JPH0545279A - Gas sensing device - Google Patents

Gas sensing device

Info

Publication number
JPH0545279A
JPH0545279A JP23098191A JP23098191A JPH0545279A JP H0545279 A JPH0545279 A JP H0545279A JP 23098191 A JP23098191 A JP 23098191A JP 23098191 A JP23098191 A JP 23098191A JP H0545279 A JPH0545279 A JP H0545279A
Authority
JP
Japan
Prior art keywords
phase
gas
laser light
signal
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23098191A
Other languages
Japanese (ja)
Other versions
JP2796651B2 (en
Inventor
Hideo Tai
秀男 田井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP23098191A priority Critical patent/JP2796651B2/en
Publication of JPH0545279A publication Critical patent/JPH0545279A/en
Application granted granted Critical
Publication of JP2796651B2 publication Critical patent/JP2796651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To calculates gas concentration by mixing two types of gas emitting laser beam modulated with a specific frequency, allowing the mixture to pass through two types of cells, sending signals from these cells to phase sensitive wave-detectors, and feeding the output therefrom to a calculator. CONSTITUTION:A control system 40 includes a fiber coupler 44 which mixes one laser beam L1 modulated with a specific frequency f0, having a wavelength corresponding to the absorptive wavelength of methane, with another laser beam L2 modulated with a frequency f0 with different phase by PHI and having a wavelength corresponding to the apsorptive wavelength of acetylene. The resultant mixture is allowed to pass through a reference cell 45 and passed to a photo-receiver 46 to undergo conversion into an electric signal. The oscillative wavelength of each gas is stabilized under temp. control made by laser elements 42, 43 on the basis of 1st order differentiated signals about these laser beams L1, L2. In the measuring system 41, on the other hand, the mixture laser beam is passed through a measuring cell 48 and fed to another photo-receiver 49 to undergo conversion into an electric signal, which is passed to phase sensitive wave-detectors 50, 51, and 2nd order differentiated signals about L1, L2 are fed to calculators 52, 53, which calculate the concentrations d2, d3 of methane and acethylene, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザ素子を用い
たガス検知装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas detector using a semiconductor laser device.

【0002】[0002]

【従来の技術】特定波長のレーザ光がある種の気体に吸
収されやすいことを利用してガスの有無を検出できるこ
とが知られており、この原理を応用したセンシング技術
が工業計測、公害監視などに広く用いられている。一例
として、He−Neレーザにより発生されるレーザ光の
3.3922μmの発振線はメタンに強く吸収されるこ
とを利用してメタンの有無を感度よく検出することが可
能である。メタンは都市ガスの主成分であるのでメタン
ガスの検出によって都市ガスの漏洩が検知できる。しか
し半導体レーザを用いてガス検知を行う場合には半導体
レーザ素子が温度により発振波長を大きく変えるのでレ
ーザ光の発振波長をガスの吸収線の中心波長に合わせて
安定化する必要がある。
2. Description of the Related Art It is known that the presence or absence of gas can be detected by utilizing the fact that a laser beam of a specific wavelength is easily absorbed by a certain type of gas. Sensing technology applying this principle is used in industrial measurement, pollution monitoring, etc. Widely used in. As an example, it is possible to detect the presence or absence of methane with high sensitivity by utilizing the fact that the 3.3922-μm oscillation line of the laser light generated by the He-Ne laser is strongly absorbed by methane. Since methane is the main component of city gas, the leakage of city gas can be detected by detecting methane gas. However, when gas detection is performed using a semiconductor laser, the oscillation wavelength of the semiconductor laser element greatly changes depending on the temperature, and therefore it is necessary to stabilize the oscillation wavelength of the laser light in accordance with the central wavelength of the absorption line of the gas.

【0003】そこで本願出願人は平成3年7月24日付
けで半導体レーザ素子の発振波長を正確に制御し、2種
類のガスを検知するようにしたガス検知装置について出
願した。図4はそのガス検知装置のブロック線図であ
る。
Therefore, the applicant of the present application has filed an application on July 24, 1991 for a gas detection device capable of accurately controlling the oscillation wavelength of a semiconductor laser element to detect two kinds of gases. FIG. 4 is a block diagram of the gas detection device.

【0004】図において、ガス検知装置は制御系1と測
定系2とから構成されており、制御系1は2つのレーザ
発振器3、4と、レーザ発振器3を周波数f1 で変調す
るとともに発振波長を安定化する変調/制御器5と、レ
ーザ発振器4を周波数f2 で変調するとともに発振波長
を安定化する変調/制御器6とを有し、測定系2はレー
ザ発振器3のレーザ光とレーザ発振器4のレーザ光とを
混合するファイバカップラ7と、未知の濃度のガスが封
入される測定用セル8と、この測定用セル8を通過した
レーザ光を受け電気信号に変換する受光器9と、受光器
9からの出力信号を周波数f1 で位相敏感検波して1次
の位相敏感検波信号(1次微分信号)If1 を出力する位
相敏感検波器10と、受光器9からの出力信号を周波数
1 で位相敏感検波して2次の位相敏感検波信号(2次
微分信号)I2f を出力する位相敏感検波器11と、同様
に受光器9からの出力信号を周波数f2 で位相敏感検波
して1次の位相敏感検波信号If2 を出力する位相敏感検
波器12と、受光器9からの出力信号を周波数f2 の2
倍波で位相敏感検波して2次の位相敏感検波信号I2f2
出力する位相敏感検波器13と、1次の位相敏感検波信
号If1,2 と2次の位相敏感検波信号I2f1,2との比からガ
スの濃度をそれぞれ演算する演算器14、15と、演算
結果を記録するレコーダ16とを有している。
In the figure, the gas detection device comprises a control system 1 and a measurement system 2. The control system 1 modulates the two laser oscillators 3 and 4 and the laser oscillator 3 at a frequency f1 and determines the oscillation wavelength. The measuring system 2 includes a stabilizing modulator / controller 5 and a modulator / controller 6 which modulates the laser oscillator 4 at a frequency f2 and stabilizes the oscillation wavelength. A fiber coupler 7 for mixing the laser beam of 1., a measuring cell 8 in which a gas having an unknown concentration is filled, a light receiver 9 for converting the laser light passing through the measuring cell 8 into an electric signal, and receiving light The output signal from the detector 9 is subjected to phase sensitive detection at the frequency f 1 and outputs the primary phase sensitive detection signal (first derivative signal) I f1. phase-sensitive detection and in f 1 A phase sensitive detector 11 which outputs a second-order phase-sensitive detection signal (second-order differential signal) I 2f, likewise phase-sensitive detection to primary phase-sensitive detection of the output signal from the light receiver 9 at the frequency f 2 The phase sensitive detector 12 that outputs the signal I f2 and the output signal from the light receiver 9 are output at the frequency f 2 of 2
A phase-sensitive detector 13 that outputs a second-order phase-sensitive detection signal I 2f2 after phase-sensitive detection with a harmonic wave, a first-order phase-sensitive detection signal I f1,2 and a second-order phase-sensitive detection signal I 2f1,2 It has calculators 14 and 15 for respectively calculating the gas concentration from the ratio and a recorder 16 for recording the calculation result.

【0005】図5は図4に示したレーザ発振器3と変調
/制御器5の概略構成図である。
FIG. 5 is a schematic configuration diagram of the laser oscillator 3 and the modulator / controller 5 shown in FIG.

【0006】レーザ発振器3は、前後にレーザ光を出射
する半導体レーザ素子17と、電流の方向により発熱ま
たは吸熱するペルチェ素子18と、既知の濃度のガスが
封入された参照用セル19と、この参照用セル19を通
過したレーザ光を受光し電気信号に変換する受光器20
と、半導体レーザ素子17から出射したレーザ光を集光
するコリメータレンズ21とを有しており、変調/制御
器5は、周波数fの信号を発振する発振器22と、位相
敏感検波器23と、積分器24と、電流源25と、定電
流源26と、電流ミキサ27と、バイアス電流発生器2
8とを有している。
The laser oscillator 3 includes a semiconductor laser element 17 which emits a laser beam back and forth, a Peltier element 18 which heats or absorbs heat depending on the direction of current, a reference cell 19 in which a gas of known concentration is sealed, and Light receiver 20 that receives the laser light that has passed through the reference cell 19 and converts it into an electrical signal
And a collimator lens 21 that collects the laser light emitted from the semiconductor laser element 17, and the modulator / controller 5 includes an oscillator 22 that oscillates a signal of frequency f, a phase-sensitive detector 23, and Integrator 24, current source 25, constant current source 26, current mixer 27, bias current generator 2
8 and.

【0007】定電流源26の電流で励起された半導体レ
ーザ素子17が、電流ミキサ27で発振器22からの周
波数fの高周波により変調され、前後方向にレーザ光を
発振する。参照用セル19を通過したレーザ光を受光器
20により電気信号に変換し、位相敏感検波器23によ
り位相敏感検波して1次の位相敏感検波信号を積分器2
4に出力する。積分器24はバイアス電流発生器28か
らの電流でバイアスされ定電流源26の出力電流を制御
することによりペルチェ素子18の温度が制御され、半
導体レーザ素子17の温度、すなわち発振波長が制御さ
れる。
The semiconductor laser element 17 excited by the current of the constant current source 26 is modulated by the current mixer 27 with a high frequency of the frequency f from the oscillator 22, and oscillates a laser beam in the front-back direction. The laser light that has passed through the reference cell 19 is converted into an electric signal by the photodetector 20, and the phase-sensitive detector 23 detects the phase-sensitive signal to detect the primary phase-sensitive detected signal.
Output to 4. The integrator 24 is biased by the current from the bias current generator 28 to control the output current of the constant current source 26 to control the temperature of the Peltier device 18 and the temperature of the semiconductor laser device 17, that is, the oscillation wavelength. ..

【0008】図4に戻って、たとえばメタンの吸収波長
に対応したレーザ光がレーザ発振器3から出射され、ア
セチレンの吸収波長に対応したレーザ光がレーザ発振器
4から出射されると両レーザ光はファイバカップラ7で
混合され、光ファイバ29を介して測定用セル8を通過
し、光ファイバ30を介して受光器9で電気信号に変換
される。変換された電気信号は位相敏感検波器10〜1
3に入力され、位相敏感検波器10はメタンの吸収波長
に対応する1次の位相敏感検波信号を出力し、位相敏感
検波器11はメタンの吸収波長に対応する2次の位相敏
感検波信号を出力する。1次の位相敏感検波信号は光量
に比例し、2次の位相敏感検波信号は光量およびガスの
濃度に比例するので、割算器14で2次の位相敏感検波
信号で1次の位相敏感検波信号を割り算するとメタンの
濃度が算出され、レコーダ16に記録される。アセチレ
ンの濃度も同様にして位相敏感検波器12、13と割算
器15で算出される。
Returning to FIG. 4, for example, when a laser beam corresponding to the absorption wavelength of methane is emitted from the laser oscillator 3 and a laser beam corresponding to the absorption wavelength of acetylene is emitted from the laser oscillator 4, both laser beams are transmitted to the fiber. It is mixed by the coupler 7, passes through the measuring cell 8 via the optical fiber 29, and is converted into an electric signal by the light receiver 9 via the optical fiber 30. The converted electrical signal is a phase sensitive detector 10-1.
3, the phase-sensitive detector 10 outputs a primary phase-sensitive detection signal corresponding to the absorption wavelength of methane, and the phase-sensitive detector 11 outputs a secondary phase-sensitive detection signal corresponding to the absorption wavelength of methane. Output. Since the primary phase-sensitive detection signal is proportional to the light quantity and the secondary phase-sensitive detection signal is proportional to the light quantity and the gas concentration, the divider 14 detects the primary phase-sensitive detection signal with the secondary phase-sensitive detection signal. When the signal is divided, the concentration of methane is calculated and recorded in the recorder 16. Similarly, the concentration of acetylene is calculated by the phase sensitive detectors 12 and 13 and the divider 15.

【0009】レーザ発振器4と変調/制御器6について
も構成および動作は同様である。
The laser oscillator 4 and the modulator / controller 6 have the same structure and operation.

【0010】[0010]

【発明が解決しようとする課題】そのために、前述した
本願出願人による2種のガスを検知するガス検知装置で
は、波長を安定化するのに2台の周波数の異なる発振
器、2つの参照用セル、2つの受光器、2つの位相敏感
検波器が必要であり、さらにガスの濃度を求めるには4
台の位相敏感検波器が必要であるのでシステムが大がか
りとなり、コスト高になってしまう。
Therefore, in the above-described gas detector for detecting two kinds of gas by the applicant of the present application, two oscillators having different frequencies and two reference cells are used to stabilize the wavelength. Two light receivers, two phase sensitive detectors are required, and in order to obtain the gas concentration, 4
Since a single phase sensitive detector is required, the system becomes bulky and the cost becomes high.

【0011】本発明は、上記の点にかんがみてなされた
ものであり、その目的は、簡単な構成で、しかも小型の
装置で2種類のガスを検知することにある。
The present invention has been made in view of the above points, and an object thereof is to detect two kinds of gas with a simple device and a small device.

【0012】[0012]

【課題を解決するための手段】前記目的は、本発明によ
ると、(a)第1のガスの吸収線に対応する波長のレー
ザ光を発振し、所定の周波数の信号で変調された第1の
レーザ光を発する第1の半導体レーザと、(b)第2の
ガスの吸収線に対応する波長のレーザ光を発振し、所定
の周波数の信号と同一の周波数で位相がΦ(Φ≠nπ/
2,n=0,±1,±2…)だけ異なる信号で変調され
た第2のレーザ光を発する第2の半導体レーザと、
(c)第1のレーザ光と第2のレーザ光とを混合する混
合器と、(d)混合器から出力し既知濃度の第1のガス
および第2のガスが封入された参照用セルを通過したレ
ーザ光を受光して電気信号に変換する第1の受光器と、
(e)受光器の出力を受け1次の位相敏感検波信号のs
in成分およびcos成分を出力する第1の位相敏感検
波器と、(f)sin成分から第1のレーザ光に関する
1次の位相敏感検波信号を求めて第1のレーザ光の波長
を安定化する第1の波長安定器と、(g)cos成分か
らsin成分とcotΦとの積を引き算し第2のレーザ
光に関する1次の位相敏感検波信号を求めて第2のレー
ザ光の波長を安定化する第2の波長安定器と、(h)混
合器から未知濃度の第1のガスおよび第2のガスが封入
された測定用セルを通過したレーザ光を受光して電気信
号に変換する第2の受光器と、(i)第2の受光器の出
力および所定の周波数の信号を受け1次の位相敏感検波
信号のsin成分およびcos成分を出力する第2の位
相敏感検波器と、(j)第2の受光器の出力および所定
の周波数の信号を受け2次の位相敏感検波信号のsin
成分およびcos成分を出力する第3の位相敏感検波器
と、(k)第1のレーザ光に関する1次の位相敏感検波
信号のcos成分からsin成分とcotΦとの積を引
き算した値で第1のレーザ光に関する2次の位相敏感検
波信号のcos成分から第1のレーザ光に関する2次の
位相敏感検波信号のsin成分とcot2Φとの積を引
き算した値を割り算して第1のガスの濃度を求める第1
の演算器と、(l)第2のレーザ光に関する2次の位相
敏感検波信号のsin成分を第2のレーザ光に関する1
次の位相敏感検波信号のsin成分で割り算して第2の
ガスの濃度を求める第2の演算器とを備えたガス検知装
置によって達成される。
According to the present invention, the above-mentioned object is as follows: (a) a first laser which oscillates a laser beam having a wavelength corresponding to an absorption line of a first gas and is modulated by a signal of a predetermined frequency. Of the first semiconductor laser that emits the laser light of (1) and (b) the laser light of the wavelength corresponding to the absorption line of the second gas are oscillated, and the phase of the signal of the predetermined frequency is Φ (Φ ≠ nπ /
2, n = 0, ± 1, ± 2 ...), and a second semiconductor laser that emits a second laser beam modulated by signals different from each other,
(C) a mixer that mixes the first laser light and the second laser light, and (d) a reference cell that is output from the mixer and is filled with the first gas and the second gas of known concentrations. A first light-receiver for receiving the passed laser light and converting it into an electric signal;
(E) s of the primary phase sensitive detection signal that receives the output of the photodetector
A first phase sensitive detector that outputs an in component and a cos component, and (f) stabilizes the wavelength of the first laser light by obtaining a primary phase sensitive detection signal related to the first laser light from the sin component. Stabilize the wavelength of the second laser light by subtracting the product of the sin component and cotΦ from the (g) cos component by the first wavelength stabilizer to obtain a first-order phase-sensitive detection signal for the second laser light. And a second wavelength stabilizer for receiving the laser light that has passed through the measurement cell in which the first gas and the second gas of unknown concentration are sealed from the mixer (h) and converts the laser light into an electric signal. And (i) a second phase-sensitive detector that receives the output of the second light-receiver and a signal of a predetermined frequency and outputs a sin component and a cos component of the primary phase-sensitive detection signal, ) The output of the second photoreceiver and the signal of the specified frequency sin of only a second-order phase-sensitive detection signal
A third phase-sensitive detector that outputs a component and a cos component, and (k) a value obtained by subtracting the product of the sin component and cotΦ from the cos component of the first-order phase-sensitive detection signal related to the first laser light. The value obtained by subtracting the product of the sin component of the secondary phase-sensitive detection signal of the first laser light and the product of cot2Φ from the cos component of the secondary phase-sensitive detection signal of the laser light of First to seek
And (l) the sin component of the secondary phase sensitive detection signal for the second laser light is
And a second arithmetic unit for obtaining the concentration of the second gas by dividing by the sin component of the next phase sensitive detection signal.

【0013】[0013]

【作用】本発明のガス検知装置は、所定の周波数で変調
され第1のガスの吸収線に対応する波長の第1のレーザ
光と、位相がΦ(Φ≠nπ/2,n=0,±1,±2
…)だけ異なる所定の周波数で変調され第2のガスの吸
収線に対応する波長の第2のレーザ光とが混合されたレ
ーザ光が参照用セルと測定用セルとを通過する。参照用
セルを通過したレーザ光は第1の受光器で電気信号に変
換され、第1の位相敏感検波器に入力される。第1の位
相敏感検波器より得られる1次の位相敏感信号のsin
成分に基づいて第1のレーザ光の波長が安定化され、1
次の位相敏感信号のcos成分からsin成分とcot
Φとの積を引き算して得られる値に基づいて第2のレー
ザ光の波長が安定化される。
The gas detecting device of the present invention has a phase of Φ (Φ ≠ nπ / 2, n = 0, with the first laser light having a wavelength corresponding to the absorption line of the first gas which is modulated at a predetermined frequency. ± 1, ± 2
...) mixed with a second laser beam having a wavelength corresponding to the absorption line of the second gas, which is modulated at a predetermined frequency different from each other, and passes through the reference cell and the measurement cell. The laser light that has passed through the reference cell is converted into an electric signal by the first light receiver, and is input to the first phase sensitive detector. Sin of the first-order phase sensitive signal obtained from the first phase sensitive detector
The wavelength of the first laser light is stabilized based on the component,
From the cos component of the next phase sensitive signal to the sin component and cot
The wavelength of the second laser light is stabilized based on the value obtained by subtracting the product of Φ.

【0014】一方、測定用セルを通過したレーザ光は受
光器で電気信号に変換された後第2および第3の位相敏
感検波器に入力される。第2の位相敏感検波器は1次の
位相敏感検波信号のsin成分およびcos成分を第1
および第2の演算器に出力し、第3の位相敏感検波器は
2次の位相敏感検波信号のsin成分およびcos成分
を第1および第2の演算器に出力し、第1の演算器は第
1のレーザ光に関する1次の位相敏感検波信号のcos
成分からsin成分とcotΦとの積を引き算した値で
第1のレーザ光に関する2次の位相敏感検波信号のco
s成分から第1のレーザ光に関する2次の位相敏感検波
信号のsin成分とcot2Φとの積を引き算した値を
割り算して第1のガスの濃度を求め、第2の演算器は第
2のレーザ光に関する2次の位相敏感検波信号のsin
成分を第2のレーザ光に関する1次の位相敏感検波信号
のsin成分で割り算して第2のガスの濃度を求める。
On the other hand, the laser beam that has passed through the measuring cell is converted into an electric signal by the photodetector and then input to the second and third phase sensitive detectors. The second phase-sensitive detector detects the sin and cos components of the first-order phase-sensitive detection signal as the first component.
And a second arithmetic unit, the third phase sensitive detector outputs the sin component and the cos component of the secondary phase sensitive detection signal to the first and second arithmetic units, and the first arithmetic unit outputs Cos of the first-order phase sensitive detection signal regarding the first laser light
The value obtained by subtracting the product of the sin component and cotΦ from the component is the co of the secondary phase-sensitive detection signal for the first laser light.
The value obtained by subtracting the product of the sin component of the second-order phase sensitive detection signal relating to the first laser light and cot2Φ from the s component is divided to obtain the concentration of the first gas, and the second computing unit uses the second Sin of the second-order phase-sensitive detection signal related to laser light
The component is divided by the sin component of the first-order phase sensitive detection signal regarding the second laser light to obtain the concentration of the second gas.

【0015】[0015]

【実施例】以下本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0016】図1は本発明によるガス検知装置の一実施
例の概略構成図であり、メタンガスの濃度dm とアセチ
レンガスの濃度da を検知する装置として例示する。
FIG. 1 is a schematic configuration diagram of an embodiment of a gas detection device according to the present invention, and is illustrated as a device for detecting the concentration d m of methane gas and the concentration d a of acetylene gas.

【0017】図に示すようにガス検知装置は、制御系4
0と測定系41とから構成されている。
As shown in the figure, the gas detection device includes a control system 4
0 and measuring system 41.

【0018】制御系40は、ペルチェ素子がそれぞれ取
り付けられた2つの半導体レーザ素子42、43と、半
導体レーザ素子42、43から出射したレーザ光L1
2を光ファイバF1 、F2 を介して混合するファイバ
カップラ44と、既知の濃度の混合ガス(メタンCH4
とアセチレンC22 )を封入した参照用セル45と、
参照用セル45を通過したレーザ光を受けて電気信号に
変換する受光器46と、受光器46からの電気信号に基
づいて半導体レーザ素子42、43の発振波長を安定化
する変調/制御器47とを有している。
The control system 40 includes two semiconductor laser elements 42 and 43 each having a Peltier element attached thereto, and a laser beam L 1 emitted from the semiconductor laser elements 42 and 43.
A fiber coupler 44 that mixes L 2 through the optical fibers F 1 and F 2, and a mixed gas of known concentration (methane CH 4
And a reference cell 45 in which acetylene C 2 H 2 ) is enclosed,
A light receiver 46 that receives the laser light that has passed through the reference cell 45 and converts it into an electrical signal, and a modulator / controller 47 that stabilizes the oscillation wavelengths of the semiconductor laser elements 42 and 43 based on the electrical signal from the light receiver 46. And have.

【0019】一方、測定系41は未知の濃度のメタンお
よびアセチレンの混合ガスが封入された測定用セル48
と、測定用セル48を通過したレーザ光を受けて電気信
号に変換する受光器49と、受光器49からの電気信号
を変調/制御器47からの周波数fの電気信号で位相敏
感検波して1次の位相敏感検波信号Ifを出力する位相敏
感検波器50と、同信号を位相敏感検波して2次の位相
敏感検波信号I2f を出力する位相敏感検波器51と、1
次の位相敏感検波信号Ifと2次の位相敏感検波信号I2f
とから第1のガスとしてのメタンの濃度dm を算出する
演算器52と、同様に第2のガスとしてのアセチレンの
濃度da を算出する演算器53とを有している。
On the other hand, the measuring system 41 is a measuring cell 48 in which a mixed gas of methane and acetylene of unknown concentration is enclosed.
And a photodetector 49 that receives the laser light that has passed through the measuring cell 48 and converts it into an electric signal, and an electric signal from the photodetector 49 is phase-sensitively detected by an electric signal of frequency f from the modulator / controller 47. A phase-sensitive detector 50 that outputs a first-order phase-sensitive detection signal I f, and a phase-sensitive detector 51 that outputs a second-order phase-sensitive detection signal I 2f by phase-sensitive detection of the same signal;
Next phase sensitive detection signal I f and second phase sensitive detection signal I 2f
And a calculator 53 for calculating the concentration d m of methane as the first gas and a calculator 53 for similarly calculating the concentration d a of acetylene as the second gas.

【0020】図2は、図1に示した制御系40をさらに
詳しく説明するための制御系の概略構成図である。
FIG. 2 is a schematic configuration diagram of the control system for explaining the control system 40 shown in FIG. 1 in more detail.

【0021】制御系40は、半導体レーザ素子42、4
3、ファイバカップラ44、参照用セル45、受光器4
6の他に、互いに位相がΦだけ異なる2つの余弦波信号
cos(2πfo t)およびcos(2πfo t+Φ)
を発生する発振器54と、1次の位相敏感検波信号のs
in成分およびcos成分を同時に出力する位相敏感検
波器55と、演算器56と、位相敏感検波器55の1次
の位相敏感検波信号を積分する積分器57、58と、半
導体レーザ素子42に設けられたペルチェ素子に電流を
印加する電流源59と、電流源59にバイアス電流を加
えるバイアス電流発生器60と、半導体レーザ素子43
に設けられたペルチェ素子に電流を印加する電流源61
と、電流源61にバイアス電流を加えるバイアス電流発
生器62とを有している。但しΦは数1を満足する位相
角である。
The control system 40 comprises semiconductor laser elements 42, 4
3, fiber coupler 44, reference cell 45, light receiver 4
In addition to 6, two cosine wave signals cos (2πf o t) and cos (2πf o t + Φ) whose phases are different from each other by Φ
And an oscillator 54 for generating the s of the primary phase sensitive detection signal.
Provided in the semiconductor laser device 42, a phase sensitive detector 55 that outputs the in component and the cos component at the same time, a calculator 56, integrators 57 and 58 that integrate the primary phase sensitive detection signal of the phase sensitive detector 55. A current source 59 for applying a current to the Peltier device, a bias current generator 60 for applying a bias current to the current source 59, and a semiconductor laser device 43.
Current source 61 for applying current to the Peltier device provided in the
And a bias current generator 62 that applies a bias current to the current source 61. However, Φ is a phase angle that satisfies Expression 1.

【0022】[0022]

【数1】 Φ≠nπ/2,n=0,±1,±2…(ラジアン) 半導体レーザ素子42、43から出射したレーザ光L
1 、L2はそれぞれレーザ光の反射を防止するためのア
イソレータI1 、I2 およびレーザ光を集光するための
レンズLe1、Le2を介して光ファイバF1 、F2 を通し
てファイバカップラ4に導かれる。
Φ ≠ nπ / 2, n = 0, ± 1, ± 2 (radian) Laser light L emitted from the semiconductor laser elements 42 and 43
1, L 2 isolator I 1 for preventing reflection of the laser beam, respectively, I 2 and the fiber coupler 4 through the optical fiber F 1, F 2 laser light through a lens L e1, L e2 for condensing Be led to.

【0023】半導体レーザ素子42、43は、素子自体
の温度が高くなると発振波長が長くなり、温度が低くな
ると発振波長が短くなる特性を有している。半導体レー
ザ素子42、43にはペルチェ素子が取り付けられてお
り、このペルチェ素子は、ペルチェ効果を利用した素子
である。ペルチェ効果はN型半導体とP型半導体とを交
互に接合して電流を流すと、ジュール熱が発生する以外
に、その接合部で熱を発生するか、または熱の吸収が起
こる現象である。なお、この現象は電流を流す方向を逆
にすると発熱と吸熱とが逆になるのでペルチェ素子の印
加電圧または電流を制御することで半導体レーザ素子の
発振波長を制御することができる。
The semiconductor laser devices 42 and 43 have such characteristics that the oscillation wavelength becomes longer as the temperature of the device itself becomes higher and the oscillation wavelength becomes shorter as the temperature lowers. Peltier devices are attached to the semiconductor laser devices 42 and 43, and these Peltier devices are devices utilizing the Peltier effect. The Peltier effect is a phenomenon in which, when N-type semiconductors and P-type semiconductors are alternately joined and a current is passed, Joule heat is generated and, in addition, heat is generated or heat is absorbed at the junction. In this phenomenon, heat generation and heat absorption are reversed when the direction of current flow is reversed, so the oscillation wavelength of the semiconductor laser device can be controlled by controlling the voltage or current applied to the Peltier device.

【0024】発振器54は、cos(2πfo t)、c
os(2πfo t+Φ)で表わされる(位相差がΦ異な
る)2つの余弦波信号を発振する。ここでfo は周波
数、tは時間を表わす。定電流源63は、半導体レーザ
素子42がメタンの吸収線に対応する波長を発振するた
めの一定の電流を発生し、定電流源64は、半導体レー
ザ素子43がアセチレンの吸収線に対応する波長を発振
するのに必要な一定の電流を発生する。このため半導体
レーザ素子42から出射するレーザ光は周波数fの信号
で周波数変調され、半導体レーザ素子43から出射する
レーザ光は同一の周波数fで位相がΦだけ異なる信号で
周波数変調される。
The oscillator 54 has a cos (2πf o t), c
Oscillates two cosine wave signals represented by os (2πf o t + Φ) (phase difference is Φ). Here f o is the frequency, t represents the time. The constant current source 63 generates a constant current for causing the semiconductor laser element 42 to oscillate at a wavelength corresponding to the absorption line of methane, and the constant current source 64 causes the semiconductor laser element 43 to have a wavelength corresponding to the absorption line of acetylene. Generates a constant current required to oscillate. Therefore, the laser light emitted from the semiconductor laser element 42 is frequency-modulated with a signal of frequency f, and the laser light emitted from the semiconductor laser element 43 is frequency-modulated with a signal having the same frequency f and a phase difference of Φ.

【0025】ファイバーカップラ44は、半導体レーザ
素子42から出射されるレーザ光L1 と、半導体レーザ
素子43から出射されるレーザ光L2 とを混合し、混合
されたレーザ光は光ファイバF3 を介して参照用セル4
5に入射され、光ファイバF4 およびレンズLe3を介し
て測定用セル48に入射される(図1参照)。
The fiber coupler 44 mixes the laser light L 1 emitted from the semiconductor laser element 42 and the laser light L 2 emitted from the semiconductor laser element 43, and the mixed laser light passes through the optical fiber F 3 . Reference cell 4 via
5, and enters the measuring cell 48 through the optical fiber F 4 and the lens L e3 (see FIG. 1).

【0026】受光器46は参照用セル45を通過したレ
ーザ光を電気信号に変換する素子で、たとえばフォトダ
イオードが用いられるが、これに限定されずフォトトラ
ンジスタを用いてもよい。(図1)位相敏感検波器55
は、受光器46から出力される電気信号の中から特定の
周波数かつ特定の位相をもつ成分(1次微分信号)だけ
を抽出し、復調する。これにより、高いS/N比で微小
信号の検出を行うことができる。
The light receiver 46 is an element for converting the laser light passing through the reference cell 45 into an electric signal, and for example, a photodiode is used, but not limited to this, a phototransistor may be used. (Fig. 1) Phase sensitive detector 55
Extracts only a component (first-order differential signal) having a specific frequency and a specific phase from the electric signal output from the light receiver 46 and demodulates it. As a result, it is possible to detect a minute signal with a high S / N ratio.

【0027】一般に特定の周波数で変調されたレーザ光
が、特定の波長の光を吸収するガスを通過し、センサで
受光されると、このセンサの出力信号は直流成分の他に
変調周波数と同じ周波数をもつ基本波成分およびその高
調波成分から成る。そのうち、基本波成分、2倍高調波
成分を位相敏感検波器で位相敏感検波すると、波長に関
する1次微分または2次微分に対応する信号を得ること
ができ、1次微分信号のsin成分とcos成分とを同
時に出力するか、または2次微分信号のsin成分とc
os成分とを同時に出力することができる。
Generally, when laser light modulated at a specific frequency passes through a gas absorbing a light of a specific wavelength and is received by a sensor, the output signal of this sensor has the same DC frequency as the modulation frequency. It consists of a fundamental wave component having a frequency and its harmonic components. When the fundamental wave component and the second harmonic component are phase-sensitive detected by the phase-sensitive detector, a signal corresponding to the first derivative or the second derivative with respect to the wavelength can be obtained, and the sin component and cos of the first derivative signal can be obtained. , And the sin component of the second derivative signal and c
The os component and the os component can be output at the same time.

【0028】図3は、周波数変調されたレーザ光を表わ
すベクトル(a)、レーザ光を位相敏感検波器により1
次微分した信号(b)、レーザ光を位相敏感検波器によ
り2次微分した信号(c)のベクトル図をそれぞれ示
す。
FIG. 3 shows a vector (a) representing the frequency-modulated laser light, the laser light being detected by a phase-sensitive detector.
Vector diagrams of the signal (b) that is secondarily differentiated and the signal (c) that is secondarily differentiated by the phase sensitive detector of the laser light are shown.

【0029】位相敏感検波器55は、アセチレンおよび
メタンの透過光強度を1次微分し、図3(b)に示すよ
うに1次微分した信号をさらにsin成分とcos成分
とに分解してIf sin (=If a sinΦ)およびIf cos
(=If m +If a cosΦ)として出力する。なお半導体
レーザ素子43から出射される周波数変調されたレーザ
光L2 の発振周波数ωa の大きさは数2で表わされ、半
導体レーザ素子42から出射される周波数変調されたレ
ーザ光L1 の発振周波数ωm の大きさは数3で表わされ
る。
The phase sensitive detector 55 first-order differentiates the transmitted light intensities of acetylene and methane, and further decomposes the first-order differentiated signal into sin and cos components as shown in FIG. f sin (= I f a sinΦ) and I f cos
Output as (= I f m + I f a cosΦ). The magnitude of the oscillation frequency ω a of the frequency-modulated laser light L 2 emitted from the semiconductor laser element 43 is expressed by the equation 2, and the magnitude of the frequency-modulated laser light L 1 emitted from the semiconductor laser element 42 is The magnitude of the oscillation frequency ω m is expressed by Equation 3.

【0030】[0030]

【数2】ωa =ω0a+ω1acos(2πfo t+Φ)[ Formula 2] ω a = ω 0a + ω 1a cos (2πf o t + Φ)

【0031】[0031]

【数3】ωm =ω0m+ω1mcos(2πfo t) ここでω0aはアセチレンの吸収波長に対応する波長のレ
ーザ光L2 の角周波数、ω1aは変調振幅の角周波数、ω
0mはメタンの吸収波長に対応する波長のレーザ光L1
角周波数、ω1mは変調振幅の角周波数を表わす。
Ω m = ω 0m + ω 1m cos (2πf o t) where ω 0a is the angular frequency of the laser beam L 2 having a wavelength corresponding to the absorption wavelength of acetylene, ω 1a is the angular frequency of the modulation amplitude, and ω
0m represents the angular frequency of the laser beam L 1 having a wavelength corresponding to the absorption wavelength of methane, and ω 1m represents the angular frequency of the modulation amplitude.

【0032】図に示すように2つのベクトルω1mとω1a
はΦの位相差があるのがわかる。これらのレーザ光L
1 、L2 を混合し、参照用セル45を通過して受光器4
6で電気信号に変換し位相敏感検波器55に入力する
と、1次微分信号Ifが得られ、図3(b)に示すような
ベクトルIf m、If aが得られる。
As shown in the figure, two vectors ω 1m and ω 1a
It can be seen that there is a phase difference of Φ. These laser light L
1 and L 2 are mixed and passed through the reference cell 45 to receive the light receiver 4
Into an electric signal when the input to the phase sensitive detector 55 at 6, first derivative signal I f is obtained, the vector I f m as shown in FIG. 3 (b), I f a is obtained.

【0033】図3(b)に示すように、1次微分信号If
も位相差がΦだけ位相が異なった状態で出力されるの
で、1次微分信号のsin成分としてIf asinΦ(=
If sin)を出力するが、cos成分としてはIf acos
Φ+If m(=If sin )を出力し、アセチレンに対する1
次微分信号If aとメタンに対する1次微分信号If aとを
含んだまま出力してしまう。
As shown in FIG. 3B, the first-order differential signal I f
Is output in a state in which the phase difference is Φ, the phase is different, so that if a sin Φ (=
I f sin ), but I f a cos as the cos component
Φ + I f m (= I f sin ) is output and 1 for acetylene
Resulting in output while containing the first derivative signal I f a for the next differential signal I f a and methane.

【0034】ところが半導体レーザ素子42の発振波長
を制御するためにはアセチレン透過光の1次微分信号I
f aとメタン透過光の1次微分信号If mとを分離しなけれ
ば誤って波長を制御することになるので演算器56でIf
cos −If sin cotΦの演算を行う。
However, in order to control the oscillation wavelength of the semiconductor laser device 42, the first-order differential signal I of the acetylene transmitted light is used.
f a 1 of methane transmitted light-order differential signal I f m the arithmetic unit 56 so as thereby to control the wavelength accidentally be separated the I f
performing the calculation of cos -I f sin cotΦ.

【0035】積分器57は、周波数fの正弦波信号で周
波数変調されたレーザ光L1 に対応した1次微分信号、
すなわちIf sinを積分し、積分器58は、周波数fで位
相がΦだけ異なる正弦波信号で周波数変調されたレーザ
光L2 に対応した1次微分信号、すなわちIf cos −If
sin cotΦを積分する。
The integrator 57 is a primary differential signal corresponding to the laser beam L 1 frequency-modulated by the sine wave signal of frequency f,
That is, I f sin is integrated, and the integrator 58 has a first-order differential signal corresponding to the laser light L 2 frequency-modulated with a sine wave signal whose phase is different by Φ at frequency f , that is, I f cos −I f
Integrate sin cotΦ.

【0036】積分器57は、1次微分信号If aのsin
成分から電流源59を駆動するのに必要な信号を発生
し、電流源59は、積分器57の出力に対応した電流を
ペルチェ素子に供給し、ペルチェ素子は電流源59の電
流の大きさおよび方向に応じて吸熱または発熱する。
The integrator 57 is a sin of the first derivative signal I f a .
The component produces the signal necessary to drive the current source 59, which supplies the current corresponding to the output of the integrator 57 to the Peltier element, which in turn supplies the current magnitude of the current source 59 and Depending on the direction, it will absorb heat or generate heat.

【0037】一方、積分器58は、1次微分信号If m
sin成分から電流源61を駆動するのに必要な信号を
発生し、電流源61は、積分器58の出力に対応した電
流をペルチェ素子に供給し、ペルチェ素子は電流源61
の電流の大きさおよび方向に応じて吸熱または発熱す
る。
On the other hand, the integrator 58, a signal required to drive the current source 61 from the sin component of the first derivative signal I f m occurs, the current source 61, current corresponding to the output of the integrator 58 Is supplied to the Peltier element, and the Peltier element is a current source 61
Heat is absorbed or generated depending on the magnitude and direction of the current.

【0038】バイアス電流発生器60は電流源59にバ
イアス電流を印加することが可能である。これは半導体
レーザ素子42、受光器46、位相敏感検波器55、積
分器57、電流源59およびペルチェ素子は1次微分信
号がゼロとなることで波長が安定化するようなループを
形成しているので、他の波長に変更したい場合に半導体
レーザ素子42の波長が所定の値になるように調整する
ためである。同様に半導体レーザ素子43、受光器4
6、位相敏感検波器55、演算器56、積分器58、電
流源61およびペルチェ素子も1次微分信号がゼロとな
るようなループを形成しているので、バイアス電流発生
器62を用いてバイアス電流を印加して発振波長を変更
することができる。
The bias current generator 60 can apply a bias current to the current source 59. This is because the semiconductor laser element 42, the light receiver 46, the phase sensitive detector 55, the integrator 57, the current source 59, and the Peltier element form a loop in which the wavelength is stabilized when the first-order differential signal becomes zero. This is because the wavelength of the semiconductor laser element 42 is adjusted to a predetermined value when it is desired to change to another wavelength. Similarly, the semiconductor laser element 43 and the light receiver 4
6, the phase sensitive detector 55, the calculator 56, the integrator 58, the current source 61, and the Peltier element also form a loop such that the first-order differential signal becomes zero. Therefore, the bias current generator 62 is used to bias the bias current. The oscillation wavelength can be changed by applying a current.

【0039】再び図1に戻って説明すると、測定系41
において測定用セル48はメタンガスボンベ65、窒素
ガスボンベ66、アセチレンガスボンベ67に接続され
ており、各コック68、69、70を開閉することによ
り測定用セル48内の成分比を可変することができる。
なお窒素N2 はメタンの濃度dm およびアセチレンの濃
度da を調整するために用いられるが、メタンおよびア
セチレンと化学反応を生じないガスであれば他のガスを
用いてもよい。この測定用セル48にはファイバーカッ
プラ44からのレーザ光が入射され、レンズLe4
e5、光ファイバF5 を介して受光器49に入射され
る。受光器49は混合されたレーザ光を電気信号に変換
し、変換された信号は位相敏感検波器50、51に入力
される。
Returning to FIG. 1 again, the measurement system 41 will be described.
In, the measurement cell 48 is connected to the methane gas cylinder 65, the nitrogen gas cylinder 66, and the acetylene gas cylinder 67, and the component ratio in the measurement cell 48 can be changed by opening and closing the cocks 68, 69, and 70.
Nitrogen N 2 is used for adjusting the concentration d m of methane and the concentration d a of acetylene, but other gas may be used as long as it does not cause a chemical reaction with methane and acetylene. The laser light from the fiber coupler 44 is incident on the measuring cell 48, and the lens L e4 ,
The light enters the light receiver 49 via L e5 and the optical fiber F 5 . The light receiver 49 converts the mixed laser light into an electric signal, and the converted signal is input to the phase sensitive detectors 50 and 51.

【0040】位相敏感検波器50は、受光器49からの
電気信号および変調/制御器47からの発振周波数fに
基づいてレーザ光L1 、L2 に関する1次微分信号のs
in成分およびcos成分を出力し、位相敏感検波器5
1は、レーザ光L1 、L2 に関する2次微分信号のsi
n成分およびcos成分を出力する。
The phase-sensitive detector 50 uses the electrical signal from the photodetector 49 and the oscillation frequency f from the modulator / controller 47 to determine the s of the primary differential signal for the laser beams L 1 and L 2.
Outputs in component and cos component, and phase sensitive detector 5
1 is the si of the second derivative signal with respect to the laser beams L 1 and L 2.
Output the n and cos components.

【0041】第1の演算器としての演算器52は、レー
ザ光L1 に関する1次微分信号のcos成分If cos の値
からsin成分とcotΦとの積If sin cotΦの値を
引き算した値(If cos −If sin cotΦ)でレーザ光L
1 に関する2次微分信号のcos成分I2f cosの値から2
次微分信号のsin成分とcot2Φとの積の値I2f sin
cot2Φを引き算した値(I2f cos−I2f sincot2
Φ)を割り算してメタンの濃度dm を算出し、第2の演
算器としての演算器53は、レーザ光L2 に関する2次
微分信号の値I2f sinをレーザ光L1 に関する1次微分信
号の値If sin で割り算してアセチレンの濃度da を算出
する。
The arithmetic unit 52 as the first arithmetic unit is a value obtained by subtracting the value of the product I f sin cotΦ of the sin component and cotΦ from the value of the cos component I f cos of the first-order differential signal relating to the laser beam L 1. (I f cos −I f sin cotΦ) laser light L
2 from the value of cos component I 2f cos 1 about second-order differential signal
Value of product of sin component of second derivative signal and cot2Φ I 2f sin
A value obtained by subtracting cot2Φ (I 2f cos −I 2f sin cot2
By dividing the [Phi) to calculate the concentration d m of methane, calculator 53 as the second computing unit, first derivative to a laser beam L 1 values I 2f sin of the laser beam L 2 relating to the secondary differential signal The acetylene concentration d a is calculated by dividing by the signal value I f sin .

【0042】図3(c)は2次微分信号を示すベクトル
図である。
FIG. 3C is a vector diagram showing the secondary differential signal.

【0043】図に示すように2次微分信号I2f mは水平方
向のベクトルであり、2次微分信号I2f aは垂直方向のベ
クトルであるので、cos成分はI2f m+I2f acos2Φ
で、sin成分はI2f asin2Φとなるので、メタンの
濃度dm は(I2f cos−I2f sincot2Φ)を(If cos
If sin cotΦ)で割れば求まり、アセチレンの濃度d
a はI2f sinをIf sinで割れば求まる。
As shown in the figure, since the secondary differential signal I 2f m is a horizontal vector and the secondary differential signal I 2f a is a vertical vector, the cos component is I 2f m + I 2f a cos 2Φ
Since the sin component is I 2f a sin 2Φ, the methane concentration d m is (I 2f cos −I 2f sin cot 2Φ) (I f cos
Divide by I f sin cotΦ) to obtain the concentration of acetylene d
a can be obtained by dividing I 2f sin by I f sin .

【0044】次にガス検知装置の動作を図1および図2
を参照して説明する。
Next, the operation of the gas detector will be described with reference to FIGS.
Will be described.

【0045】図2において発振器54から位相がΦ異な
る2つの信号cos(2πfo t)およびcos(2π
o t+Φ)が、定電流源63、64で発生される電流
に重畳されることにより半導体レーザ素子42、43が
周波数変調される。半導体レーザ素子42、43から出
射したレーザ光L1 、L2 はファイバーカップラ44で
混合され、混合されたレーザ光の一方は参照用セル45
に入射され、他方のレーザ光は測定用セル48に入射さ
れる。参照用セル45を通過したレーザ光は受光器46
で電気信号に変換され位相敏感検波器55に送出され
る。位相敏感検波器55から1次微分信号のsin成分
が積分器57および引算器56の一方の入力に送出さ
れ、1次微分信号のcos成分が演算器56の他方の入
力に送出される。積分器57はsin成分、すなわちメ
タンの信号の1次微分信号をそのまま積分して電流源5
9を駆動し、所定の電流がペルチェ素子に印加され、ペ
ルチェ素子の温度が制御され、半導体レーザ素子42か
ら出射されるレーザ光L1 がメタンの吸収波長に対応し
た波長に安定化される。演算器56はcos成分If cos
からsin成分とcotΦとの積If sin cotΦを引き
算することによりアセチレンの信号の1次微分信号のみ
抽出してこれを積分して電流源61を駆動し、所定の電
流がペルチェ素子に印加されて、半導体レーザ素子43
から出射されるレーザ光L2 がアセチレンの吸収波長に
対応した波長に安定化される。
In FIG. 2, two signals cos (2πf o t) and cos (2π) from the oscillator 54 having different phases Φ.
(f o t + Φ) is superimposed on the current generated by the constant current sources 63 and 64, whereby the semiconductor laser elements 42 and 43 are frequency-modulated. The laser beams L 1 and L 2 emitted from the semiconductor laser elements 42 and 43 are mixed by a fiber coupler 44, and one of the mixed laser beams is a reference cell 45.
And the other laser beam is incident on the measuring cell 48. The laser light that has passed through the reference cell 45 is received by the light receiver 46.
Then, it is converted into an electric signal and sent to the phase sensitive detector 55. The sin component of the primary differential signal is sent from the phase sensitive detector 55 to one input of the integrator 57 and the subtractor 56, and the cos component of the primary differential signal is sent to the other input of the arithmetic unit 56. The integrator 57 integrates the sin component, that is, the first-order differential signal of the methane signal as it is to integrate the current source 5
9, a predetermined current is applied to the Peltier element, the temperature of the Peltier element is controlled, and the laser light L 1 emitted from the semiconductor laser element 42 is stabilized at a wavelength corresponding to the absorption wavelength of methane. The calculator 56 has a cos component I f cos
By subtracting the product of the sin component and cotΦ from I f sin cotΦ, only the first-order differential signal of the acetylene signal is extracted and integrated to drive the current source 61, and a predetermined current is applied to the Peltier element. The semiconductor laser device 43
The laser beam L 2 emitted from is stabilized at a wavelength corresponding to the absorption wavelength of acetylene.

【0046】図1に示すように測定用セル48を通過し
たレーザ光は受光器49で電気信号に変換され、位相敏
感検波器50、51に送出され、これとともに位相敏感
検波器50、51には変調/制御器47の発振器54の
信号fo が入力されている。位相敏感検波器50は1次
微分信号のcos成分If cos を演算器52に出力し、1
次微分信号のsin成分If sin を演算器53に出力す
る。位相敏感検波器51は2次微分信号のcos成分I
2f cosを演算器52に出力し、sin成分I2f sinを演算
器53に出力する。演算器52はメタンの濃度dm を算
出し、演算器53はアセチレンda の濃度を算出する。
As shown in FIG. 1, the laser light passing through the measuring cell 48 is converted into an electric signal by the light receiver 49 and sent to the phase sensitive detectors 50 and 51, which are also sent to the phase sensitive detectors 50 and 51. the signal f o of the oscillator 54 of the modulator / controller 47 is input. The phase-sensitive detector 50 outputs the cos component I f cos of the first-order differential signal to the calculator 52 and outputs 1
The sin component I f sin of the secondary differential signal is output to the calculator 53. The phase sensitive detector 51 has a cos component I of the second derivative signal.
2f cos is output to the calculator 52, and the sin component I 2f sin is output to the calculator 53. The calculator 52 calculates the concentration of methane d m, and the calculator 53 calculates the concentration of acetylene d a .

【0047】このように本実施例によれば、制御系40
において、所定の周波数fo で変調されメタンの吸収波
長に対応する発振波長のレーザ光L1 と、Φだけ位相の
異なる所定の周波数fo で変調されアセチレンの吸収波
長に対応する発振波長のレーザ光L2 とをファイバーカ
ップラ44で混合し、参照用セル45を通過した後受光
器46で電気信号に変換してメタンの吸収波長に対応す
るレーザ光L1 に関する1次微分信号に基づいて半導体
レーザ素子42の温度を制御することによりメタンの吸
収波長に対応する発振波長が安定化され、アセチレンの
吸収波長に対応するレーザ光L2 に関する1次微分信号
に基づいて半導体レーザ素子43の温度を制御すること
によりアセチレンの吸収波長に対応する発振波長が安定
化される。
As described above, according to this embodiment, the control system 40
In the laser oscillation wavelength corresponding to the absorption wavelength of a predetermined laser beam L 1 of an oscillation wavelength corresponding to the absorption wavelength of the modulated methane frequency f o, it is modulated by Φ only phase different predetermined frequencies f o acetylene The light L 2 is mixed with the fiber coupler 44, passed through the reference cell 45, converted into an electric signal by the light receiver 46, and the semiconductor is generated based on the first-order differential signal related to the laser light L 1 corresponding to the absorption wavelength of methane. By controlling the temperature of the laser element 42, the oscillation wavelength corresponding to the absorption wavelength of methane is stabilized, and the temperature of the semiconductor laser element 43 is adjusted based on the first-order differential signal relating to the laser beam L 2 corresponding to the absorption wavelength of acetylene. By controlling, the oscillation wavelength corresponding to the absorption wavelength of acetylene is stabilized.

【0048】一方測定系41において、ファイバーカッ
プラ44で混合されたレーザ光が測定用セル48を通過
した後受光器49で電気信号に変換され、位相敏感検波
器50によりレーザ光L1 、L2 に関する1次微分信号
が演算器52、53に送出され、位相敏感検波器51に
よりレーザ光L1 、L2 に関する2次微分信号が演算器
52に入力され、演算器52によりメタンの濃度dm
演算され、演算器53によりアセチレンの濃度da が演
算される。
On the other hand, in the measuring system 41, the laser light mixed by the fiber coupler 44 passes through the measuring cell 48 and is then converted into an electric signal by the light receiver 49, and the laser light L 1 , L 2 is converted by the phase sensitive detector 50. The first-order differential signal relating to the laser beams L 1 and L 2 is input to the calculator 52 by the phase-sensitive detector 51, and the methane concentration d m is calculated by the calculator 52. Is calculated, and the calculator 53 calculates the acetylene concentration d a .

【0049】したがって従来はメタンとアセチレンとの
混合ガスの濃度dm 、da を求めるのに2つの参照用セ
ルと、3つの受光器と、6台の位相敏感検波器とが必要
だったが、本実施例においては1つの参照用セルと、2
つの受光器と、3台の位相敏感検波器とでメタンの濃度
m とアセチレンの濃度da とを求めることができ、装
置の小型化、コストダウン、操作性の向上が実現でき
た。
Therefore, conventionally, two reference cells, three light receivers, and six phase sensitive detectors were required to obtain the concentrations d m and d a of the mixed gas of methane and acetylene. In the present embodiment, one reference cell and 2
The methane concentration d m and the acetylene concentration d a can be obtained with one light receiver and three phase sensitive detectors, and the device can be downsized, the cost can be reduced, and the operability can be improved.

【0050】なお、本実施例では位相差がΦであるが、
Φがπ/4のときはcotΦが1となり、cot2Φが
0となるので演算器52、56での処理が簡略化され
る。すなわち演算器52におけるメタンの濃度dm の演
算が数4から数5へ簡略化され、
Although the phase difference is Φ in this embodiment,
When Φ is π / 4, cotΦ becomes 1 and cot2Φ becomes 0, so that the processing in the computing units 52 and 56 is simplified. That is, the calculation of the methane concentration d m in the calculator 52 is simplified from Equation 4 to Equation 5,

【0051】[0051]

【数4】 dm =(I2f cos−I2f sincot2Φ)/(If cos −If sin cotΦ)## EQU00004 ## d m = (I 2f cos −I 2f sin cot2Φ) / (I f cos −I f sin cotΦ)

【0052】[0052]

【数5】dm =I2f cos/(If cos −If sin ) 演算器56での演算が数6から数7へ簡略化される。D m = I 2f cos / (I f cos −I f sin ) The calculation in the calculator 56 is simplified from the formula 6 to the formula 7.

【0053】[0053]

【数6】If a =If cos −If sin cotΦ[Equation 6] I f a = I f cos −I f sin cotΦ

【0054】[0054]

【数7】If a =If cos −If sin さらに、本実施例では演算器52は図ではIf cos の値か
らIf sin cotΦの値を引いた値でI2f cosの値からI2f
sincot2Φを引き算した値を割っているが、演算器
52の代わりに引算器と割算器とを用いて構成してもよ
い。また参照用セル44および測定用セル48に封入さ
れるガスもメタン、アセチレンに限定されるものではな
い。さらに2つのレーザ光をファイバーカップラ44で
混合しているが、ビームスプリッタを用いてもよい。
Equation 7] I f a = I f cos -I f sin Furthermore, the computing unit 52 in the present embodiment, the value of I 2f cos a value obtained by subtracting the value of I f sin cotΦ from the value of I f cos in the figure I 2f
Although the value obtained by subtracting sin cot2Φ is divided, a subtractor and a divider may be used instead of the calculator 52. Further, the gas filled in the reference cell 44 and the measurement cell 48 is not limited to methane and acetylene. Further, two laser lights are mixed by the fiber coupler 44, but a beam splitter may be used.

【0055】[0055]

【発明の効果】以上説明したように、本発明において
は、所定の周波数の信号で変調され第1のガスの吸収線
に対応する波長の第1のレーザ光と、第2のガスの吸収
線に対応する波長のレーザ光を前記所定の周波数と同一
の周波数で位相がΦ異なる信号で変調された第2のレー
ザ光とを混合器で混合し、混合したレーザ光を参照用セ
ルに通過させて第1の受光器で電気信号に変換し、第1
の位相敏感検波器の第1のレーザ光に関する1次の位相
敏感検波信号のsin成分に基づいて第1のレーザ光の
波長を安定化し、第2のレーザ光に関する1次の位相敏
感検波信号のcos成分からsin成分を引き算して得
られる値に基づいて第2のレーザ光の波長を安定化す
る。
As described above, according to the present invention, the first laser beam having the wavelength corresponding to the absorption line of the first gas and the absorption line of the second gas which are modulated by the signal of the predetermined frequency. The laser light of the wavelength corresponding to is mixed with a second laser light which is modulated with a signal having the same frequency as the predetermined frequency but a phase different from Φ, and the mixed laser light is passed through the reference cell. Convert it into an electrical signal with the first light receiver,
The wavelength of the first laser light is stabilized based on the sin component of the first-order phase-sensitive detection signal relating to the first laser light of the phase-sensitive detector of The wavelength of the second laser light is stabilized based on the value obtained by subtracting the sin component from the cos component.

【0056】一方、混合器で混合したレーザ光を測定用
セルに通過させて第2の受光器で得られた電気信号と所
定の周波数の信号とを第2の位相敏感検波器および第3
の位相敏感検波器で受け、第2の位相敏感検波器からは
1次の位相敏感検波信号のsin成分およびcos成分
を出力するとともに第3の位相敏感検波器からは2次の
位相敏感検波信号sin成分およびcos成分を出力
し、第1の演算器は第1のレーザ光に関する1次の位相
敏感検波信号のcos成分からsin成分とcotΦと
の積を引き算した値で第1のレーザ光に関する2次の位
相敏感検波信号のcos成分から第1のレーザ光に関す
る2次の位相敏感検波信号のsin成分とcot2Φと
の積を引き算した値を割り算して第1のガスの濃度を求
め、第2の演算器は第2のレーザ光に関する2次の位相
敏感検波信号のsin成分を第2のレーザ光に関する1
次の位相敏感検波信号のsin成分で割り算して第2の
ガスの濃度を求めるので、簡単な構成でしかも小型の装
置で2種類のガスの濃度を検知することができる。
On the other hand, the laser signal mixed by the mixer is passed through the measuring cell and the electric signal obtained by the second photodetector and the signal of a predetermined frequency are detected by the second phase sensitive detector and the third phase detector.
Is received by the second phase-sensitive detector and the sin and cos components of the first-order phase-sensitive detection signal are output from the second phase-sensitive detector and the second-order phase-sensitive detection signal is output from the third phase-sensitive detector. The sin component and the cos component are output, and the first arithmetic unit relates to the first laser light with a value obtained by subtracting the product of the sin component and cotΦ from the cos component of the first-order phase sensitive detection signal relating to the first laser light. The value obtained by subtracting the product of the sin component of the secondary phase-sensitive detection signal relating to the first laser beam and cot2Φ from the cos component of the secondary phase-sensitive detection signal is divided to obtain the concentration of the first gas. The second computing unit outputs the sin component of the second-order phase-sensitive detection signal regarding the second laser beam to the first component regarding the second laser beam.
Since the concentration of the second gas is obtained by dividing by the sin component of the next phase sensitive detection signal, it is possible to detect the concentrations of two types of gas with a simple configuration and a small device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるガス検知装置の一実施例の概略構
成図である。
FIG. 1 is a schematic configuration diagram of an embodiment of a gas detection device according to the present invention.

【図2】図1に示した制御系をさらに詳しく説明するた
めの概略構成図である。
FIG. 2 is a schematic configuration diagram for explaining the control system shown in FIG. 1 in more detail.

【図3】周波数変調されたレーザ光を表わすベクトル
(a)、レーザ光を位相敏感検波器により1次微分した
信号(b)、レーザ光を位相敏感検波器により2次微分
された信号(c)のベクトル図をそれぞれ示す。
FIG. 3 is a vector (a) representing the frequency-modulated laser light, a signal (b) obtained by first-order differentiation of the laser light by a phase-sensitive detector, and a signal (c) second-order differentiated by the phase-sensitive detector of the laser light. ) Vector diagrams are shown.

【図4】本願出願人によるガス検知装置のブロック線図
である。
FIG. 4 is a block diagram of a gas detection device by the applicant of the present application.

【図5】図4に示したガス検知装置のレーザ発振器と変
調/制御器との概略構成図である。
5 is a schematic configuration diagram of a laser oscillator and a modulator / controller of the gas detection device shown in FIG.

【符号の説明】[Explanation of symbols]

40 制御系 41 測定系 42、43 半導体レーザ素子 44 ファイバカップラ 45 参照用セル 46、49 受光器 48 測定用セル 50、51、55 位相敏感検波器 52、53 演算器 54 発振器 56 演算器 40 Control System 41 Measurement System 42, 43 Semiconductor Laser Element 44 Fiber Coupler 45 Reference Cell 46, 49 Light Receiver 48 Measurement Cell 50, 51, 55 Phase Sensitive Detector 52, 53 Operator 54 Oscillator 56 Operator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(a)第1のガスの吸収線に対応する波長
のレーザ光を発振し、所定の周波数の信号で変調された
第1のレーザ光を発する第1の半導体レーザと、 (b)第2のガスの吸収線に対応する波長のレーザ光を
発振し、前記所定の周波数の信号と同一の周波数で位相
がΦ(Φ≠nπ/2,n=0,±1,±2…)だけ異な
る信号で変調された第2のレーザ光を発する第2の半導
体レーザと、 (c)前記第1のレーザ光と前記第2のレーザ光とを混
合する混合器と、 (d)該混合器から出力し既知濃度の前記第1のガスお
よび前記第2のガスが封入された参照用セルを通過した
レーザ光を受光して電気信号に変換する第1の受光器
と、 (e)該受光器の出力を受け1次の位相敏感検波信号の
sin成分およびcos成分を出力する第1の位相敏感
検波器と、 (f)該sin成分から前記第1のレーザ光に関する1
次の位相敏感検波信号を求めて前記第1のレーザ光の波
長を安定化する第1の波長安定器と、 (g)前記cos成分から前記sin成分とcotΦと
の積を引き算し前記第2のレーザ光に関する1次の位相
敏感検波信号を求めて前記第2のレーザ光の波長を安定
化する第2の波長安定器と、 (h)前記混合器から未知濃度の前記第1のガスおよび
前記第2のガスが封入された測定用セルを通過したレー
ザ光を受光して電気信号に変換する第2の受光器と、 (i)該第2の受光器の出力および前記所定の周波数の
信号を受け1次の位相敏感検波信号のsin成分および
cos成分を出力する第2の位相敏感検波器と、 (j)前記第2の受光器の出力および前記所定の周波数
の信号を受け2次の位相敏感検波信号のsin成分およ
びcos成分を出力する第3の位相敏感検波器と、 (k)前記第1のレーザ光に関する1次の位相敏感検波
信号のcos成分からsin成分とcotΦとの積を引
き算した値で前記第1のレーザ光に関する2次の位相敏
感検波信号のcos成分から前記第1のレーザ光に関す
る2次の位相敏感検波信号のsin成分とcot2Φと
の積を引き算した値を割り算して前記第1のガスの濃度
を求める第1の演算器と、 (l)前記第2のレーザ光に関する2次の位相敏感検波
信号のsin成分を前記第2のレーザ光に関する1次の
位相敏感検波信号のsin成分で割り算して前記第2の
ガスの濃度を求める第2の演算器と を備えたことを特徴とするガス検知装置。
(A) A first semiconductor laser which oscillates a laser beam having a wavelength corresponding to an absorption line of a first gas and emits a first laser beam modulated by a signal having a predetermined frequency; b) A laser beam having a wavelength corresponding to the absorption line of the second gas is oscillated, and the phase is Φ (Φ ≠ nπ / 2, n = 0, ± 1, ± 2 at the same frequency as the signal of the predetermined frequency. A second semiconductor laser that emits a second laser light modulated by signals that are different from each other; (c) a mixer that mixes the first laser light and the second laser light; A first light receiver that receives the laser light that has been output from the mixer and has passed through a reference cell in which the first gas and the second gas of known concentrations are sealed and that converts the laser light into an electric signal; ) A first unit for receiving the output of the photodetector and outputting the sin and cos components of the primary phase sensitive detection signal A phase sensitive detector, for the first laser beam from the (f) the sin component 1
A first wavelength stabilizer for stabilizing the wavelength of the first laser light by obtaining the next phase-sensitive detection signal; and (g) subtracting the product of the sin component and cotΦ from the cos component, Second phase stabilizer for stabilizing the wavelength of the second laser light by obtaining a first-order phase-sensitive detection signal relating to the laser light of (1), (h) the first gas of unknown concentration from the mixer, and A second photoreceiver for receiving the laser light that has passed through the measurement cell in which the second gas is sealed and converting it into an electric signal; and (i) the output of the second photoreceiver and the predetermined frequency. A second phase-sensitive detector that receives the signal and outputs a sin component and a cos component of the primary phase-sensitive detection signal; and (j) a secondary phase-sensitive detector that receives the output of the second photodetector and the signal of the predetermined frequency. And cos components of the phase sensitive detection signal of A third phase-sensitive detector that outputs (k) a value obtained by subtracting the product of sin component and cotΦ from the cos component of the first-order phase-sensitive detection signal relating to the first laser light, The value obtained by subtracting the product of the sin component of the secondary phase-sensitive detection signal of the first laser beam and cot2Φ from the cos component of the secondary phase-sensitive detection signal of A first computing unit to be obtained, and (l) the sin component of the secondary phase-sensitive detection signal regarding the second laser light is divided by the sin component of the primary phase-sensitive detection signal regarding the second laser light. A second computing unit for obtaining the concentration of the second gas.
【請求項2】 前記Φがπ/4であることを特徴とする
請求項1に記載のガス検知装置。
2. The gas detection device according to claim 1, wherein the Φ is π / 4.
【請求項3】 前記第1のガスがメタンガスであり、前
記第2のガスがアセチレンガスであることを特徴とする
請求項1および請求項2のいずれか1項に記載のガス検
知装置。
3. The gas detection device according to claim 1, wherein the first gas is methane gas and the second gas is acetylene gas.
JP23098191A 1991-08-19 1991-08-19 Gas detector Expired - Fee Related JP2796651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23098191A JP2796651B2 (en) 1991-08-19 1991-08-19 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23098191A JP2796651B2 (en) 1991-08-19 1991-08-19 Gas detector

Publications (2)

Publication Number Publication Date
JPH0545279A true JPH0545279A (en) 1993-02-23
JP2796651B2 JP2796651B2 (en) 1998-09-10

Family

ID=16916360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23098191A Expired - Fee Related JP2796651B2 (en) 1991-08-19 1991-08-19 Gas detector

Country Status (1)

Country Link
JP (1) JP2796651B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298880U (en) * 1989-01-25 1990-08-07
JP2001289785A (en) * 2000-04-06 2001-10-19 Oyo Kogaku Kenkyusho Infrared laser component detector
JP2009041941A (en) * 2007-08-06 2009-02-26 Fuji Electric Systems Co Ltd Gas concentration measuring device and method
JP2009222527A (en) * 2008-03-14 2009-10-01 Mitsubishi Heavy Ind Ltd Gas concentration measuring method and apparatus
JP2012108156A (en) * 2012-02-29 2012-06-07 Mitsubishi Heavy Ind Ltd Gas concentration measurement method and device
WO2015015750A1 (en) * 2013-07-31 2015-02-05 国立大学法人徳島大学 Inline concentration meter and concentration detection method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298880U (en) * 1989-01-25 1990-08-07
JP2001289785A (en) * 2000-04-06 2001-10-19 Oyo Kogaku Kenkyusho Infrared laser component detector
JP2009041941A (en) * 2007-08-06 2009-02-26 Fuji Electric Systems Co Ltd Gas concentration measuring device and method
JP2009222527A (en) * 2008-03-14 2009-10-01 Mitsubishi Heavy Ind Ltd Gas concentration measuring method and apparatus
JP2012108156A (en) * 2012-02-29 2012-06-07 Mitsubishi Heavy Ind Ltd Gas concentration measurement method and device
WO2015015750A1 (en) * 2013-07-31 2015-02-05 国立大学法人徳島大学 Inline concentration meter and concentration detection method
JP2015031544A (en) * 2013-07-31 2015-02-16 国立大学法人徳島大学 In-line type concentration meter, and concentration detecting method
CN105556283A (en) * 2013-07-31 2016-05-04 国立大学法人德岛大学 Inline concentration meter and concentration detection method
US10371630B2 (en) 2013-07-31 2019-08-06 Tokushima University Inline concentration meter and concentration detection method

Also Published As

Publication number Publication date
JP2796651B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US5106191A (en) Two-frequency distance and displacement measuring interferometer
US5515163A (en) Method and apparatus for detection, analysis and identification of particles
US8830479B2 (en) RFOG with optical heterodyning for optical signal discrimination
JPH071808B2 (en) Angular velocity sensor
US5398111A (en) Optically-locked fiber-optic resonant gyro
JP5142320B2 (en) Optical flammable gas concentration detection method and optical flammable gas concentration detector
EP1219938B1 (en) Light wavelength measuring apparatus and method using a two-beam interferometer
JP2796651B2 (en) Gas detector
JP2866230B2 (en) Gas concentration measurement device
US5117440A (en) Digital quadrature phase detection
JP2744728B2 (en) Gas concentration measuring method and its measuring device
EP0908710B1 (en) Apparatus and method for measuring characteristics of light
JP2796650B2 (en) Multi-gas detector
JPH04232418A (en) Phase-shift controlling loop for fixed frequency
JP2792782B2 (en) Gas concentration measuring method and its measuring device
JPH04326041A (en) Gas concentration measuring method and device
US5872877A (en) Passive resonant optical microfabricated inertial sensor and method using same
JPH01254841A (en) Signal processing method for gas sensor
JPH05272981A (en) Optical gyro
JP2796649B2 (en) Gas detector
JPH05264446A (en) Gas detector
CN220649542U (en) Integrated optical chip and optical gyroscope
JPS63138208A (en) Optical fiber gyro by phase modulation system
JPH1096601A (en) Light wave interference measuring device
RU276U1 (en) Light guide speed sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980526

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees