JPH0545269A - Yield point sensing method for tensile test and tensile testing device - Google Patents

Yield point sensing method for tensile test and tensile testing device

Info

Publication number
JPH0545269A
JPH0545269A JP22539391A JP22539391A JPH0545269A JP H0545269 A JPH0545269 A JP H0545269A JP 22539391 A JP22539391 A JP 22539391A JP 22539391 A JP22539391 A JP 22539391A JP H0545269 A JPH0545269 A JP H0545269A
Authority
JP
Japan
Prior art keywords
increase rate
stress increase
yield
load
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22539391A
Other languages
Japanese (ja)
Inventor
Takao Nakamura
隆夫 中村
Hideaki Tanaka
秀秋 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP22539391A priority Critical patent/JPH0545269A/en
Publication of JPH0545269A publication Critical patent/JPH0545269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To easily and precisely sense the yield point without being influenced by the device accuracy, etc., by comparing the time-to-time stress incremental rate with the reference stress incremental rate continuously, and performing judgement that the yielding phenomenon has commenced and that the yield region is passed. CONSTITUTION:A lower cross-head 6 is sunk by a driving means to give a tension to a specimen 7. The load applied to the specimen 7 is transmitted from a rod 3 to a load receptacle table 2 and a load measuring part 10. This part 10 measures the load at certain intervals using the data given from a timer 13, and the resultant data is stored in a load data memory 12. A calculation part 14 calculates the time-to- time stress incremental rate from the load data and compares it with the reference stress incremental rate. When the time-to-time stress incremental rate is below the allowable reference down-limitation range, it is judged that the yielding phenomenon is commenced, and the yield point is sensed. When the time-to-time stress incremental rate exceeds the allowable yield over-limitation range, it is judged that the yield region is passed. After completion of the test, the data obtained is passed to a printer 19 and also stored in a recorder device 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、試験材料の引張試験
において、試験材料の降伏点を正確に検出することがで
きる降伏点の検出方法およびこの方法に用いられる引張
試験装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a yield point detecting method capable of accurately detecting a yield point of a test material in a tensile test of the test material, and a tensile test apparatus used for this method.

【0002】[0002]

【従来の技術】周知のように、試験材料の引張試験を行
う場合には、試験材料をチャックで固定して、軸方向に
平行に荷重をかけて引張、徐々に延伸させて、ついには
破断させて荷重と伸びの関係を求めている。そして、試
験材料の延伸中に生ずる降伏現象では、多くの材料で降
伏点が出現しており、この降伏点を検出することも引張
試験の目的の一つとされる。降伏点(主として上降伏
点)の検出方法としてはいくつかのものが知られてお
り、その代表例を以下で説明する。引張試験中に観測さ
れる引張荷重は、引張の進行に従い増減し、降伏点通過
後は荷重が明らかに減少する。この現象を利用して、荷
重を表示する指針(例えば置き針)の動きを目視して読
み取ったり、荷重の減少を検知する手段を設けてこれを
降伏点と判定する方法がある。また、他の方法として
は、予め、降伏点を含む荷重領域を予想しておき、この
荷重領域内における最大荷重を降伏点として定める方法
がある。
2. Description of the Related Art As is well known, when performing a tensile test on a test material, the test material is fixed by a chuck, a load is applied parallel to the axial direction, and the test material is stretched, gradually stretched, and finally broken. Then, the relationship between load and elongation is sought. In the yield phenomenon that occurs during the stretching of the test material, a yield point appears in many materials, and detecting the yield point is one of the purposes of the tensile test. There are several known methods for detecting the yield point (mainly the upper yield point), and typical examples thereof will be described below. The tensile load observed during the tensile test increases and decreases with the progress of tension, and the load obviously decreases after passing the yield point. Utilizing this phenomenon, there is a method of visually observing the movement of a pointer (for example, a stylus) that displays a load, or providing a means for detecting a decrease in the load and determining this as the yield point. Further, as another method, there is a method of predicting a load region including a yield point in advance and determining the maximum load in this load region as the yield point.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の測定方
法のうち、前者の方法では、常駐観察者が必要となり、
能率が悪いという問題があり、またチャック部分ですべ
りが生じるなどして、誤って荷重値が低下したような場
合に、これを降伏点として検出してしまうおそれがあ
り、測定精度の信頼性が低いという問題がある。さら
に、後者の方法では、予め荷重領域を設定する作業が必
要になり、作業が面倒であるとともに、的確な領域設定
がなされない場合には降伏点の検出自体が困難になって
しまうおそれがある。また、荷重−伸び特性が未知であ
る材料では、予め的確な荷重領域を設定することは困難
であるので、試行錯誤により荷重領域を確認しなければ
ならず、作業量が大幅に増大する問題点がある。
However, of the conventional measurement methods, the former method requires a resident observer,
There is a problem that the efficiency is poor, and when the load value is mistakenly lowered due to slippage at the chuck part, this may be detected as the yield point, and the reliability of the measurement accuracy is high. There is a problem of being low. Further, in the latter method, it is necessary to set the load area in advance, which is troublesome, and it may be difficult to detect the yield point itself unless the area is set accurately. .. In addition, since it is difficult to set an accurate load area in advance for a material whose load-elongation characteristics are unknown, it is necessary to confirm the load area by trial and error, which causes a significant increase in the amount of work. There is.

【0004】さらに、上記したいずれの方法も、降伏点
が明瞭に出現しないような材料では、降伏現象の確認が
困難であり、降伏点の検出に失敗したのか、材料の性質
により降伏点を検出できなかったのかを判断することが
できないという問題点もあり、結局は、荷重ー伸び曲線
を人間が視認して、経験に基づいて最終的な判断をせざ
るを得ず、熟練した作業者が必要になる。また、引張試
験装置の引張速度を調整する場合にも、機械的な降伏点
の検出では信頼性が低く、正確な状態を把握して制御す
ることが困難であり、やはり荷重ー伸び曲線を視認し
て、経験のある作業者が状態を判断しつつ速度調整を行
う必要があり、作業が面倒であるという問題点もある。
この発明は上記事情を背景としてなされたものであり、
熟練者によることなく降伏点を正確かつ容易に検出する
ことができ、また引張速度調整なども確実かつ容易に行
うことができる引張試験における降伏点の検出方法およ
び引張試験装置を提供することを目的とする。
Further, in any of the above-mentioned methods, it is difficult to confirm the yield phenomenon in a material in which the yield point does not appear clearly, and whether the yield point has failed to be detected or the yield point is detected depending on the nature of the material. There is also a problem that it is not possible to judge whether or not it could not be done, and in the end, human beings have no choice but to make a final judgment based on experience by visually observing the load-elongation curve. You will need it. Even when adjusting the tensile speed of the tensile tester, the mechanical yield point detection is not reliable, and it is difficult to grasp and control the accurate state. Then, it is necessary for an experienced worker to adjust the speed while judging the state, and there is a problem that the work is troublesome.
This invention was made against the background of the above circumstances,
An object of the present invention is to provide a method of detecting a yield point in a tensile test and a tensile test device capable of accurately and easily detecting a yield point without requiring an expert and also reliably and easily adjusting a pulling speed. And

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本願発明のうち第1の発明は、試験材料の引張試験
において、継続して荷重および時間を測定して時間差を
有する荷重間で逐次応力増加率を算出し、試験初期の逐
次応力増加率を基準応力増加率に定めて、逐次応力増加
率と前記基準応力増加率とを継続して比較し、逐次応力
増加率が、基準応力増加率からさらに許容基準下限域を
超えて下回った場合に、その時点を降伏現象開始時点と
するとともに、基準応力増加率をその逐次応力増加率で
置換し、降伏現象開始後に、逐次応力増加率が基準増加
率からさらに許容降伏上限域を超えた場合に、降伏領域
通過判定を行い、前記降伏現象開始から降伏領域通過判
定に至るまでに逐次応力増加率の算出に使用した測定荷
重のピークを降伏点とすることを特徴とする。
In order to solve the above-mentioned problems, the first invention of the present invention is to continuously measure the load and the time in a tensile test of a test material, and successively measure the loads having a time difference. Calculate the stress increase rate, set the sequential stress increase rate in the initial stage of the test as the standard stress increase rate, and continuously compare the sequential stress increase rate with the reference stress increase rate. If the value falls below the lower limit of the permissible standard, that point is set as the yield phenomenon start time, and the reference stress increase rate is replaced by the successive stress increase rate. When the allowable yield upper limit region is exceeded from the standard increase rate, the yield area passing judgment is performed, and the peak of the measured load used to calculate the sequential stress increase rate is yielded from the start of the yield phenomenon to the yield area passing judgment. point Characterized in that it.

【0006】第2の発明は、第1の発明において、降伏
現象開始時点前に、逐次応力増加率が、基準応力増加率
からさらに許容基準上限域を超えた場合に、基準応力増
加率をこの逐次応力増加率で置換し、また、降伏現象開
始後であって降伏領域通過判定前に、逐次応力増加率
が、基準応力増加率よりもさらに許容降伏領域下限域を
超えて下回った場合に、基準応力増加率をこの逐次応力
増加率で置換することを特徴とする。
According to a second aspect of the present invention, in the first aspect, when the sequential stress increase rate further exceeds the allowable reference upper limit region from the reference stress increase rate before the yield phenomenon starts, the reference stress increase rate is set to Substituting with the successive stress increase rate, and after the yield phenomenon has started and before the yield area passage judgment, if the successive stress increase rate is lower than the standard stress increase rate beyond the lower limit of the allowable yield area, It is characterized in that the reference stress increase rate is replaced with this sequential stress increase rate.

【0007】また、第3の発明は、試験材料をチャック
で固定して引張試験を行う引張試験装置において、荷重
測定部と計時部とを有し、さらに、この荷重測定部によ
る荷重データを計測時間に従って少なくとも一時保持す
る荷重データ記憶部と、逐次応力増加率を算出する演算
部と、応力増加率を少なくとも一時保持する応力増加率
記憶部と、降伏現象開始および降伏領域通過判定をおこ
なう中央処理装置と、中央処理装置からの指令により引
張速度調整装置に速度制御信号を与える速度制御部とを
有することを特徴とする。
A third aspect of the present invention is a tensile tester for fixing a test material with a chuck to perform a tensile test, having a load measuring section and a time measuring section, and further measuring load data by the load measuring section. A load data storage unit that holds at least temporarily according to time, a calculation unit that calculates a sequential stress increase rate, a stress increase rate storage unit that holds the stress increase rate at least temporarily, and a central process that determines the yield phenomenon start and the yield region passage. The apparatus is characterized by having a device and a speed control unit for giving a speed control signal to the tension speed adjusting device in response to a command from the central processing unit.

【0008】なお、荷重の継続した測定は、連続的に行
う他に、一定時間間隔毎に測定する方法であってもよ
く、例えば、数分の一秒毎に行う。また、応力増加率の
算出における荷重間の時間差も適宜選定できるが、あま
りに短い間隔で行うと誤差などによる一時的な変動の影
響を受けやすく、また、長い間隔で行うと応力増加率の
変化を的確に把握できないので、これらを勘案して定め
る。例えば、数秒間隔の荷重を用いて算出する。さら
に、初期の逐次応力増加率を基準応力増加率に定める場
合には、始動時の乱れなど防ぐために、始動から所定時
間後の応力増加率を使用することも可能であり、さらに
は、例えば予測される引張強さ荷重を基準として、この
荷重の120〜150%の荷重レンジ(仮称)の10%
到達後に、基準応力増加率を定めることも可能である。
これによりチャックでのすべりによる荷重低下の影響を
排除できる。なお、この数値は厳格なものではないの
で、正確な引張強さ荷重を予め認識していることが必須
とされるものではなく、おおよそのものであってよい。
また、上記における許容基準下限域、上限域や許容降伏
領域下限域、上限域は、例えば、基準応力増加率に対す
るパーセンテージで表現することができ、荷重測定値精
度などを考慮して定めることができる。
Incidentally, the continuous measurement of the load may be carried out not only continuously but also at a constant time interval, for example, every few seconds. Also, the time difference between the loads in the calculation of the stress increase rate can be selected as appropriate, but if it is done at too short an interval it will be susceptible to temporary fluctuations due to errors, etc. Since it is not possible to accurately grasp it, it is decided taking these into consideration. For example, it is calculated using a load at intervals of several seconds. Furthermore, when the initial sequential stress increase rate is set to the reference stress increase rate, it is possible to use the stress increase rate after a predetermined time from the start in order to prevent disturbance at the time of starting, and further, for example, the prediction 10% of the load range (tentative name) of 120 to 150% of this load, based on the tensile strength load
It is also possible to determine the reference stress increase rate after the arrival.
This makes it possible to eliminate the influence of load reduction due to slippage in the chuck. Since this numerical value is not strict, it is not essential to recognize an accurate tensile strength load in advance, but it may be an approximate value.
Further, the above-mentioned allowable lower limit range, upper limit range and allowable yield range lower limit range, upper limit range can be expressed, for example, as a percentage with respect to a reference stress increase rate, and can be determined in consideration of load measurement accuracy and the like. ..

【0009】[0009]

【作用】すなわち、本願発明のうち、第1の発明によれ
ば、基準応力増加率と逐次応力増加率とを比較し、さら
に許容基準下限域を設定したので、瞬間的な荷重の低下
や逐次応力増加率の変動誤差を排除することができ、ま
た、伸びを要素としないので、伸び計の精度などにも左
右されることがなく、降伏現象の開始を正確に把握する
ことができる。降伏現象検出開始後には、新たな基準応
力増加率と逐次応力増加率とを比較し、さらに許容降伏
領域上限域を設定したので、ピーク値が存在しない場合
にも、その試験材料が降伏点を明瞭に出現させない材料
であることが、正確かつ容易に判明する。そして、降伏
点の検出は、上記した降伏領域で応力増加率の算出に使
用した測定荷重を対象とするので、降伏点を外すことな
く狭い範囲で荷重の判定が可能となり、正確さが増し、
しかも容易に降伏点を検出することができる。また、
In other words, according to the first aspect of the present invention, the reference stress increase rate and the successive stress increase rate are compared, and the allowable reference lower limit region is set. The variation error of the stress increase rate can be eliminated, and since elongation is not an element, the start of the yield phenomenon can be accurately grasped without being influenced by the accuracy of the extensometer. After the start of the yield phenomenon detection, the new reference stress increase rate and the successive stress increase rate were compared, and the upper limit of the allowable yield area was set.Therefore, even when there is no peak value, the test material has a yield point. It is easily and accurately found that the material does not appear clearly. And, the detection of the yield point, since the measured load used to calculate the stress increase rate in the above-mentioned yield region is targeted, it is possible to determine the load in a narrow range without removing the yield point, and the accuracy increases,
Moreover, the yield point can be easily detected. Also,

【0010】また、第2の発明によれば、チャックのす
べりなどによる影響を排除でき、安定した引張時の逐次
応力増加率を基準応力増加率に定めることができる。降
伏点検出後は、明瞭な降伏点を出現させる材料で生じる
降伏伸びに対応した基準応力増加率を定めることがで
き、降伏領域の通過を正確に判定することができる。ま
た、第3の発明によれば、荷重測定部、計時部および演
算部を用いて逐次応力増加率が算出され、中央処理装置
で、この逐次応力増加率と所定の基準応力増加率とを比
較することにより降伏現象開始および降伏領域通過判定
が正確になされる。さらに中央処理装置ではこれら判定
に基づいて、引張状況に最適な速度で引張を行うことが
できるように指令を発することができ、速度制御部の作
用により引張速度調整部を的確に制御することができ
る。
Further, according to the second aspect of the invention, it is possible to eliminate the influence of slippage of the chuck and the like, and to set the sequential stress increase rate during stable tension as the reference stress increase rate. After the yield point is detected, the reference stress increase rate corresponding to the yield elongation that occurs in the material in which a clear yield point appears can be determined, and the passage through the yield region can be accurately determined. According to the third aspect of the invention, the sequential stress increase rate is calculated using the load measuring unit, the time measuring unit, and the arithmetic unit, and the central processing unit compares the sequential stress increase rate with a predetermined reference stress increase rate. By doing so, the start of the yielding phenomenon and the determination of the yielding region passing can be accurately performed. Furthermore, the central processing unit can issue a command based on these judgments so that the pulling can be performed at the optimum speed for the pulling situation, and the pulling speed adjusting unit can be accurately controlled by the action of the speed control unit. it can.

【0011】[0011]

【実施例】以下に、本発明の実施例に用いる引張試験装
置を説明する。ベース1上の荷重受け台2上面に、所定
間隔をおいて2本の筒状ロッド3、3が立設されてお
り、このロッド3、3内に、ベース1で支持された内ロ
ッド4、4が貫通、配置されている。上記ロッド3には
上部クロスヘッド5が固定されており、内ロッド4には
下部クロスヘッド6が取り付けられている。なお、下部
クロスヘッド6は、図示しない駆動手段により内ロッド
4、4に沿って上下に移動可能とされている。試験材料
7は、上部クロスヘッド5および下部クロスヘッド6に
それぞれ対向して設けられたチャック8、9で固定され
ている。
EXAMPLES The tensile tester used in the examples of the present invention will be described below. Two cylindrical rods 3 and 3 are erected on the upper surface of the load receiving base 2 on the base 1 at a predetermined interval, and inside the rods 3 and 3, an inner rod 4 supported by the base 1 is provided. 4 is penetrated and arranged. An upper crosshead 5 is fixed to the rod 3, and a lower crosshead 6 is attached to the inner rod 4. The lower crosshead 6 can be moved up and down along the inner rods 4 and 4 by a driving means (not shown). The test material 7 is fixed by chucks 8 and 9 provided so as to face the upper crosshead 5 and the lower crosshead 6, respectively.

【0012】また、ベース1内には、荷重受け台2から
の荷重を測定する荷重測定部10が内蔵されており、ま
た、駆動手段からの駆動力を受けて下部クロスヘッド6
の移動速度を調整する油圧バルブ(速度調整部)11が
内蔵されている。上記荷重測定部10には、測定部10
からの荷重データを受けてこれを記憶する荷重データ記
憶部12が接続されており、図示しない駆動手段には、
引張開始後の時間を計測するタイマ(計時部)13が接
続されている。上記荷重データ記録部12およびタイマ
13は、応力増加率を算出する演算部14に接続されて
おり、演算部14は、応力増加率記憶部15と、中央処
理装置16とに接続されている。なお、中央処理装置1
6には、前記応力増加率記憶部15が接続されている。
さらに、中央処理装置16は、速度制御部17、CRT
からなる表示部18、プリンタ19、FDDまたはHD
Dからなる記録装置20に接続されており、制御部17
は、油圧バルブ11の電磁弁に接続されている。
A load measuring section 10 for measuring the load from the load receiving base 2 is built in the base 1, and the lower cross head 6 receives the driving force from the driving means.
A hydraulic valve (speed adjusting unit) 11 for adjusting the moving speed of is built in. The load measuring unit 10 includes a measuring unit 10
A load data storage unit 12 for receiving the load data from the memory and storing the load data is connected to the drive means (not shown).
A timer (timekeeping unit) 13 that measures the time after the start of tensioning is connected. The load data recording unit 12 and the timer 13 are connected to a calculation unit 14 that calculates a stress increase rate, and the calculation unit 14 is connected to a stress increase rate storage unit 15 and a central processing unit 16. The central processing unit 1
The stress increase rate storage unit 15 is connected to 6.
Further, the central processing unit 16 includes a speed control unit 17 and a CRT.
Display unit 18, printer 19, FDD or HD
The controller 17 is connected to the recording device 20 composed of D.
Is connected to the solenoid valve of the hydraulic valve 11.

【0013】次に、この引張装置の作用について、図
2、図3のフローチャートおよび図4のグラフを用いな
がら説明する。まず、装置の制御における条件設定を降
伏点の検出動作開始(ステップP1)と同時に行う。こ
の設定では、荷重の測定時間間隔を0.3秒、応力増加
率の算出に用いる荷重間の時間差ΔTを3秒に設定し、
さらに試験材料の断面積Aを得ておく。また、初期基準
応力増加率の算出時期を15%荷重レンジに達した時と
し、目標応力増加率を2kg/mm2/secとする。さらに、降
伏現象検出前に、基準応力増加率を置き換える条件であ
る許容基準上限域を基準応力増加率に対する110%以
下の範囲とし、降伏現象の検出に用いる許容基準下限域
は、基準応力増加率に対し30%以上の範囲とする。
基準応力増加率の増加置き換えは、試験初期には安定す
るまで応力増加率を増加させる状態を考慮したものであ
り、10%以内は誤差範囲とする。
Next, the operation of the tension device will be described with reference to the flow charts of FIGS. 2 and 3 and the graph of FIG. First, the condition setting in the control of the device is performed at the same time as the start of the yield point detection operation (step P1). In this setting, the load measurement time interval is set to 0.3 seconds, the time difference ΔT between the loads used to calculate the stress increase rate is set to 3 seconds,
Further, the cross-sectional area A of the test material is obtained. Further, the calculation time of the initial standard stress increase rate is set to the time when the 15% load range is reached, and the target stress increase rate is set to 2 kg / mm 2 / sec. Further, before the yield phenomenon is detected, the allowable standard upper limit area which is a condition for replacing the standard stress increase rate is set to a range of 110% or less with respect to the standard stress increase rate, and the allowable standard lower limit area used for detecting the yield phenomenon is the standard stress increase rate. To 30% or more.
The increase replacement of the reference stress increase rate takes into consideration a state in which the stress increase rate increases until it becomes stable in the initial stage of the test, and the error range is within 10%.

【0014】また降伏現象検出後に、基準応力増加率を
逐次応力増加率で置換する場合に、逐次応力増加率が
0.3Kg/mm2を超えるときは、そのまま逐次応力増加率
で置換し、0.3kg/mm2以下のときは、基準応力増加率
を0.3kg/mm2に設定する。0.3kg/mm2を基準とした
のは、降伏現象開始近辺では、逐次応力増加率は徐々に
減少し、一般に明瞭な降伏点を示す材料では−0.1〜
0.2kg/mm2の横ばいの値を示し、明瞭な降伏点を示さ
ない材料では0〜0.2kg/mm2の値を示すが、測定精度
を考慮して上記数値を基準とした。そして、逐次応力増
加率が0.3kg/mm2以下のときは、その数値が小さいた
めに、僅かな変動でも比較した比率は大きくなるので、
その影響を除くために、0.3kg/mm2以下の場合は一定
値とした。なお、この置換は、逐次応力増加率の値に依
存する設定であり、逐次応力増加率に従って逐次応力増
加率で置換したものである。
When the reference stress increase rate is replaced with the successive stress increase rate after the yield phenomenon is detected, and the successive stress increase rate exceeds 0.3 Kg / mm 2 , the reference stress increase rate is replaced with the successive stress increase rate as it is, and 0 .3kg / mm 2 or less of the time, sets the reference stress increase rate to 0.3 kg / mm 2. 0.3 kg / mm 2 was used as the standard because the rate of sequential stress increase gradually near the onset of the yield phenomenon, and in general, for materials that show a clear yield point, −0.1 to −0.1.
A material showing a leveling value of 0.2 kg / mm 2 and a material that does not show a clear yield point shows a value of 0 to 0.2 kg / mm 2 , but the above values were used as a reference in consideration of measurement accuracy. Then, when the rate of sequential stress increase is 0.3 kg / mm 2 or less, the numerical value is small, so the compared ratio becomes large even with a slight change.
In order to eliminate the effect, a constant value was used for 0.3 kg / mm 2 or less. Note that this replacement is a setting that depends on the value of the incremental stress increase rate, and is replaced by the incremental stress increase rate according to the incremental stress increase rate.

【0015】そして、許容降伏領域下限域は、基準応力
増加率の90%以上の範囲とし、降伏領域通過判定に使
用する許容降伏領域上限域は、基準応力増加率の150
%以下の範囲とする。基準応力増加率の減少置換は、降
伏伸び状態でさらに応力増加率が減少することを考慮し
たものであり、10%は誤差範囲とする。また、降伏領
域通過判定では、下降伏点や測定精度の影響を受けない
ように上記許容降伏領域上限域を定めた。なお、上記初
期設定は、降伏点検出作業毎に行う他に、予め記録装置
などに登録してある設定条件を呼出してそのまま使用す
ることも可能である。
The lower limit of the allowable yield area is set to a range of 90% or more of the reference stress increase rate, and the upper limit of the allowable yield area used for judging the passage of the yield area is 150% of the reference stress increase rate.
The range is less than or equal to%. The replacement by decreasing the standard stress increase rate takes into consideration that the stress increase rate further decreases in the yield elongation state, and the error range is 10%. Further, in the determination of passing the yield area, the upper limit area of the allowable yield area is set so as not to be affected by the yield point and the measurement accuracy. The initial setting may be performed every time the yield point is detected, or the setting conditions registered in advance in the recording device may be called and used as it is.

【0016】次に装置を作動させて、図示しない駆動手
段により下部クロスヘッド6を下降させて試験材料7に
引張力を与える。試験材料に与えられた荷重は、ロッド
3から荷重受け台2、荷重測定部10へと伝えられる。
荷重測定部10では、応力増加率Zi算出サブルーチン
(ステップS1)に従って、タイマ13からのデータに
より0.3秒間隔で荷重Piが測定され(ステップSP
1)、そのデータは荷重データ記憶部12に記憶される
(ステップSP2)。演算部14では、荷重データと1
5%荷重レンジとを比較し(ステップSP3)、荷重デ
ータが15%荷重レンジを超えるまで、荷重測定、デー
タ比較を繰り返し行う。荷重データが15%荷重レンジ
に達した場合に、現在と3秒前の荷重データを荷重デー
タ記録部12から読込み(ステップSP4)、その差を
ΔPとして、以下の式で逐次応力増加率Ziを算出し
(ステップSP5)、そのデータを応力増加率記憶部1
5に記録し(ステップSP6)、表示部18に表示させ
る(ステップSP7)。 Zi=ΔP/(ΔT×A) (kg/mm2/sec)
Next, the apparatus is operated to lower the lower crosshead 6 by a driving means (not shown) to apply a tensile force to the test material 7. The load applied to the test material is transmitted from the rod 3 to the load receiving base 2 and the load measuring unit 10.
In the load measuring unit 10, according to the stress increase rate Zi calculation subroutine (step S1), the load Pi is measured at intervals of 0.3 seconds by the data from the timer 13 (step SP).
1), the data is stored in the load data storage unit 12 (step SP2). In the calculation unit 14, the load data and 1
The 5% load range is compared (step SP3), and load measurement and data comparison are repeated until the load data exceeds the 15% load range. When the load data reaches the 15% load range, the load data at the present and 3 seconds ago is read from the load data recording unit 12 (step SP4), and the difference is set as ΔP, and the sequential stress increase rate Zi is calculated by the following formula. Calculate (step SP5), and use the data as the stress increase rate storage unit 1
5 (step SP6) and displayed on the display unit 18 (step SP7). Zi = ΔP / (ΔT × A) (kg / mm 2 / sec)

【0017】この応力増加率の値は、初期の基準応力増
加率Zsとして設定される(ステップP2)。なお、そ
の値は、1〜3kg/mm2/secの範囲内であった。その後は
引続き、逐次応力増加率の算出を行い(ステップS
2)、基準応力増加率と比較する(ステップP4)。そ
の結果、逐次応力増加率が許容基準上限域(110%Z
s)を超える場合には、そのときの逐次応力増加率で基
準応力増加率を置換し(ステップP2へ)、さらに逐次
応力増加率の算出を行う。また、逐次応力増加率が許容
基準上限域(110%Zs)以内で、かつ許容基準下限
域(30%Zs)以内の場合は逐次応力増加率の算出を
繰り返し行う(ステップS2へ)。 このとき、逐次応力増加率が目標応力増加率(2kg/mm2
/sec)を超えたら、中央処理装置から速度制御部17へ
と指令を発し、油圧バルブ11の開放量を保持するよう
に制御する(ステップP3)。
The value of this stress increase rate is set as the initial reference stress increase rate Zs (step P2). The value was within the range of 1 to 3 kg / mm 2 / sec. After that, the stress increase rate is successively calculated (step S
2) Compare with the reference stress increase rate (step P4). As a result, the rate of sequential stress increase is within the allowable upper limit (110% Z
If it exceeds s), the reference stress increase rate is replaced by the successive stress increase rate at that time (to step P2), and the successive stress increase rate is calculated. Further, if the successive stress increase rate is within the permissible reference upper limit region (110% Zs) and within the permissible reference lower limit region (30% Zs), the sequential stress increase rate is repeatedly calculated (to step S2). At this time, the sequential stress increase rate is the target stress increase rate (2 kg / mm 2
/ sec), the central processing unit issues a command to the speed control unit 17 to control the opening amount of the hydraulic valve 11 to be maintained (step P3).

【0018】そして、逐次応力増加率が許容基準下限域
(30%Zs)を下回った場合には、降伏現象開始を検
出したものとし、降伏点検出を行い、降伏現象開始時か
ら3秒前の荷重データのすべてを荷重データ記憶部12
から読みだして、連続する3つの荷重を比較して、Pi-
2≧Pi-1≧Piの条件が満足される場合に、Pi-2をピー
クと判定する。なお、Pi-2、Pi-1は、それぞれPi測
定に対し、2回前、1回前に測定した荷重データであ
る。さらに、降伏現象開始を検出した際には、ブザー、
ランプなどの告知手段によって測定者に知らせることも
可能である。
When the rate of successive stress increase is below the lower limit of the permissible standard (30% Zs), it is assumed that the start of the yield phenomenon is detected, the yield point is detected, and 3 seconds before the start of the yield phenomenon. Load data storage unit 12 for all of the load data
Read from, compare three consecutive loads, Pi-
When the condition of 2 ≧ Pi−1 ≧ Pi is satisfied, Pi-2 is determined to be a peak. Note that Pi-2 and Pi-1 are load data measured two times before and one time before the Pi measurement, respectively. Furthermore, when the start of the yielding phenomenon is detected, the buzzer,
It is also possible to notify the measurer by notification means such as a lamp.

【0019】降伏現象開始後は、基準応力増加率を降伏
現象検出時の逐次応力増加率で置換し(ステップP
6)、引続き逐次応力増加率Ziの算出を行う(ステッ
プS3)。そして、前記と同様に、現測定から2回前ま
での測定荷重を荷重データ記憶部12から読みだして降
伏点の検出を行う(ステップP7)。 次に逐次応力増加率Ziの算出の結果、ステップP8で
は、Ziが0.3kg/mm2/sec以下である場合には、Zs
を0.3kg/mm2/secに設定して、Ziの算出を繰返し行
い(ステップS3へ)、Ziが0.3kg/mm2/secを超え
ている場合には、そのままZiとZsを比較し(ステッ
プP9)、Ziが許容降伏領域下限域(90%Zs)以
内のときに、ZsをそのZiで置換して(ステップP5
へ)、Ziの算出を繰り返す。また、Ziが0.3kg/m
m2/secを超え、しかも、Ziが許容降伏上限域(150
%Zs)を超えているときは、降伏領域通過検出がされ
たものとする。
After the yield phenomenon starts, the reference stress increase rate is replaced with the sequential stress increase rate at the time of detecting the yield phenomenon (step P
6) Then, the stress increase rate Zi is successively calculated (step S3). Then, similarly to the above, the measured load from the present measurement to the two times before is read from the load data storage unit 12 to detect the yield point (step P7). Next, as a result of the calculation of the sequential stress increase rate Zi, in step P8, if Zi is 0.3 kg / mm 2 / sec or less, Zs
Is set to 0.3 kg / mm 2 / sec and Zi is calculated repeatedly (to step S3). If Zi exceeds 0.3 kg / mm 2 / sec, compare Zi and Zs as they are. (Step P9), when Zi is within the lower limit of the allowable yield region (90% Zs), Zs is replaced with the Zi (step P5).
To), and the calculation of Zi is repeated. Also, Zi is 0.3 kg / m
m 2 / sec is exceeded, and Zi is the allowable upper limit of yield (150
% Zs) is exceeded, it is assumed that the breakdown area passage detection has been performed.

【0020】なお、降伏現象開始から降伏領域通過に至
る間に、荷重比較による降伏点検出がなされなかった場
合には、降伏点不明瞭の判定を行う。その後は、フロー
チャートには示さないが、測定荷重を監視し、2回前測
定から現測定に至る荷重データが、降伏点検出と同様の
条件を満たす場合には、2回前測定の荷重を引張強さ荷
重として識別する。
If the yield point is not detected by comparing the loads between the start of the yield phenomenon and the passage of the yield region, it is determined whether the yield point is unclear. After that, although not shown in the flow chart, if the measured load is monitored and the load data from the measurement two times before to the current measurement satisfies the same condition as the yield point detection, the load of the measurement two times before is pulled. Identify as a strength load.

【0021】試験終了後は、それまでに得られた荷重デ
ータ、応力増加率データ、ピーク値などを試験開始後の
時間とともに、プリンタ19に出力し、さらに記録装置
20に保存する。図4は、試験終了後に、プリンタで打
ち出した荷重−時間グラフであるが、試験中に時間経過
とともに、打ち出すことも可能である。なお、得られた
降伏点を、同一材料を従来の指針の読取りによって精査
した場合と比較すると、その数値は致しており、降伏点
が正確に検出されていた。しかも、降伏点は、試験中に
ほぼリアルタイムで、表示部にデジタル表示され、測定
者の技能に左右されることはなかった。また、チャック
のすべりによる一時的な荷重低下に対しても、これを降
伏点として誤認識することはなかった。
After the test is completed, the load data, the stress increase rate data, the peak value, etc. obtained so far are output to the printer 19 together with the time after the start of the test, and stored in the recording device 20. FIG. 4 is a load-time graph ejected by the printer after the end of the test, but it is also possible to eject the load over time during the test. It should be noted that the obtained yield point was compared with the case where the same material was scrutinized by reading a conventional pointer, the numerical value was correct, and the yield point was accurately detected. Moreover, the yield point was digitally displayed on the display unit in almost real time during the test, and was not affected by the skill of the measurer. Further, even when the load was temporarily reduced due to the slip of the chuck, this was not erroneously recognized as the yield point.

【0022】[0022]

【発明の効果】以上説明したように、本願発明の降伏点
の検出方法によれば、逐次応力増加率を用いて、これを
基準応力増加率とを継続して比較することにより、降伏
現象開始および降伏領域通過判定を行うものとしたの
で、熟練の作業者が必要とされることなく、また、装置
の伸び測定精度やチャックでのすべりによる影響を排除
でき、降伏点を正確かつ容易に検出することができる。
しかも、引張試験中に降伏点の検出をリアルタイムに知
ることができる。また、本願発明の引張試験装置によれ
ば、降伏点の検出が正確かつリアルタイムになされるの
で、試験材料の状態に応じて、的確に引張制御を行うこ
とが可能となる。
As described above, according to the method for detecting the yield point of the present invention, the yield stress initiation is achieved by using the successive stress increase rate and continuously comparing it with the reference stress increase rate. And since the judgment of passing through the yield area is performed, no skilled worker is required, and the influence of the elongation measurement accuracy of the device and the slippage of the chuck can be eliminated, and the yield point can be detected accurately and easily. can do.
Moreover, the detection of the yield point can be known in real time during the tensile test. Further, according to the tensile test apparatus of the present invention, the yield point can be detected accurately and in real time, so that the tensile control can be appropriately performed according to the state of the test material.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の引張装置の概略図である。FIG. 1 is a schematic view of a tensioning device according to an embodiment.

【図2】実施例の降伏点検出方法を示すフローチャート
である。
FIG. 2 is a flowchart showing a yield point detection method according to an embodiment.

【図3】同じく応力増加率算出手順を示すフローチャー
トである。
FIG. 3 is a flowchart showing a stress increase rate calculation procedure.

【図4】引張試験によって得られた応力増加率−時間グ
ラフである。
FIG. 4 is a stress increase rate-time graph obtained by a tensile test.

【符号の説明】[Explanation of symbols]

7 試験材料 8 チャック 9 チャック 10 荷重測定部 11 油圧バルブ 12 荷重データ記憶部 13 タイマ 14 演算部 15 応力増加率記憶部 16 中央処理装置 17 速度制御部 7 Test Material 8 Chuck 9 Chuck 10 Load Measuring Section 11 Hydraulic Valve 12 Load Data Storage Section 13 Timer 14 Computing Section 15 Stress Increase Rate Storage Section 16 Central Processing Unit 17 Speed Control Section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試験材料の引張試験において、継続して
荷重および時間を測定し、時間差を有する荷重間で逐次
応力増加率を継続して算出し、試験初期の逐次応力増加
率を基準応力増加率に定めて、逐次応力増加率と前記基
準応力増加率とを継続して比較し、逐次応力増加率が、
基準応力増加率からさらに許容基準下限域を超えて下回
った場合に、その時点を降伏現象開始時点とするととも
に、基準応力増加率を逐次応力増加率で置換し、降伏現
象開始後に、逐次応力増加率が基準増加率からさらに許
容降伏上限域を超えた場合に、降伏領域通過判定を行
い、前記降伏現象開始から降伏領域通過判定に至るまで
に逐次応力増加率の算出に使用した測定荷重のピークを
降伏点とすることを特徴とする引張試験における降伏点
の検出方法
1. In a tensile test of a test material, a load and a time are continuously measured, and a sequential stress increase rate is continuously calculated between loads having a time difference, and a sequential stress increase rate at an initial stage of the test is increased as a reference stress. Rate, the sequential stress increase rate and the reference stress increase rate are continuously compared, and the sequential stress increase rate is
When the value falls below the lower limit of the allowable standard from the standard stress increase rate, the yield stress starts at that time, and the standard stress increase rate is replaced with the successive stress increase rate. When the rate exceeds the upper limit of the allowable yield rate from the standard increase rate, the yield area passage determination is performed, and the peak of the measured load used to calculate the sequential stress increase rate from the yield phenomenon start to the yield area passage determination. Method for Detecting Yield Point in Tensile Tests, Wherein Yield Point
【請求項2】 降伏現象開始前に、逐次応力増加率が、
基準応力増加率からさらに許容基準上限域を超えた場合
に、基準応力増加率をこの逐次応力増加率で置換し、ま
た、降伏現象開始後であって降伏領域通過判定前に、逐
次応力増加率が、基準応力増加率よりもさらに許容降伏
領域下限域を超えて下回った場合に、基準応力増加率を
この逐次応力増加率で置換することを特徴とする請求項
1記載の引張試験における降伏点の検出方法
2. The sequential stress increase rate before the yield phenomenon starts,
When the standard stress increase rate exceeds the upper limit of the allowable standard, the standard stress increase rate is replaced with this successive stress increase rate. Is lower than the reference stress increase rate by more than the lower limit of the allowable yield region, the reference stress increase rate is replaced with the successive stress increase rate, and the yield point in the tensile test according to claim 1. Detection method
【請求項3】 試験材料をチャックで固定して引張試験
を行う引張試験装置において、荷重測定部と計時部とを
有し、さらに、この荷重測定部による荷重データを計測
時間に従って少なくとも一時保持する荷重データ記憶部
と、逐次応力増加率を算出する演算部と、応力増加率を
少なくとも一時保持する応力増加率記憶部と、降伏現象
開始および降伏領域通過判定をおこなう中央処理装置
と、中央処理装置からの指令により引張速度調整装置に
速度制御信号を与える速度制御部とを有することを特徴
とする引張試験装置
3. A tensile test apparatus for fixing a test material with a chuck to perform a tensile test, having a load measuring section and a time measuring section, and further temporarily holding load data by the load measuring section according to a measuring time. A load data storage unit, a calculation unit that sequentially calculates the stress increase rate, a stress increase rate storage unit that temporarily holds the stress increase rate, a central processing unit that performs a yield phenomenon start and a yield region passage determination, and a central processing unit And a speed control unit for giving a speed control signal to the tensile speed adjusting device in response to a command from the tensile tester.
JP22539391A 1991-08-12 1991-08-12 Yield point sensing method for tensile test and tensile testing device Pending JPH0545269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22539391A JPH0545269A (en) 1991-08-12 1991-08-12 Yield point sensing method for tensile test and tensile testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22539391A JPH0545269A (en) 1991-08-12 1991-08-12 Yield point sensing method for tensile test and tensile testing device

Publications (1)

Publication Number Publication Date
JPH0545269A true JPH0545269A (en) 1993-02-23

Family

ID=16828660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22539391A Pending JPH0545269A (en) 1991-08-12 1991-08-12 Yield point sensing method for tensile test and tensile testing device

Country Status (1)

Country Link
JP (1) JPH0545269A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068118A1 (en) * 2003-01-31 2004-08-12 Nihon University Method of detecting yield point of solid material, and device used therefor
CN103698188A (en) * 2014-01-11 2014-04-02 西安科技大学 Method for measuring stress corrosion crack propagation rate by employing slow strain rate tensile
CN113720682A (en) * 2021-08-19 2021-11-30 中国航空工业集团公司西安飞机设计研究所 Method for determining local buckling load of test piece

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004068118A1 (en) * 2003-01-31 2004-08-12 Nihon University Method of detecting yield point of solid material, and device used therefor
CN103698188A (en) * 2014-01-11 2014-04-02 西安科技大学 Method for measuring stress corrosion crack propagation rate by employing slow strain rate tensile
CN113720682A (en) * 2021-08-19 2021-11-30 中国航空工业集团公司西安飞机设计研究所 Method for determining local buckling load of test piece
CN113720682B (en) * 2021-08-19 2024-05-03 中国航空工业集团公司西安飞机设计研究所 Method for determining local buckling load of test piece

Similar Documents

Publication Publication Date Title
US20040020276A1 (en) Apparatus for indentation test and method for measuring mechanical properties using it
US7021155B2 (en) Universal material testing method and device therefor
EP3521801A1 (en) Test result evaluating method and material tester
EP3267176A1 (en) Methods for surface evaluation
US5359879A (en) Scanning micro-sclerometer
JPH0545269A (en) Yield point sensing method for tensile test and tensile testing device
JPH11153533A (en) Load loading control method for test piece in j1c test and j1c test system
US4480482A (en) Elastic limit detection and reset testing system
CN112097964B (en) Device and method for detecting prestress of threaded steel bar based on magnetic flux test
JP2005172589A (en) Method and machine for testing material
JPH09236530A (en) Apparatus or measuring ultra-micro hardness
JP4174604B2 (en) Concrete compression test equipment
JP2518017B2 (en) Material testing machine
JPH02156131A (en) Measurement of approximate yield strength mainly for metal material
JP3329293B2 (en) Material testing machine
JP2812191B2 (en) Material testing machine
JPS6161618B2 (en)
JPH0552724A (en) Proof-stress measuring apparatus
JP2744606B2 (en) Breaking point detection method in material testing machine
US20050126267A1 (en) Viscoelasticity measuring instrument
JP2814932B2 (en) Aging method for X-ray generator
JP2005172508A (en) Test method for test piece with spring property
JPH04248440A (en) Method for testing j1c fracture toughness
JPH085533A (en) Fatigue test piece breakage detector
JPH07113732A (en) Tension testing method