JPH0545304A - Method and apparatus for observing magnetic domain using circularly polarized light of x ray - Google Patents

Method and apparatus for observing magnetic domain using circularly polarized light of x ray

Info

Publication number
JPH0545304A
JPH0545304A JP20780391A JP20780391A JPH0545304A JP H0545304 A JPH0545304 A JP H0545304A JP 20780391 A JP20780391 A JP 20780391A JP 20780391 A JP20780391 A JP 20780391A JP H0545304 A JPH0545304 A JP H0545304A
Authority
JP
Japan
Prior art keywords
sample
circularly polarized
rays
polarized light
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20780391A
Other languages
Japanese (ja)
Inventor
Yoshio Suzuki
芳生 鈴木
Fumihiko Uchida
史彦 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20780391A priority Critical patent/JPH0545304A/en
Publication of JPH0545304A publication Critical patent/JPH0545304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To make it possible to form the image of the inner magnetization of an optically opaque thick sample by alternately casting clockwise and counterclockwise circularly polarized lights of X rays on the noted place of the sample, and measuring the difference in absorbion coefficients caused by the right and left circualrly polarized lights. CONSTITUTION:Left and right circularly polarized X rays 6 and 7 emitted from an X-ray generating device (synchrotron radiation from a deflecting electromagnet) 1 are cast in the different directions. The X rays 6 and 7 are deflected into the parallel beams. with total- reflection pre-deflecting mirrors 8 and 9. Then, only the X rays having the specified wavelength are taken out with a crystal. spectroscope 10. The emitted lights from the spectroscope 10 pass through a chopper 11 and an emitted-light-intensity monitor 12. Then, the lights are condensed at one point on a sample 3 with rear-deflecting mirrors 13 and 14, which also serve the roles of optical condenser devices. The intensities IL and IR of the X rays transmitted through the sample 3 are measured with a detector 5, and the results are sent into a computer 16. When the intensities IL and IR are alternately measured, the difference corresponds to the inner magnetization of the sample. When this measurement is performed at each point of the sample 3 with the sample being scanned 15, the two-dimensional image of the magnetization can be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はX線をプローブとする顕
微鏡装置において試料の内部磁化を画像化することによ
って、強磁性体の磁区や磁壁の観測を行なう方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for observing a magnetic domain or domain wall of a ferromagnetic material by imaging the internal magnetization of a sample in a microscope apparatus using an X-ray as a probe.

【0002】[0002]

【従来の技術】従来、強磁性体の磁化方向を検出して画
像化する手法としては、レヴューオブサイエンティフィ
ックインスツルメント61巻(1990年)2501頁
から2526頁に解説されているように、磁気カー効果
光学顕微鏡、ビッター法、ローレンツ顕微鏡、磁力走査
型トンネル顕微鏡及びスピン分析走査型電子顕微鏡が知
られている。
2. Description of the Related Art Conventionally, as a method for detecting the magnetization direction of a ferromagnetic material to form an image, as described in Review of Scientific Instruments 61 (1990), pages 2501 to 2526. , Kerr effect optical microscope, Bitter method, Lorentz microscope, magnetic force scanning tunneling microscope and spin analysis scanning electron microscope are known.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術において
は、試料表面への漏れ磁場を検出するものであったり
(ビッター法、反射型ローレンツ顕微鏡)、非常に薄い
試料(100nm程度)の内部磁場を観測するものであ
ったり(透過型ローレンツ顕微鏡)、試料表面近傍の情
報しか得られないものであった(磁気カー効果光学顕微
鏡、磁力走査型トンネル顕微鏡及びスピン分析走査型顕
微鏡)。従って、比較的厚く光学的に不透明な試料の内
部磁化を画像化することは不可能であった。
In the above prior art, the leakage magnetic field to the sample surface is detected (Bitter method, reflection type Lorentz microscope), and the internal magnetic field of a very thin sample (about 100 nm) is detected. They were observed (transmission Lorentz microscope), or only information near the sample surface was obtained (magnetic Kerr effect optical microscope, magnetic scanning tunneling microscope, and spin analysis scanning microscope). Therefore, it was not possible to image the internal magnetization of a relatively thick and optically opaque sample.

【0004】本発明の目的は比較的厚く光学的に不透明
な(可視光が透過しない)試料の内部磁化を画像化する
手法を提供することにある。
It is an object of the present invention to provide a technique for imaging the internal magnetization of a relatively thick and optically opaque sample (not transparent to visible light).

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では短波長X線の吸収端近傍での左右円偏光
における複屈折効果を利用する。
In order to achieve the above object, the present invention utilizes the birefringence effect in left and right circularly polarized light near the absorption edge of short wavelength X-rays.

【0006】X線領域での円偏光の複屈折については例
えば、フィジカルレヴューレターズ58巻(1987
年)737頁から740頁に記載されているように試料
に強い外部磁場を印加して内部磁化方向を揃えた状態で
円偏光X線を入射させ、外部磁場を反転させながら試料
透過光強度を測定した場合の外部磁場と偏光方向の平行
反平行による透過光強度の変化として観測されている。
またこの変化は試料構成元素の吸収端近傍で強く現われ
ることが上記論文で示されている。
Regarding the birefringence of circularly polarized light in the X-ray region, see, for example, Physical Review Letters, Vol. 58 (1987).
(Year) pp. 737 to 740, a strong external magnetic field is applied to the sample, circularly polarized X-rays are made incident with the internal magnetization direction aligned, and the intensity of the sample transmitted light is reversed while reversing the external magnetic field. It is observed as a change in transmitted light intensity due to the parallel and antiparallel polarization directions when measured, and the external magnetic field.
Also, the above paper shows that this change appears strongly near the absorption edge of the sample constituent elements.

【0007】本発明ではこの吸収端近傍における複屈折
を利用して試料内部の磁化方向を検出するために、試料
の着目する場所に吸収端近傍の特定のエネルギーを持つ
右回り円偏光X線と左回り円偏光X線を交互に入射させ
左右円偏光による吸収係数の違いを計測するものであ
る。
In the present invention, in order to detect the magnetization direction inside the sample by utilizing the birefringence in the vicinity of the absorption edge, a right-handed circularly polarized X-ray having a specific energy near the absorption edge is provided at a location of interest of the sample. Counterclockwise circularly polarized X-rays are alternately incident to measure the difference in absorption coefficient due to left and right circularly polarized light.

【0008】[0008]

【作用】本発明の基本原理を図1に従って説明する。右
回り円偏光と左回り円偏光を発生するX線発生装置1か
ら出たX線2が試料3に入射する。試料を透過したX線
4は検出器5で検出される。ここでX線装置から右円偏
光X線が出射される場合の透過X線強度IR、左円偏光
X線が出射される場合の透過X線強度ILを交互に測定
すれば、これらの差はX線が試料に入射する場所におけ
る試料内部磁化に対応している。さらに試料を二次元に
走査しながら試料の各点でこの計測を行なうことによっ
て磁化の二次元画像が計測されることになる。
The basic principle of the present invention will be described with reference to FIG. The X-ray 2 emitted from the X-ray generator 1 that generates right-handed circularly polarized light and left-handed circularly polarized light is incident on the sample 3. The X-ray 4 transmitted through the sample is detected by the detector 5. Here, if the transmitted X-ray intensity IR when the right circularly polarized X-rays are emitted from the X-ray device and the transmitted X-ray intensity IL when the left circularly polarized X-rays are emitted are alternately measured, the difference between them is obtained. It corresponds to the internal magnetization of the sample at the location where the X-ray enters the sample. Further, a two-dimensional image of magnetization is measured by performing this measurement at each point of the sample while scanning the sample two-dimensionally.

【0009】[0009]

【実施例】以下、本発明の一実施例を図2より説明す
る。本実施例ではX線源に偏向電磁石からのシンクロト
ロン放射を用いた。シンクロトロン放射は軌道面内では
直線偏光であるが、軌道面から上下にずれた方向ではそ
れぞれ左右円偏光(厳密に言えば楕円偏向)した光が放
出される。従って、左円偏光のX線6と右円偏光X線7
は異なる方向に出射される。このX線は先ず全反射偏向
鏡8及び9によって互いに平行なビームに偏向された
後、結晶分光器10によって特定の波長のX線のみ取り
出される。結晶分光器は分光器に入射するX線の方向に
よって出射光の波長が決まる。従って、左円偏光X線の
波長と右円偏光X線の波長を一致させるために、それぞ
れのビームを予め互いに平行にする前置偏向鏡8及び9
が必要である。結晶分光器からの出射光はチョッパ11
と出射光強度モニタ12を通過した後、それぞれ再び後
置偏向鏡兼集光鏡13及び14によって試料3上の一点
に集光される。このチョッパ11は右円偏向と左円偏向
を選択切り替えする機能を受け持つ。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG. In this embodiment, synchrotron radiation from a bending magnet is used as the X-ray source. Synchrotron radiation is linearly polarized in the orbital plane, but left and right circularly polarized light (strictly speaking, elliptical polarization) is emitted in directions vertically displaced from the orbital plane. Therefore, left circularly polarized X-ray 6 and right circularly polarized X-ray 7
Are emitted in different directions. The X-rays are first deflected into parallel beams by the total reflection deflecting mirrors 8 and 9, and then only the X-rays of a specific wavelength are extracted by the crystal spectroscope 10. In a crystal spectroscope, the wavelength of emitted light is determined by the direction of X-rays that enter the spectroscope. Therefore, in order to match the wavelength of the left circularly polarized X-ray with the wavelength of the right circularly polarized X-ray, the pre-deflecting mirrors 8 and 9 which preliminarily make the respective beams parallel to each other.
is necessary. Light emitted from the crystal spectrometer is chopper 11
After passing through the outgoing light intensity monitor 12, the light is focused again on one point on the sample 3 by the post-deflection mirror / collector mirrors 13 and 14, respectively. The chopper 11 has a function of selectively switching between right and left circular deflection.

【0010】本実施例では試料に入射する左円偏向X線
と右円偏向X線の入射角が多少異なるが、これは光源か
ら出る右円偏向と左円偏向のビームの向きが互いに僅か
にずれているためである。しかしながら、一般にこのず
れは角度にして1度以下であり、実用上はほとんど問題
にならない。試料を透過したX線の強度は検出器5で測
定される。試料3は二軸の試料走査機構15にマウント
されており、この試料走査機構は計算機16で制御され
ている。計算機はまたチョッパ11を制御すると共に、
出射光強度モニタ12と透過X線検出器5からの強度信
号を取り込む。データの計測は次のような手順で行なわ
れる。
In this embodiment, the incident angles of the left-handed circularly polarized X-rays and the right-handed circularly polarized X-rays incident on the sample are slightly different, but this is because the directions of the right-handed circularly polarized light and the left-handed circularly polarized beam emitted from the light source are slightly different from each other. This is because they are out of alignment. However, in general, this deviation is less than 1 degree in terms of angle, and practically causes no problem. The intensity of the X-ray transmitted through the sample is measured by the detector 5. The sample 3 is mounted on a biaxial sample scanning mechanism 15, and this sample scanning mechanism is controlled by a computer 16. The computer also controls the chopper 11,
The intensity signals from the emitted light intensity monitor 12 and the transmitted X-ray detector 5 are fetched. Data measurement is performed in the following procedure.

【0011】(1)チョッパ11の位置を左円偏向の得
られる位置に移動する。
(1) The position of the chopper 11 is moved to a position where leftward circular deflection can be obtained.

【0012】(2)出射光強度モニタ12の信号Ioと
試料透過光検出器5の信号Itを計測し、計算機に転送
する。
(2) The signal Io of the emitted light intensity monitor 12 and the signal It of the sample transmitted light detector 5 are measured and transferred to a computer.

【0013】(3)計算機でIo、ItからμL×t=
ln(Io/It)を計算し、計算機の内部メモリに格
納する。ここでtは試料の厚さであり、この時点では未
知の量である。しかしながら、後で(7)に示すように
磁化情報Mを求める際にはこのtはキャンセルされるの
で、tは未知のままであっても差し支えない。
(3) From the computer Io and It, μL × t =
ln (Io / It) is calculated and stored in the internal memory of the computer. Where t is the thickness of the sample, an unknown quantity at this point. However, as will be described later in (7), when the magnetization information M is obtained, this t is canceled, so t may remain unknown.

【0014】(4)チョッパ11の位置を右円偏向の得
られる位置に移動する。
(4) The position of the chopper 11 is moved to a position where rightward circular deflection can be obtained.

【0015】(5)出射光強度モニタの信号Ioと試料
透過光検出器の信号Itを計測し、計算機に転送する。
(5) The signal Io of the emitted light intensity monitor and the signal It of the sample transmitted light detector are measured and transferred to a computer.

【0016】(6)計算機内部でIo、ItからμR×
t=ln(Io/It)を計算し、計算機の内部メモリ
に格納する。
(6) μR × from Io and It inside the computer
Calculate t = ln (Io / It) and store it in the internal memory of the computer.

【0017】(7)μRとμLを用いて、M=(μR×
t−μL×t)/(μR×t+μL×t)を計算し、内
部メモリに格納する。
(7) Using μR and μL, M = (μR ×
t-μL × t) / (μR × t + μL × t) is calculated and stored in the internal memory.

【0018】(8)試料走査機構15をもちいてX線の
照射位置を変更する。
(8) The X-ray irradiation position is changed by using the sample scanning mechanism 15.

【0019】以上の(1)−(8)の走査を繰り返し
て、試料をラスタスキャンすることによって磁化の情報
Mの二次元マッピングを計測し、このMを輝度信号とし
てディスプレー17に表示する。
By repeating the above scanning steps (1)-(8) and raster-scanning the sample, the two-dimensional mapping of the magnetization information M is measured, and this M is displayed on the display 17 as a luminance signal.

【0020】本実施例は走査型X線顕微鏡の場合である
が、例えば、円偏光アンジュレータ等の円偏光X線源に
よって十分に広く均一なビームが得られれば、一次元
(あるいは二次元)の検出器を用いて試料透過X線像を
検出してもよい。また透過X線でなく試料から放出され
る螢光X線強度を検出して吸収係数に比例する信号を得
る方法を用いても良い。
The present embodiment is a case of a scanning X-ray microscope. For example, if a sufficiently wide and uniform beam can be obtained by a circularly polarized X-ray source such as a circularly polarized undulator, a one-dimensional (or two-dimensional) beam can be obtained. A sample transmitted X-ray image may be detected using a detector. Also, a method of obtaining the signal proportional to the absorption coefficient by detecting the intensity of the fluorescent X-ray emitted from the sample instead of the transmitted X-ray may be used.

【0021】また、本実施例ではシンクロトロン放射を
X線源として利用し、軌道面から上下にずれた方向に放
射される左右円偏光を用いたが、偏光方向が可変な円偏
光アンジュレータのような円偏光X線源を用いても良
い。
In this embodiment, the synchrotron radiation is used as the X-ray source, and the left and right circularly polarized light emitted in the directions vertically displaced from the orbital plane is used. However, the circular polarization undulator having a variable polarization direction is used. A circularly polarized X-ray source may be used.

【0022】また、本実施例では試料に照射するX線の
偏光を変えた場合の吸収係数の違いを計測しているが、
左右円偏光を同時に試料に照射して透過X線検出器に偏
光方向に依存する検出効率を有するもの(これは、例え
ば磁気円二色性を持つ強磁性体に外部から飽和磁場を印
加したものを光電面とする検出器を用いることによって
実現される)を用いることによって左円偏光の吸収と右
円偏光の吸収を計測する方法を用いても良い。
Further, in this embodiment, the difference in absorption coefficient when the polarization of the X-rays irradiated on the sample is changed is measured.
A transmission X-ray detector that has a detection efficiency that depends on the polarization direction by irradiating a sample with left and right circularly polarized light at the same time (for example, a ferromagnetic substance with magnetic circular dichroism to which a saturation magnetic field is applied from the outside). Can be realized by using a detector having a photocathode as a photocathode), and a method of measuring the absorption of left circularly polarized light and the absorption of right circularly polarized light can be used.

【0023】[0023]

【発明の効果】本発明によれば、電子線や可視光の透過
しないような厚い不透明な試料の内部磁化を検出して画
像化出来るという効果がある。
According to the present invention, there is an effect that an internal magnetization of a thick opaque sample which does not transmit an electron beam or visible light can be detected to form an image.

【0024】しかも、本発明においては、 (1)X線は磁場とほとんど相互作用しないために、試
料の磁化方向のみの情報が得られる。 (2)電子線と異なりX線は試料の内部深くまで侵入す
る(通常10μm程度)、このため電子線が透過しない
ような厚い試料であっても透過法によって測定出来るの
で、厚い試料の表面磁化だけでなく内部磁化をも含めた
情報が得られる。 (3)また、本発明においては磁化の情報Mは右円偏光
における吸収係数μRと左円偏光における吸収係数μL
を用いて、M=(μR−μL)/(μR+μL)のよう
な形式で表すことも出来るので、試料の厚さむら等によ
るコントラストを消して磁化方向と強さのみの画像とし
てあらわすことが出来る。
In addition, in the present invention, (1) since X-rays hardly interact with the magnetic field, it is possible to obtain information only on the magnetization direction of the sample. (2) Unlike electron beams, X-rays penetrate deep inside the sample (usually about 10 μm). Therefore, even thick samples that do not allow electron beams to pass can be measured by the transmission method. Not only the information including the internal magnetization can be obtained. (3) In the present invention, the magnetization information M is the absorption coefficient μR for right-handed circularly polarized light and the absorption coefficient μL for left-handed circularly polarized light.
Can also be expressed in a format such as M = (μR−μL) / (μR + μL), so that the contrast due to uneven thickness of the sample can be erased and expressed as an image of only the magnetization direction and strength. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本原理を示す図である。FIG. 1 is a diagram showing a basic principle of the present invention.

【図2】本発明の一実施例のふかん図である。FIG. 2 is a schematic diagram of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…X線発生装置、2…X線、3…試料、4…試料を透
過したX線、5…試料を透過したX線の検出器、6…左
回り円偏光のX線、7…右回り円偏光X線、8…左回り
円偏光のX線用全反射前置偏向鏡、9…右回り円偏光X
線用全反射前置偏向鏡、10…結晶分光器、11…チョ
ッパ、12…分光器出射光強度モニタ、13…左回り円
偏光用後置偏向鏡兼集光鏡、14…右回り円偏光X線用
後置偏向鏡兼集光鏡、15…二軸試料走査機構、16…
計算機、17…ディスプレー。
1 ... X-ray generator, 2 ... X-ray, 3 ... sample, 4 ... X-ray transmitted through sample, 5 ... X-ray detector transmitted through sample, 6 ... Counterclockwise circularly polarized X-ray, 7 ... Right Circularly polarized X-ray, 8 ... Left-handed circularly polarized X-ray total reflection pre-deflection mirror, 9 ... Right-handed circularly polarized X
Total reflection pre-deflecting mirror for line, 10 ... Crystal spectroscope, 11 ... Chopper, 12 ... Spectrometer output light intensity monitor, 13 ... Left-handed circularly polarized post-deflection mirror / condenser, 14 ... Right-handed circularly polarized light X-ray post-deflection mirror and focusing mirror, 15 ... Biaxial sample scanning mechanism, 16 ...
Calculator, 17 ... Display.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】X線を試料に照射してその吸収コントラス
トによって画像を計測するX線顕微法において、試料の
実質的に同一の場所に右回り及び左回りの円偏光X線を
入射させ、さらにこの右回り円偏光と左回り円偏光にお
ける吸収の差である磁気円二色性を求め、これによって
試料の内部磁化を検出することを特徴とする磁区観察
法。
1. In an X-ray microscopic method of irradiating a sample with X-rays and measuring an image by its absorption contrast, clockwise and counterclockwise circularly polarized X-rays are made incident on substantially the same place of the sample, Further, a magnetic domain observation method characterized in that magnetic circular dichroism, which is a difference in absorption between the right-handed circularly polarized light and the left-handed circularly polarized light, is obtained, and the internal magnetization of the sample is detected by this.
【請求項2】請求項1において、円偏光X線が入射する
試料のほぼ全面にわたって得られる磁気円二色性を利用
して画像化することを特徴とする磁区観察法。
2. The magnetic domain observing method according to claim 1, wherein an image is formed by utilizing magnetic circular dichroism obtained over substantially the entire surface of a sample on which circularly polarized X-rays are incident.
【請求項3】X線源、前記X線源の軌道面の上下に放射
される右回り円偏光と左回り円偏光を偏向させ、かつ、
実質的に試料の同一の場所に導く反射鏡、前記右回り円
偏光と左回り円偏光を交互に照射するためのチョッパ
ー、前記右回り円偏光と左回り円偏光を用いて試料の磁
気円二色性を測定する装置、前記右回り円偏光と左回り
円偏光が入射する試料のほぼ全面にわたって得られた試
料の磁気円二色性から試料の内部磁化を画像化する装置
を有することを特徴とする円偏光X線顕微鏡。
3. An X-ray source, which deflects right-handed circularly polarized light and left-handed circularly polarized light emitted above and below the orbital plane of the X-ray source, and
A reflecting mirror that guides the sample to substantially the same place on the sample, a chopper for alternately irradiating the right-handed circularly polarized light and the left-handed circularly polarized light, and a magnetic circle of the sample using the right-handed circularly polarized light and the left-handed circularly polarized light. A device for measuring chromaticity, comprising a device for imaging the internal magnetization of a sample from the magnetic circular dichroism of the sample obtained over almost the entire surface of the sample on which the right-handed circularly polarized light and the left-handed circularly polarized light are incident. A circularly polarized X-ray microscope.
【請求項4】請求項3において、円偏光X線を試料のほ
ぼ全面にわたってスキャンする装置を有することを特徴
とする円偏光X線顕微鏡。
4. The circularly polarized X-ray microscope according to claim 3, further comprising a device for scanning the circularly polarized X-rays over substantially the entire surface of the sample.
JP20780391A 1991-08-20 1991-08-20 Method and apparatus for observing magnetic domain using circularly polarized light of x ray Pending JPH0545304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20780391A JPH0545304A (en) 1991-08-20 1991-08-20 Method and apparatus for observing magnetic domain using circularly polarized light of x ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20780391A JPH0545304A (en) 1991-08-20 1991-08-20 Method and apparatus for observing magnetic domain using circularly polarized light of x ray

Publications (1)

Publication Number Publication Date
JPH0545304A true JPH0545304A (en) 1993-02-23

Family

ID=16545759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20780391A Pending JPH0545304A (en) 1991-08-20 1991-08-20 Method and apparatus for observing magnetic domain using circularly polarized light of x ray

Country Status (1)

Country Link
JP (1) JPH0545304A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248311A (en) * 2006-03-16 2007-09-27 Fujitsu Ltd Measuring method of x-ray magnetic circular dichroism of magnetic multilayer film
EP2853886A1 (en) 2013-09-25 2015-04-01 Toyota Jidosha Kabushiki Kaisha Magnetic measurement method and its system and apparatus
JP2017120255A (en) * 2015-12-28 2017-07-06 大学共同利用機関法人自然科学研究機構 Circular polarization irradiator, analyzer, and microscope
JPWO2016147320A1 (en) * 2015-03-17 2017-09-07 株式会社日立製作所 Electromagnetic microscope and X-ray microscope
US9835569B2 (en) 2013-09-25 2017-12-05 Toyota Jidosha Kabushiki Kaisha Magnetic measurement system and apparatus utilizing X-ray to measure comparatively thick magnetic materials
WO2019182097A1 (en) * 2018-03-22 2019-09-26 国立研究開発法人量子科学技術研究開発機構 Magnetic body observation method, and magnetic body observation device
EP4053839A1 (en) * 2021-03-05 2022-09-07 Paul Scherrer Institut Method for contactless readout of magnetic storage media by circularly polarized x-ray beams

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248311A (en) * 2006-03-16 2007-09-27 Fujitsu Ltd Measuring method of x-ray magnetic circular dichroism of magnetic multilayer film
EP2853886A1 (en) 2013-09-25 2015-04-01 Toyota Jidosha Kabushiki Kaisha Magnetic measurement method and its system and apparatus
JP2015064280A (en) * 2013-09-25 2015-04-09 トヨタ自動車株式会社 Magnetic characteristics measurement method
US9766190B2 (en) 2013-09-25 2017-09-19 Toyota Jidosha Kabushiki Kaisha Method, system and apparatus for measuring comparatively thick materials
US9835569B2 (en) 2013-09-25 2017-12-05 Toyota Jidosha Kabushiki Kaisha Magnetic measurement system and apparatus utilizing X-ray to measure comparatively thick magnetic materials
JPWO2016147320A1 (en) * 2015-03-17 2017-09-07 株式会社日立製作所 Electromagnetic microscope and X-ray microscope
JP2017120255A (en) * 2015-12-28 2017-07-06 大学共同利用機関法人自然科学研究機構 Circular polarization irradiator, analyzer, and microscope
WO2019182097A1 (en) * 2018-03-22 2019-09-26 国立研究開発法人量子科学技術研究開発機構 Magnetic body observation method, and magnetic body observation device
JPWO2019182097A1 (en) * 2018-03-22 2021-03-25 国立研究開発法人量子科学技術研究開発機構 Magnetic material observation method and magnetic material observation device
EP4053839A1 (en) * 2021-03-05 2022-09-07 Paul Scherrer Institut Method for contactless readout of magnetic storage media by circularly polarized x-ray beams
WO2022184642A1 (en) * 2021-03-05 2022-09-09 Paul Scherrer Institut Method for speed-up of magnetic signal readout from magnetic storage media by beam splitting

Similar Documents

Publication Publication Date Title
JP4223769B2 (en) measuring device
Tusche et al. Quantitative spin polarization analysis in photoelectron emission microscopy with an imaging spin filter
CN106841136A (en) A kind of high accuracy axially position to ultra-thin cell and imaging method and device
Lange et al. A high-resolution combined scanning laser and widefield polarizing microscope for imaging at temperatures from 4 K to 300 K
CN110082297A (en) The detection method and spectral measurement system of two-dimensional layer material hetero-junctions stacking sequence
JPH0545304A (en) Method and apparatus for observing magnetic domain using circularly polarized light of x ray
US5216699A (en) X-ray microscope
US20240077549A1 (en) Optical measuring device and method for plasma magnetic field with adjustable sensitivity
GB2152697A (en) Improvements in or relating to scanning optical microscopes
JP3365474B2 (en) Polarizing imaging device
US5936244A (en) Electron microscope and electron microscopy method
JP2821585B2 (en) In-plane distribution measuring method and apparatus
US9766190B2 (en) Method, system and apparatus for measuring comparatively thick materials
JPS62503055A (en) differential imaging device
JP2012251797A (en) Magnetooptic effect measurement device
JP2001311877A (en) Image pickup device
US9835569B2 (en) Magnetic measurement system and apparatus utilizing X-ray to measure comparatively thick magnetic materials
JP2598258B2 (en) Spatially resolved spectrometer
JPH09189612A (en) Time-resolved emission imaging device
JPH11133200A (en) X-ray scanning microscopic method and microscope
CN211262124U (en) Displacement measurement sensing device and displacement measurement sensing system
CN219831353U (en) Magnetic detection device based on diamond NV color center and Kerr effect
JPH11281597A (en) Photoelectric spectrograph and surface analyzing method
JP2810077B2 (en) Scanning tunneling microscope
JPS61163314A (en) Scan microscope