L that has been reacted with a calibration sample containing a known immunologically active substance, and the calibration curve is compared with that to perform quantification.

【0011】基板1、カバー部材2は、何れか一方を不
透明部材としてもよく、また着色した担体粒子Fの色調
に応じ識別を容易にする色調、例えば担体粒子Fが明色
系なら、部材を暗色系にする等の工夫をして識別を容易
にすることもできる。また、反応液Lが間隙に侵入し易
いように反応液Lの液体媒体と親和性の良い物質を間隙
の表面にコートすると、更に良好な測定結果が得られ
る。このコート材としては、例えば液体媒体が水である
場合には、親水性の物質、界面活性剤、メチルセルロー
ス、カルボキシメチルセルロース、ポリビニルアルコー
ル、ポリアクリルアミド等の水溶性高分子が好ましい。
Either one of the substrate 1 and the cover member 2 may be an opaque member, and a color tone that facilitates identification depending on the color tone of the colored carrier particles F, for example, if the carrier particles F are a light color system, a member is used. It is also possible to make the identification easy by devising a dark color system. Further, if a substance having a good affinity with the liquid medium of the reaction liquid L is coated on the surface of the gap so that the reaction liquid L easily enters the gap, a better measurement result can be obtained. As the coating material, for example, when the liquid medium is water, a hydrophilic substance, a surfactant, a water-soluble polymer such as methyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, and polyacrylamide are preferable.

【0012】また、単体粒子Fが蛍光を発するようにす
ると更に効果的に測定を行うことができる。用いられる
蛍光を発する担体粒子は、例えば次の方法で得られる。
担体粒子の材料としてはポリマ粒子、ガラス粒子、セラ
ミック球、カオリン、カーボンブラック等の従来用いら
れているものが用いられるが、その中でも蛍光粒子化の
し易さからポリマ粒子が好ましい。蛍光粒子を得るに
は、担体粒子の素材、蛍光物質の種類等により適宜行わ
れるが、ポリスチレン、ポリアクリル酸エステル、ポリ
エステル、ポリカーボネイト、ポリアミド等のポリマ粒
子を例にすると、これらのポリマ粒子に蛍光性を発する
物質、例えば蛍光色素を混合し、化学結合、物理結合等
によって蛍光色素を固定化する方法、ポリマ粒子と蛍光
色素を溶融混練する方法等がある。
Further, if the single particles F emit fluorescence, the measurement can be performed more effectively. The fluorescent carrier particles used are obtained, for example, by the following method.
As the material for the carrier particles, conventionally used materials such as polymer particles, glass particles, ceramic spheres, kaolin and carbon black can be used. Among them, polymer particles are preferable because they are easily made into fluorescent particles. The fluorescent particles are appropriately obtained depending on the material of the carrier particles, the type of the fluorescent substance, etc., but when polymer particles such as polystyrene, polyacrylic acid ester, polyester, polycarbonate and polyamide are taken as an example, fluorescent light will be added to these polymer particles. There are a method of mixing a substance exhibiting properties, for example, a fluorescent dye, and fixing the fluorescent dye by a chemical bond, a physical bond or the like, a method of melting and kneading polymer particles and the fluorescent dye, and the like.

【0013】この実施例においては、基板1を水平に設
置して水平方向に反応液Lを注入するが、図1でA方向
を上にして、基板1を垂直方向に立てた状態で測定を行
ってもよく、重力の効果によって反応液Lの侵入が促進
され、良好な測定結果が得られる。これは図4に示すよ
うに、一部を透明とした基台3の内部に、下方向に一様
に径が減少する間隙3aを垂直に設けてもよい。
In this embodiment, the substrate 1 is installed horizontally and the reaction solution L is injected in the horizontal direction. However, the measurement is performed with the substrate 1 standing vertically with the direction A in FIG. 1 facing up. It may be performed, and the invasion of the reaction liquid L is promoted by the effect of gravity, and a good measurement result is obtained. As shown in FIG. 4, a gap 3a whose diameter is uniformly reduced in the downward direction may be vertically provided inside the base 3 partially transparent.

【0014】図5は第2の実施例の試料台の構成図であ
り、図6は図5のAーB方向の縦断面図である。透明部
材によって形成される平板状の基板1の上には、透明部
材によって形成され中央内側に凹部2bを設けた平板状
のカバー部材2が、基板1に密着されて間隙を形成して
いる。この凹部2bは図6に示すように、凹部2bと基
板1との間隙の高さがA方向からB方向に例えば4段階
に減少するようにされていて、B方向端部の開口の垂直
間隔DBは使用する担体粒子Fの径よりも小さくされてお
り、A方向の端部の開口の垂直間隔DAは凝集体Gを通過
できるように、垂直間隔DBの数倍〜数100倍とされて
いる。
FIG. 5 is a block diagram of the sample table of the second embodiment, and FIG. 6 is a vertical sectional view taken along the line AB of FIG. On the flat plate-shaped substrate 1 formed by the transparent member, a flat plate-shaped cover member 2 formed by a transparent member and having a recessed portion 2b in the center is closely attached to the substrate 1 to form a gap. As shown in FIG. 6, the recess 2b is configured such that the height of the gap between the recess 2b and the substrate 1 is reduced from the A direction to the B direction in, for example, four steps, and the vertical spacing of the openings at the B direction ends. DB is smaller than the diameter of the carrier particles F to be used, and the vertical interval DA of the opening at the end in the A direction is set to several times to several hundred times the vertical interval DB so that the aggregate G can pass through. There is.

【0015】この実施例の場合にも反応液LをA方向か
ら注入すると、図7に示すように凝集体Gは途中でトラ
ップされるから、同様に免疫学的活性物質の定性的かつ
定量的な検出ができるが、そのためには凹部2bの垂直
間隔は少なくとも3段階に変化されている必要がある。
また、第1の実施例と同様に、この実施例においても基
板1を垂直方向に立てて使用してもよく、図8に示すよ
うに基台3の内部に下方向に段階的に径が減少する間隙
3bを垂直に設けてもよい。
Also in the case of this embodiment, when the reaction solution L is injected from the direction A, the aggregate G is trapped on the way as shown in FIG. 7, and thus the immunologically active substance is also qualitatively and quantitatively determined. However, for that purpose, the vertical interval of the concave portions 2b needs to be changed in at least three steps.
Also, in the same manner as the first embodiment, the substrate 1 may be vertically used in this embodiment as well, and as shown in FIG. The decreasing gap 3b may be provided vertically.

【0016】図9は第3の実施例の構成図を示し、図1
0は図9のAーB方向の縦断面図である。第1、第2の
実施例と同様に、透明部材によって形成される平板状の
基板1の上には、透明部材によって形成され中央内側に
凹部2cを設けた平板状のカバー部材2が基板1に密着
され間隙を形成している。この凹部2cは図10に示す
ように、凹部2cと基板1との間隙の垂直間隔がA方向
からB方向へ一様に減少し、使用する担体粒子Fの径よ
りも小さい垂直間隔DBの位置から間隙の幅が一定とされ
ていて、垂直間隔DBの間隙部SBの容積が、垂直間隔DBよ
りも垂直間隔の大きい間隙部SAの容積とほぼ等しいか、
それよりも大きくなるようにされている。なお、第1の
実施例と同様にA方向の端部の開口の垂直間隔DAは凝集
体Gも通過できるように、垂直間隔DBの数倍〜数100
倍とされている。
FIG. 9 is a block diagram of the third embodiment, and FIG.
Reference numeral 0 is a vertical sectional view taken along the line AB of FIG. Similar to the first and second embodiments, the flat plate-shaped cover member 2 formed of the transparent member and having the recess 2c inside the center thereof is provided on the flat-plate-shaped substrate 1 formed of the transparent member. To form a gap. As shown in FIG. 10, the concave portion 2c has a vertical gap DB in which the vertical distance between the concave portion 2c and the substrate 1 is uniformly reduced from the A direction to the B direction and is smaller than the diameter of the carrier particles F used. From the above, the width of the gap is made constant, and the volume of the gap portion SB of the vertical gap DB is substantially equal to the volume of the gap portion SA having a larger vertical gap than the vertical gap DB, or
It is designed to be larger than that. Note that, as in the first embodiment, the vertical distance DA of the opening at the end in the A direction is several times to several hundreds of the vertical distance DB so that the aggregate G can also pass through.
Is doubled.

【0017】この実施例においても、反応液Lを基板1
とカバー部材2との間の間隙にA方向から注入すると、
表面張力によって反応液Lが垂直間隔の狭いB方向に侵
入してゆき、担体粒子F、凝集体Gはその径に応じた位
置でトラップされ、液体媒体と検体との混合液のみが垂
直間隔がDBの間隙部SBに移動する。この間隙部SBの容積
が大きいために、検出に不必要な混合液の大部分がここ
へ流入し、垂直間隔の大きい間隙部SAではトラップされ
た担体粒子F、凝集体Gのみをより容易に検出でき、良
好な測定結果を得ることができる。なお、垂直間隔DBの
間隙は容積の条件を満足していれば任意の形状でよい。
Also in this embodiment, the reaction liquid L is added to the substrate 1.
When injected from the direction A into the gap between the cover member 2 and
Due to the surface tension, the reaction liquid L intrudes in the direction B having a narrow vertical interval, the carrier particles F and the aggregates G are trapped at positions corresponding to their diameters, and only the liquid mixture of the liquid medium and the specimen has a vertical interval. Move to the gap SB of DB. Since the volume of the gap SB is large, most of the mixed liquid unnecessary for detection flows into this, and in the gap SA having a large vertical gap, only the trapped carrier particles F and aggregates G can be more easily. It can be detected and a good measurement result can be obtained. The vertical gap DB may have any shape as long as the volume condition is satisfied.

【0018】この実施例の場合にも、基板1を垂直に立
てた状態で反応液を垂直方向に注入することが可能であ
り、図11に示すように基台3上側から垂直方向に一様
に径が減少し、担体粒子Fの径よりも小さい径DBの位置
から断面で直交する2方向に間隔DBで延在した間隙部SB
が設けられ、径DBより上の間隙部SAで担体粒子Fをトラ
ップして液体媒体と検体との混合液のみを、その下側の
間隙部SBに流すことにより同様の効果を得ることができ
る。この場合でも、径DBより下側の間隙部SBはその間隔
がDB以下であっても、上述の容積の条件を満足すれば任
意の形状とすることができる。
Also in this embodiment, it is possible to vertically inject the reaction liquid with the substrate 1 standing upright, and as shown in FIG. The space SB has a diameter that decreases and extends from the position of the diameter DB smaller than the diameter of the carrier particles F at intervals DB in two directions orthogonal to the cross section.
The same effect can be obtained by trapping the carrier particles F in the space SA above the diameter DB and flowing only the mixed liquid of the liquid medium and the sample into the space SB below the space SA. .. Even in this case, the gap portion SB below the diameter DB can have an arbitrary shape even if the gap is equal to or smaller than DB, as long as the above-mentioned volume condition is satisfied.

【0019】また、図12は第4の実施例の構成図であ
り、カバー部材2の凹部2dに図9の場合の間隙部SAの
高さを3段階とし、間隔DBの間隙部SBが後方に設けられ
ている。
FIG. 12 is a block diagram of the fourth embodiment, in which the height of the clearance SA in the case of FIG. 9 in the recess 2d of the cover member 2 is set to three levels, and the clearance SB of the clearance DB is rearward. It is provided in.

【0020】この実施例においても、先の第2、第3の
実施例を併せたような効果が得られ、図13に示すよう
に基台3により間隙3dを垂直方向に変化させることが
できる。
Also in this embodiment, the same effect as the second and third embodiments can be obtained, and the gap 3d can be changed in the vertical direction by the base 3 as shown in FIG. ..

【0021】ところで、先の第3、第4の実施例におい
て、垂直間隔SBを担体粒子Fの径より若干大きめの例え
ば2倍以内に設定してもよい。この場合には、非凝集粒
子つまり担体粒子Fはトラップされることなく間隙部SB
に吸収されるため、凝集、非凝集の判別がより明瞭かつ
容易にでき、更に良好な測定結果を得ることができる。
By the way, in the above third and fourth embodiments, the vertical spacing SB may be set to be slightly larger than the diameter of the carrier particles F, for example, within twice. In this case, the non-aggregated particles, that is, the carrier particles F are not trapped and the gap SB
Therefore, it is possible to more clearly and easily distinguish between aggregation and non-aggregation, and it is possible to obtain a better measurement result.

【0022】図14は第5の実施例の外観斜視図であ
り、図15は図14のAーB方向の縦断面図である。こ
れは第1の実施例におけるカバー部材2の上面に凸レン
ズ4を形成としたものであるが、凸レンズ4には限らず
フレネルレンズ等であってもよい。
FIG. 14 is an external perspective view of the fifth embodiment, and FIG. 15 is a vertical sectional view taken along the line AB of FIG. Although the convex lens 4 is formed on the upper surface of the cover member 2 in the first embodiment, this is not limited to the convex lens 4 and may be a Fresnel lens or the like.

【0023】この実施例においては、凸レンズ4を設け
ているために内部を拡大して観察することができ、反応
液の凝集程度をより明瞭に判断することができる。
In this embodiment, since the convex lens 4 is provided, the inside can be magnified and observed, and the degree of aggregation of the reaction solution can be determined more clearly.

【0024】図16は第6の実施例による図4の基台3
に凸レンズを形成したものであり、図17は第7の従来
例による図5の基台3に、図18は第8の実施例による
図8の基台3に、図19は第9の実施例による図9の基
台3に、同様にそれぞれ凸レンズ4を形成したものであ
って、反応液の様子を凸レンズ4を介して明瞭に観察す
ることができる。
FIG. 16 shows the base 3 of FIG. 4 according to the sixth embodiment.
A convex lens is formed on the base. FIG. 17 is the base 3 of FIG. 5 according to the seventh conventional example, FIG. 18 is the base 3 of FIG. 8 according to the eighth embodiment, and FIG. 19 is the ninth embodiment. Similarly, convex lenses 4 are formed on the base 3 of FIG. 9 so that the state of the reaction solution can be clearly observed through the convex lenses 4.

【0025】図20は反応液の状態を自動的に読み取る
ための第10の実施例の構成図を示し、図21は光学系
の断面図を示している。ここで使用する試料台10は図
1の第1の実施例と同様のものである。
FIG. 20 is a block diagram of the tenth embodiment for automatically reading the state of the reaction solution, and FIG. 21 is a sectional view of the optical system. The sample table 10 used here is the same as that of the first embodiment shown in FIG.

【0026】この試料台10の間隙内に注入された蛍光
を発する単体粒子F等を光学的に検出するために、試料
台10の上方にはバンドパスフィルタを経て蛍光担体粒
子を励起するための光源11、試料台10の下方には結
像レンズ、屈折率分布型レンズ等によって構成される結
像光学系12が配置され、その結像位置には受光光学系
13が設けられている。受光光学系13には、枠体13
aの内部に例えば14μm×14μmの2048個の感
光素子を一次元配列したCCDアレイ13bが配置さ
れ、このCCDアレイ13bは枠体13aに取り付けら
れた透明ガラス保護板13cによって保護されている。
CCDアレイ13bの各感光素子の出力はケーブル14
を介して信号処理装置15に接続され、信号処理装置1
5の出力はモニタ16に接続されている。
In order to optically detect the single particles F which emit fluorescence and which are injected into the space of the sample table 10, a fluorescent carrier particle is excited above the sample table 10 through a bandpass filter. An imaging optical system 12 including an imaging lens and a gradient index lens is disposed below the light source 11 and the sample table 10, and a light receiving optical system 13 is provided at the imaging position. The light receiving optical system 13 includes a frame 13
A CCD array 13b in which 2048 photosensitive elements of 14 μm × 14 μm are one-dimensionally arranged is arranged inside a, and the CCD array 13b is protected by a transparent glass protection plate 13c attached to a frame 13a.
The cable 14 outputs the respective photosensitive elements of the CCD array 13b.
Connected to the signal processing device 15 via the signal processing device 1
The output of 5 is connected to the monitor 16.

【0027】信号処理装置15の内部の構成は図22に
示すようになっていて、CCDアレイ13bの出力はC
CDドライバ回路15a、演算回路15bに接続され、
CCDドライバ回路15aの出力は演算回路15bに接
続され、演算回路15bの出力は表示回路に接続され、
表示回路15cの出力はモニタ16に接続されている。
The internal structure of the signal processor 15 is as shown in FIG. 22, and the output of the CCD array 13b is C
Connected to the CD driver circuit 15a and the arithmetic circuit 15b,
The output of the CCD driver circuit 15a is connected to the arithmetic circuit 15b, the output of the arithmetic circuit 15b is connected to the display circuit,
The output of the display circuit 15c is connected to the monitor 16.

【0028】蛍光を発する担体粒子Fにモノクローナル
抗体等の免疫学的活性物質を感作させ、その担体粒子F
を水を主体とする液体媒体中に分散させた試薬と検体と
を混合すると反応が起こり、複数個の免疫学的活性物質
と担体粒子Fとが凝集体Gを形成する。十分に反応させ
た後に、図23(a) に示すように、この反応液Lを基板
1と凹部2aとの間の間隙にA方向から注入すると、表
面張力によって反応液Lは垂直間隔の狭いB方向に浸入
してゆく。未凝集の単一担体粒子Fは径が小さいのでB
方向の奥まで移動できるが、凝集体Gはその大きさに依
存して途中でトラップされて移動できなくなる。
The carrier particles F that emit fluorescence are sensitized with an immunologically active substance such as a monoclonal antibody, and the carrier particles F are sensitized.
When the reagent and the sample dispersed in a liquid medium mainly containing water are mixed, a reaction occurs, and a plurality of immunologically active substances and carrier particles F form aggregates G. After sufficient reaction, as shown in FIG. 23 (a), when this reaction solution L is injected into the gap between the substrate 1 and the recess 2a from the direction A, the reaction solution L has a narrow vertical interval due to surface tension. Infiltrate in the B direction. Since the unaggregated single carrier particles F have a small diameter, B
Although the aggregate G can be moved to the back in the direction, the aggregate G is trapped midway depending on its size and cannot be moved.

【0029】試料台10の凹部2a内の反応液Lの蛍光
像は、結像光学系11によって受光光学系13のCCD
アレイ13b上に結像され、CCDドライバ回路15a
によって光電変換されて、各感光素子の出力電圧値が演
算回路15bに入力される。
The fluorescence image of the reaction liquid L in the recess 2a of the sample table 10 is transferred to the CCD of the light receiving optical system 13 by the image forming optical system 11.
An image is formed on the array 13b, and the CCD driver circuit 15a is formed.
Is photoelectrically converted by and the output voltage value of each photosensitive element is input to the arithmetic circuit 15b.

【0030】図23(b) は(a) に示す分離状態像に対応
した各感光素子の出力電圧を示し、単体粒子F、凝集体
Gが発する蛍光により、それらがトラップされた部位で
は出力電圧が大きくなり、その存在が検知される。
FIG. 23 (b) shows the output voltage of each photosensitive element corresponding to the separated state image shown in FIG. 23 (a). The output voltage at the portion where they are trapped by the fluorescence emitted by the single particles F and the aggregate G is shown. Becomes larger and its presence is detected.

【0031】実際には、既知の免疫学的活性物質を含有
する検量用検体と反応させた反応液Lによって、予め検
量線を作成しておき、それと比較することによって定量
を行う。演算回路15bが行う演算としては、例えば出
力電圧の極大値の大きさh1、h2、h3、h4及び幅d1、d2、
d3、d4等の分布を検量線のそれと比較する。或いは、更
に簡便に電力電圧値が閾値Vsよりも高い感光素子数を計
数して比較してもよい。その処理方法は上述の方法に限
定されず、演算処理結果は表示回路15cを介してモニ
タ16に表示される。
In practice, a calibration curve is prepared in advance from the reaction solution L that has been reacted with a calibration sample containing a known immunologically active substance, and the calibration curve is compared with that to perform quantification. As the calculation performed by the calculation circuit 15b, for example, the maximum values h1, h2, h3, h4 of the output voltage and the widths d1, d2,
Compare the distribution of d3, d4, etc. with that of the calibration curve. Alternatively, the number of photosensitive elements whose power voltage value is higher than the threshold value Vs may be counted and compared more simply. The processing method is not limited to the above method, and the calculation processing result is displayed on the monitor 16 via the display circuit 15c.

【0032】図24は第10の実施例の変形例であり、
光源9の代りにレーザー走査光学系17が用いられ、レ
ーザー光源17aから出射されたレーザー光はポリゴン
ミラー17bにより偏向走査され、可動反射ミラー17
cによって、試料台10内の反応液を照射するようにな
っている。
FIG. 24 shows a modification of the tenth embodiment,
A laser scanning optical system 17 is used in place of the light source 9, and the laser light emitted from the laser light source 17a is deflected and scanned by the polygon mirror 17b.
The reaction liquid in the sample table 10 is irradiated by c.

【0033】[0033]

【発明の効果】以上説明したように本発明に係る検体測
定装置は、担体粒子の径よりも十分に大きい最大間隔か
ら最小間隔まで、一様に又は3段階以上の段階的に減少
した間隙を設けた簡素な構造を有し、この間隙に最大間
隔の開口から反応液を注入すると、間隔差によって大き
さが異なる担体粒子、凝集体が分離でき、検体中の免疫
学的活性物質の定性的又は定量的検出を高精度に行うこ
とができる。
As described above, the sample measuring device according to the present invention has a gap that is uniformly larger than the diameter of the carrier particles and has a gap that is reduced in three or more steps from the minimum gap to the minimum gap. It has a simple structure, and when the reaction solution is injected into this gap from the opening with the maximum distance, carrier particles and aggregates that differ in size due to the difference in distance can be separated, and the qualitative analysis of the immunologically active substance in the specimen is possible. Alternatively, quantitative detection can be performed with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の斜視図である。FIG. 1 is a perspective view of a first embodiment.

【図2】縦断面図である。FIG. 2 is a vertical sectional view.

【図3】測定原理の説明図である。FIG. 3 is an explanatory diagram of a measurement principle.

【図4】変形例の斜視図である。FIG. 4 is a perspective view of a modified example.

【図5】第2の実施例の斜視図である。FIG. 5 is a perspective view of a second embodiment.

【図6】縦断面図である。FIG. 6 is a vertical sectional view.

【図7】測定原理の説明図である。FIG. 7 is an explanatory diagram of a measurement principle.

【図8】変形例の斜視図である。FIG. 8 is a perspective view of a modified example.

【図9】第3の実施例の斜視図である。FIG. 9 is a perspective view of a third embodiment.

【図10】縦断面図である。FIG. 10 is a vertical sectional view.

【図11】変形例の斜視図である。FIG. 11 is a perspective view of a modified example.

【図12】第4の実施例の斜視図である。FIG. 12 is a perspective view of a fourth embodiment.

【図13】変形例の斜視図である。FIG. 13 is a perspective view of a modified example.

【図14】第5の実施例の斜視図である。FIG. 14 is a perspective view of a fifth embodiment.

【図15】縦断面図である。FIG. 15 is a vertical sectional view.

【図16】第6の実施例の斜視図である。FIG. 16 is a perspective view of a sixth embodiment.

【図17】第7の実施例の斜視図である。FIG. 17 is a perspective view of a seventh embodiment.

【図18】第8の実施例の斜視図である。FIG. 18 is a perspective view of an eighth embodiment.

【図19】第9の実施例の斜視図である。FIG. 19 is a perspective view of the ninth embodiment.

【図20】第10の実施例の構成図である。FIG. 20 is a configuration diagram of a tenth embodiment.

【図21】光学系部分の断面図である。FIG. 21 is a sectional view of an optical system portion.

【図22】信号処理装置の構成図である。FIG. 22 is a configuration diagram of a signal processing device.

【図23】光学式測定原理の説明図である。FIG. 23 is an explanatory diagram of an optical measurement principle.

【図24】レーザー走査光学系を用いた変形例の斜視図
である。
FIG. 24 is a perspective view of a modified example using a laser scanning optical system.

【符号の説明】[Explanation of symbols]

1 基板 2 カバー部材 2a〜2d 凹部 3 基台 3a〜3d 間隙 4 凸レンズ 10 試料台 11 光源 12 結像光学系 13 受光光学系 13b CCDアレイ 14 ケーブル 15 信号処理装置 15a CCDドライバ回路 15b 演算回路 15c 表示回路 16 モニタ 17 レーザー走査光学系 1 substrate 2 cover member 2a-2d concave part 3 base 3a-3d gap 4 convex lens 10 sample stand 11 light source 12 imaging optical system 13 light receiving optical system 13b CCD array 14 cable 15 signal processor 15a CCD driver circuit 15b arithmetic circuit 15c display Circuit 16 Monitor 17 Laser scanning optical system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大西 敏一 東京都大田区下丸子三丁目30番2号 キヤ ノン株式会社内 (72)発明者 高山 秀人 東京都大田区下丸子三丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Toshikazu Onishi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Hideto Takayama 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 特定物質と特異的に結合する物資を担持
させた担体粒子と検体との反応液中における該担体粒子
の凝集の程度により、検体中の前記特定物質の測定を行
う装置であって、前記担体粒子の径よりも大きい最大間
隔から一様又は段階的に間隙が減少し、該最大間隔部か
ら前記反応液が浸入し得る間隙部を有することを特徴と
する検体測定装置。
1. An apparatus for measuring the specific substance in a sample according to the degree of agglomeration of the carrier particle in a reaction liquid of a sample and a carrier particle carrying a substance that specifically binds to the specific substance. In addition, the sample measuring device is characterized in that the gap is uniformly or stepwise reduced from the maximum distance larger than the diameter of the carrier particles, and the reaction solution has a gap into which the reaction liquid can enter.
【請求項2】 特定物質と特異的に結合する物資を担持
させた担体粒子と検体との反応液中における該担体粒子
の凝集の程度により、検体中の前記特定物質の測定を行
う装置であって、前記担体粒子の径よりも大きい最大間
隔から一様又は段階的に間隙が減少し、該最大間隙部か
ら前記反応液が浸入し得る間隙部と、該間隙部内に浸入
した反応液中の担体粒子を検出する検出手段と、該検出
手段の出力を基に前記特定物質の定量的又は定性的な測
定の演算を行う演算手段とを有することを特徴とする検
体測定装置。
2. An apparatus for measuring the specific substance in a sample according to the degree of agglomeration of the carrier particle in a reaction liquid of the carrier particle carrying a substance that specifically binds to the specific substance and the sample. Then, the gap decreases uniformly or stepwise from the maximum gap larger than the diameter of the carrier particles, and the gap part into which the reaction liquid can enter from the maximum gap part, and the reaction liquid in the gap part An analyte measuring device comprising: a detection unit that detects carrier particles; and a calculation unit that performs a quantitative or qualitative measurement calculation of the specific substance based on the output of the detection unit.
【請求項3】 前記間隙部は最大間隙部及び最小間隙部
の2端を開口とした請求項1又は2に記載の検体測定装
置。
3. The sample measuring device according to claim 1, wherein the gap portion has openings at two ends of a maximum gap portion and a minimum gap portion.
【請求項4】 前記最小間隙部の開口の外側に液吸引手
段を配置した請求項3に記載の検体測定装置。
4. The sample measuring device according to claim 3, wherein a liquid suction means is arranged outside the opening of the minimum gap portion.
【請求項5】 前記間隙部を囲む少なくとも1面を透明
とした請求項1又は2に記載の検体測定装置。
5. The sample measuring device according to claim 1, wherein at least one surface surrounding the gap is transparent.
【請求項6】 前記透明な面にレンズ作用を持たせた請
求項5に記載の検体測定装置。
6. The sample measuring device according to claim 5, wherein the transparent surface has a lens function.
【請求項7】 前記検出手段は光学的に検出を行う請求
項5に記載の検体測定装置。
7. The sample measuring device according to claim 5, wherein the detecting means optically detects.
【請求項8】 前記検出手段はアレイ状の受光素子を有
する請求項7に記載の検体測定装置。
8. The sample measuring device according to claim 7, wherein the detection unit has an array of light receiving elements.
【請求項9】 前記担体粒子は着色粒子又は蛍光性粒子
である請求項1〜8の何れかに記載の検体測定装置。
9. The sample measuring device according to claim 1, wherein the carrier particles are colored particles or fluorescent particles.
【請求項10】 前記特定物質は抗原であり、該抗原と
特異的に反応するモノクローナル抗体を前記担体粒子に
担持させる請求項1〜9の何れかに記載の検体測定装
置。
10. The analyte measuring device according to claim 1, wherein the specific substance is an antigen, and a monoclonal antibody that specifically reacts with the antigen is carried on the carrier particles.
JP3246929A 1990-10-01 1991-08-30 Sample measurement device Expired - Fee Related JP2691266B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3246929A JP2691266B2 (en) 1990-10-01 1991-08-30 Sample measurement device
EP91116757A EP0479231B1 (en) 1990-10-01 1991-10-01 Apparatus and method for measuring specimen
US07/769,366 US5427959A (en) 1990-10-01 1991-10-01 Apparatus and method for measuring specimen
DE69118295T DE69118295T2 (en) 1990-10-01 1991-10-01 Device and method for measuring a sample

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP26328090 1990-10-01
JP2-263280 1990-10-01
JP3-78431 1991-03-18
JP7843191 1991-03-18
JP16107091 1991-06-05
JP3-161070 1991-06-05
JP3246929A JP2691266B2 (en) 1990-10-01 1991-08-30 Sample measurement device

Publications (2)

Publication Number Publication Date
JPH0545359A true JPH0545359A (en) 1993-02-23
JP2691266B2 JP2691266B2 (en) 1997-12-17

Family

ID=27466170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3246929A Expired - Fee Related JP2691266B2 (en) 1990-10-01 1991-08-30 Sample measurement device

Country Status (1)

Country Link
JP (1) JP2691266B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036194A1 (en) * 2002-08-02 2004-04-29 Nec Corporation Analytical chip and analytical apparatus
JP2009198332A (en) * 2008-02-21 2009-09-03 Naoto Nagai Microchemical analysis system, and separating and analyzing method of sample component using this
JP2009276199A (en) * 2008-05-14 2009-11-26 Sony Corp Channel substrate
JP2009544016A (en) * 2006-07-20 2009-12-10 トリネアン・ナムローゼ・フェンノートシャップ Optical characterization methods and systems
JP2010160505A (en) * 2002-06-20 2010-07-22 Vision Biosystems Ltd Microscope slide cover having integrated container
JP2020519859A (en) * 2017-04-21 2020-07-02 アバキス・インコーポレーテッド Systems, devices and methods for microfluidic analysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5550262B2 (en) * 2009-05-29 2014-07-16 キヤノン株式会社 Sample observation system and sample observation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58755A (en) * 1981-06-26 1983-01-05 Olympus Optical Co Ltd Vessel for decision of particle cohesion and decision apparatus of particle cohesion using this vessel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58755A (en) * 1981-06-26 1983-01-05 Olympus Optical Co Ltd Vessel for decision of particle cohesion and decision apparatus of particle cohesion using this vessel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160505A (en) * 2002-06-20 2010-07-22 Vision Biosystems Ltd Microscope slide cover having integrated container
WO2004036194A1 (en) * 2002-08-02 2004-04-29 Nec Corporation Analytical chip and analytical apparatus
JP2009544016A (en) * 2006-07-20 2009-12-10 トリネアン・ナムローゼ・フェンノートシャップ Optical characterization methods and systems
JP2009198332A (en) * 2008-02-21 2009-09-03 Naoto Nagai Microchemical analysis system, and separating and analyzing method of sample component using this
JP2009276199A (en) * 2008-05-14 2009-11-26 Sony Corp Channel substrate
US8512639B2 (en) 2008-05-14 2013-08-20 Sony Corporation Channel substrate
JP2020519859A (en) * 2017-04-21 2020-07-02 アバキス・インコーポレーテッド Systems, devices and methods for microfluidic analysis

Also Published As

Publication number Publication date
JP2691266B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
EP0479231B1 (en) Apparatus and method for measuring specimen
JP5539958B2 (en) Methods for serological agglutination immunoassays and other immunoassays performed on thin film body fluid samples
US5028545A (en) Biospecific multianalyte assay method
US4537861A (en) Apparatus and method for homogeneous immunoassay
EP0670043B1 (en) Ligand assay using interference modulation
US4421860A (en) Homogeneous fluoroimmunoassay involving autocorrelation processing of optically sensed signals
JP4201058B2 (en) Method for characterizing samples based on intermediate statistical data
US20100221757A1 (en) Patient sample classification based upon low angle light scattering
US4407964A (en) Homogeneous fluoroimmunoassay involving sensing radiation for forward and back directions
EP0536593B1 (en) Method for specimen measurement, and reagent therefor
JPS6134092B2 (en)
CA3179549A1 (en) Bead-based analysis of a sample
JP2691266B2 (en) Sample measurement device
US9360433B1 (en) Detection of agglutination by optical density measurement
JP2011503580A (en) Systems and methods for quantifying analytes in immunoassays or enzyme assays
JP2652293B2 (en) Sample measurement device
WO2002073198A2 (en) Non-separation assay and system using opaque particles
JPH05288751A (en) Subject measuring apparatus
JP3058766B2 (en) Sample measuring method and sample measuring device
JPH046464A (en) Immunological examination method
JPS6349178B2 (en)
JP2652288B2 (en) Sample measurement method
US20240125698A1 (en) Gadget for measuring retroreflected signal
US20240077479A1 (en) Detection system and method for the migrating cell
JPH0552848A (en) Immunoassay and apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090905

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100905

LAPS Cancellation because of no payment of annual fees