JPH0545234A - Temperature sensor - Google Patents

Temperature sensor

Info

Publication number
JPH0545234A
JPH0545234A JP3207849A JP20784991A JPH0545234A JP H0545234 A JPH0545234 A JP H0545234A JP 3207849 A JP3207849 A JP 3207849A JP 20784991 A JP20784991 A JP 20784991A JP H0545234 A JPH0545234 A JP H0545234A
Authority
JP
Japan
Prior art keywords
temperature
layer
sensitive resistor
electrodes
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3207849A
Other languages
Japanese (ja)
Inventor
Masaki Ikeda
正樹 池田
Masahiro Hiraga
将浩 平賀
Haruhiko Handa
晴彦 半田
Akihiko Yoshida
昭彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3207849A priority Critical patent/JPH0545234A/en
Publication of JPH0545234A publication Critical patent/JPH0545234A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3

Abstract

PURPOSE:To construct a temp. sensor excellent in thermal shock property and thermal responsiveness, which is applied to a burning apparatus such as gas table using a gaseous or liquid fuel. CONSTITUTION:A pair of electrodes 5 are furnished on at least one of the surfaces of a metal base 1 through an electric insulative layer or layers 3, and a thermo-sensitive resistor 4 is provided on the surface of the electric insulative layer 3 in such a way as straddling the two electrodes 5. A temp. sensor according to the invention is embodied in such a constitution that an overcoat layer 7 is provided over the surface of this thermo-sensitive resistor 4, that at least one of the electric insulative layers 3 is made of crystallized glass containing MgO type crystal phase, and that the composition is, by wt, 16-50% MgO, 0-50% Bad, 0-20% CaO, 0-40% La2O3, 5-34% B2O3, 7-30% SiO2, 0-5% MO2 (M is at least one of Zr, Ti, Sn, Zn), and 0-5% P2O5. This constitution can yield a temp. sensor excellent in the thermal shock property and thermal resposniveness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気体または液体の燃料
を使用するガステーブルなどの燃焼機器に用いる温度セ
ンサーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature sensor used in a combustion device such as a gas table which uses a gas or liquid fuel.

【0002】[0002]

【従来の技術】近年、燃焼機器の安全性確保のために種
々の保安センサが装着されるようになった。その一例と
して、ガステーブルに使用されている空炊き防止センサ
について図面を参照しながら説明する。
2. Description of the Related Art In recent years, various safety sensors have been mounted in order to ensure the safety of combustion equipment. As an example, an empty cooking prevention sensor used in a gas table will be described with reference to the drawings.

【0003】図3に従来の空炊き防止用センサの構成を
示す。図に示すように、有底円筒金属部材の内側底面部
にSiCサーミスタまたは白金などの検知素子をガラス
で接着したものであり、この有底円筒金属部材の内側底
面部をコイルバネの付勢力で、鍋やフライパンなどの温
度検知物体に接触させて温度を検知する構成となってい
る。
FIG. 3 shows the structure of a conventional sensor for preventing empty cooking. As shown in the figure, a sensing element such as a SiC thermistor or platinum is adhered to the inner bottom surface of the bottomed cylindrical metal member with glass, and the inner bottom surface of the bottomed cylindrical metal member is biased by a coil spring, It is configured to detect the temperature by contacting it with a temperature detection object such as a pan or frying pan.

【0004】図に示すように、金属基板11は有底円筒
金属部材12の底面部を構成し、アルミナ基板13はそ
の片面にSiCサーミスタまたは白金などよりなる感温
抵抗体14が温度の検知素子として、一対の電極15に
またがって設けられており、アルミナ基板13の他の面
はガラス接着層16によって金属基板11に接着されて
いる。なお、感温抵抗体14の全面と一対の電極15の
一部はオーバーコート層17で被覆保護されている。コ
イルばね18は支持金属基台19の上部にあって、有底
円筒金属部材12の内側底面部すなわち金属基板11に
接して被温度検知物体に金属基板11を当接させる役目
を担っている。
As shown in the figure, the metal substrate 11 constitutes the bottom surface of the bottomed cylindrical metal member 12, and the alumina substrate 13 has a temperature sensitive resistor 14 made of a SiC thermistor or platinum on one surface thereof for detecting the temperature. Is provided over the pair of electrodes 15, and the other surface of the alumina substrate 13 is adhered to the metal substrate 11 by the glass adhesive layer 16. The entire surface of the temperature sensitive resistor 14 and a part of the pair of electrodes 15 are covered and protected by an overcoat layer 17. The coil spring 18 is located above the supporting metal base 19 and is in contact with the inner bottom surface of the bottomed cylindrical metal member 12, that is, the metal substrate 11, to bring the metal substrate 11 into contact with the temperature detection object.

【0005】つぎに、上記構成の温度センサの動作を説
明する。金属基板11はコイルばね18によって付勢さ
れ、鍋またはフライパンなどの温度検知物体に当接し
て、常にその温度を検出しており、鍋またはフライパン
内の水や内容物が連続加熱によって蒸発し、鍋またはフ
ライパンの温度が異常に上昇した場合、その温度は金属
基板11より感温抵抗体14に伝達され、その抵抗値が
変化し、その変化によって遮断回路が動作してガスや灯
油などの燃料の供給を遮断し、空炊きが防止される。
Next, the operation of the temperature sensor having the above structure will be described. The metal substrate 11 is biased by the coil spring 18 and is in contact with a temperature detecting object such as a pan or a frying pan to constantly detect the temperature, and the water and contents in the pan or the frying pan are evaporated by continuous heating, When the temperature of the pan or frying pan rises abnormally, the temperature is transmitted from the metal substrate 11 to the temperature-sensitive resistor 14, and its resistance value changes, and the change causes the cutoff circuit to operate and fuel such as gas or kerosene. It cuts off the supply of water and prevents empty cooking.

【0006】[0006]

【発明が解決しょうとする課題】しかし、このような従
来の空炊き防止用の温度センサでは、感温抵抗体(検知
素子)14としてSiCサーミスタを用いた場合、温度
による抵抗値変化が直線的に変化しない。その結果、信
号を処理する回路が複雑になってしまう。また、検知素
子に白金を用いたものは、温度による抵抗値変化が直線
的であるため、信号を処理する回路が非常に簡単にな
る。しかし白金膜をアルミナ基板上に形成しているた
め、温度検知物体を検知素子に強く当接した場合、アル
ミナ基板自体の機械的強度が弱いためにアルミナ基板が
しばしば破壊するという課題があった。
However, in such a conventional temperature sensor for preventing empty cooking, when a SiC thermistor is used as the temperature sensitive resistor (sensing element) 14, the resistance value changes linearly with temperature. Does not change to As a result, the circuit for processing the signal becomes complicated. Further, in the case where platinum is used as the sensing element, the resistance value changes linearly with temperature, so that the circuit for processing the signal becomes very simple. However, since the platinum film is formed on the alumina substrate, there is a problem that when the temperature sensing object is strongly brought into contact with the sensing element, the alumina substrate is often broken because the mechanical strength of the alumina substrate itself is weak.

【0007】この改善策として図1に示すように、有底
円筒金属部材2の内側底面部にガラス質電気絶縁層7を
介して、一対の電極3を設け、その一対の電極3間にま
たがって、電気絶縁層7の表面に感温抵抗体8を設け、
さらに感温抵抗体8の表面にオーバーコート層4を設け
た空炊き防止用温度センサが提案されている。このセン
サは、有底円筒金属部材の内側底面部をコイルバネ5に
より付勢し、鍋やフライパンなどの温度検知物体の底に
当接させて温度を検知する構成となっている。この方式
は、金属基板1に直接、ガラス質7を焼き付ける方式で
あるため、上記のアルミナ基板上に形成した方式に比
べ、機械的強度、熱衝撃性に優れている。しかし、この
方式の欠点は、ガラス質を焼付けるときに、金属表面が
熱酸化を受けるため、酸化物除去工程が必要であった。
また、鍋やフライパンなどの温度検知物体に接触させて
温度を検知する温度センサの金属面が露出しているた
め、ガステーブルなどの燃焼器に使用すると、加熱酸化
されたり、鍋からの煮こぼれによって著しく腐食され、
センサとしての信頼性に欠けるという課題があった。
As a remedy for this, as shown in FIG. 1, a pair of electrodes 3 are provided on the inner bottom surface of the bottomed cylindrical metal member 2 with a vitreous electrical insulation layer 7 in between, and the electrodes 3 are straddled between the pair of electrodes 3. Then, the temperature sensitive resistor 8 is provided on the surface of the electric insulating layer 7,
Further, there has been proposed a temperature sensor for preventing empty cooking in which the overcoat layer 4 is provided on the surface of the temperature sensitive resistor 8. This sensor is configured to detect the temperature by urging the inner bottom surface of a bottomed cylindrical metal member by a coil spring 5 and bringing it into contact with the bottom of a temperature detection object such as a pan or frying pan. Since this method is a method in which the vitreous material 7 is directly baked on the metal substrate 1, it is superior in mechanical strength and thermal shock resistance to the method formed on the alumina substrate. However, a drawback of this method is that the oxide removal step is necessary because the metal surface undergoes thermal oxidation when baking glass.
Also, since the metal surface of the temperature sensor that detects the temperature by contacting a temperature-sensing object such as a pan or frying pan is exposed, it will be heated and oxidized if used in a combustor such as a gas table, or spilled from the pan. Is significantly corroded by
There was a problem of lacking reliability as a sensor.

【0008】本発明はこのような課題を解決するもの
で、熱衝撃性に優れ、かつ耐熱酸化性と耐食性に優れた
温度センサを提供することを目的とするものである。
The present invention is intended to solve such problems, and an object of the present invention is to provide a temperature sensor having excellent thermal shock resistance, thermal oxidation resistance, and corrosion resistance.

【0009】[0009]

【課題を解決するための手段】この課題を解決するため
に本発明は、有底円筒金属基材の内側底面部を構成する
金属基板上に一層または多層の電気絶縁層を介して設け
た一対の電極と、前記一対の電極間にまたがって、前記
電気絶縁層の表面に設けた感温抵抗体と、前記感温抵抗
体の表面に設けたオーバーコート層とを備えた構成であ
って、前記有底円筒金属基材の外側底面部を、前記有底
円筒状金属基材の内側底面部に接して設けたコイルバネ
の付勢力により温度検知物体に当接させ、温度検知物体
の温度を検知するようにしたものである。
In order to solve this problem, the present invention provides a pair of metal base plates forming the inner bottom surface of a bottomed cylindrical metal base material with one or a plurality of electrically insulating layers interposed therebetween. An electrode, across the pair of electrodes, a temperature-sensitive resistor provided on the surface of the electrical insulating layer, and a configuration including an overcoat layer provided on the surface of the temperature-sensitive resistor, The outer bottom surface of the bottomed cylindrical metal base is brought into contact with the temperature detection object by the urging force of a coil spring provided in contact with the bottom bottom cylindrical metal base to detect the temperature of the temperature detection object. It was done.

【0010】また、電気絶縁層の少なくとも一層がMg
O系結晶相を有する結晶化ガラスであり、かつ、その組
成が重量%で、MgO 16〜50%、BaO 0〜5
0%、CaO 0〜20%、La23 0〜40%、B
23 5〜34%、SiO27〜30%、MO2(MはZ
r,Ti,Sn,Znの少なくとも1種) 0〜5%、
25 0〜5%を主体として温度センサーを構成した
ものである。
Further, at least one of the electric insulating layers is made of Mg.
It is a crystallized glass having an O-based crystal phase, and its composition is wt%, MgO 16 to 50%, BaO 0 to 5
0%, CaO 0-20%, La 2 O 3 0-40%, B
2 O 3 5 to 34%, SiO 2 7 to 30%, MO 2 (M is Z
at least one of r, Ti, Sn, Zn) 0 to 5%,
The temperature sensor is mainly composed of P 2 O 5 0 to 5%.

【0011】[0011]

【作用】この構成によれば、金属基材上に設けた結晶化
ガラスで形成した電気絶縁層と、その上に一対の電極を
設け、一対の電極に跨って感温抵抗体およびオーバーコ
ート層を形成して温度センサーを構成することにより機
械的強度が強化され、強い衝撃力が加えられても温度セ
ンサが破壊されることはなくなる。また、感温抵抗体と
して白金、ルテニウム、ロジウムなどの金属薄膜抵抗体
を用いているので、温度変化と抵抗値変化の関係が直線
的となり、簡単な信号処理回路で制御することができる
こととなる。
According to this structure, the electrically insulating layer made of crystallized glass provided on the metal substrate, the pair of electrodes provided on the electrically insulating layer, and the temperature sensitive resistor and the overcoat layer extending over the pair of electrodes. By forming a temperature sensor to form a temperature sensor, the mechanical strength is strengthened and the temperature sensor is not destroyed even when a strong impact force is applied. In addition, since a metal thin film resistor such as platinum, ruthenium, or rhodium is used as the temperature sensitive resistor, the relationship between the temperature change and the resistance value change becomes linear and can be controlled by a simple signal processing circuit. ..

【0012】[0012]

【実施例】以下に本発明の一実施例の温度センサーを図
面を参照しながら説明する。図1(A)に本実施例の空
炊き防止用温度センサーの構成を示す。図に示すように
有底円筒金属基材の内側底面部にSiCサーミスタまた
は白金などの検知素子をガラスで接着してある。、この
有底円筒金属基材の内側底面部をコイルバネの力で、鍋
やフライパンなどの温度検知物体に接触させて温度を検
知する構成となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A temperature sensor according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1A shows the configuration of the temperature sensor for preventing empty cooking of this embodiment. As shown in the figure, a sensing element such as a SiC thermistor or platinum is adhered to the inner bottom surface of the bottomed cylindrical metal substrate with glass. The inner bottom surface of this bottomed cylindrical metal substrate is configured to contact the temperature detection object such as a pan or frying pan with the force of a coil spring to detect the temperature.

【0013】図に示すように、金属基板1は有底円筒金
属基材2の底面部を構成していて、電気絶縁層3の上面
にSiCサーミスタまたは白金などよりなる感温抵抗体
4が一対の電極5に跨って設けられ温度検知素子を構成
している。感温抵抗体4の全面と一対の電極5の一部は
オーバーコート層7で被覆保護されている。コイルばね
8は支持金属基台9の上部にあって、有底円筒金属基材
2の内側底面部すなわち金属基板1に接して、温度検知
物対に金属基板1を接触させる役目を担っている。
As shown in the figure, the metal substrate 1 constitutes the bottom surface of the bottomed cylindrical metal substrate 2, and a pair of temperature sensitive resistors 4 made of SiC thermistor or platinum are provided on the upper surface of the electric insulating layer 3. Is provided over the electrode 5 to form a temperature detecting element. The entire surface of the temperature sensitive resistor 4 and a part of the pair of electrodes 5 are covered and protected by an overcoat layer 7. The coil spring 8 is located above the supporting metal base 9 and is in contact with the inner bottom surface of the bottomed cylindrical metal substrate 2, that is, the metal substrate 1, and plays a role of bringing the metal substrate 1 into contact with the temperature sensing object pair. ..

【0014】つぎに上記構成の空炊き防止センサーの動
作を説明する。金属基板1はコイルばね8によって鍋ま
たはフライパンなどの温度検知物体に当接して常にその
温度を検出しており、鍋またはフライパン内の水や内容
物が連続加熱によって蒸発し、鍋またはフライパンの温
度が異常に上昇した場合、その温度は金属基板1より感
温抵抗体4に伝達され、その抵抗値が変化する。その抵
抗値変化によって遮断回路が作動してガスや灯油などの
燃料の供給を遮断し、空炊きが防止される。 (1)金属基体 本発明に使用される金属基材1には、ホーロ用鋼板、ス
テンレス鋼板、珪素鋼板、ニッケルークロムー鉄、ニッ
ケルー鉄、コバール、インバーなどの各種合金、クラッ
ド材などが選択される。これらの金属基材を所望の形状
への加工や、穴あけ加工などを通常の機械加工法、エッ
チング加工法、レーザ加工法などで実施する。
Next, the operation of the above-mentioned empty cooking prevention sensor will be described. The metal substrate 1 is in contact with a temperature detecting object such as a pan or a frying pan by the coil spring 8 to constantly detect the temperature. The water and contents in the pan or the frying pan are evaporated by continuous heating, and the temperature of the pan or the frying pan is increased. When the temperature rises abnormally, the temperature is transmitted from the metal substrate 1 to the temperature sensitive resistor 4, and the resistance value changes. Due to the change in the resistance value, the cutoff circuit operates to cut off the supply of fuel such as gas and kerosene, thereby preventing the air from being cooked. (1) Metal Substrate For the metal substrate 1 used in the present invention, a steel plate for holo, a stainless steel plate, a silicon steel plate, various alloys such as nickel-chromium-iron, nickel-iron, kovar, invar and clad materials are selected. It Processing of these metal base materials into a desired shape, drilling, etc. are carried out by an ordinary machining method, etching processing method, laser processing method or the like.

【0015】これらの金属基体1は電気絶縁層3との密
着性を向上させるため、表面脱脂した後、ニッケル、コ
バルトなどの各種メッキを施したり、熱酸化処理によっ
て酸化被覆層を形成したりする。 (2)電気絶縁層 電気絶縁層3は高い電気絶縁性と耐熱性が要求されるた
め、無アルカリ結晶化ガラスで構成される。そのガラス
組成は、例えば SiO2 7〜30重量% B23 5〜34重量% MgO 16〜50重量% CaO 0〜20重量% BaO 0〜50重量% ZrO2 0〜5 重量% P25 0〜5 重量% La23 0〜40重量% の組成がよい。この組成範囲のガラス質層が選択される
理由は、電気絶縁層3上に形成する電極5、抵抗体層4
などの印刷焼成工程で加わる高熱に耐えるためである。
In order to improve the adhesion of the metal base 1 to the electric insulating layer 3, after degreasing the surface, various platings of nickel, cobalt, etc. are applied, or an oxide coating layer is formed by thermal oxidation treatment. .. (2) Electrical Insulation Layer The electrical insulation layer 3 is required to have high electrical insulation and heat resistance, and is therefore made of alkali-free crystallized glass. Its glass composition, for example, SiO 2 7 to 30 wt% B 2 O 3 5~34 wt% MgO 16 to 50 wt% CaO 0 to 20 wt% BaO 0 to 50 wt% ZrO 2 0 to 5 wt% P 2 O 5 0-5 wt% La 2 O 3 it is 0 to 40% by weight of the composition. The reason why the glassy layer having this composition range is selected is that the electrode 5 and the resistor layer 4 formed on the electrical insulating layer 3 are selected.
This is to withstand the high heat applied during the printing and firing process.

【0016】さらに、上記結晶化ガラス質を金属基体上
に被覆する方法として、通常のスプレー法、粉末静電塗
装法、印刷法、電気泳動電着法などがある。この中で
は、被膜のち密性、電気絶縁性では電気泳動電着法が優
れている。しかし、量産性、コスト性では印刷法が優れ
ている。
Further, as a method for coating the above-mentioned crystallized glass on a metal substrate, there are a usual spray method, a powder electrostatic coating method, a printing method, an electrophoretic electrodeposition method and the like. Among these, the electrophoretic electrodeposition method is superior in terms of the denseness and the electrical insulation of the coating. However, the printing method is superior in terms of mass productivity and cost.

【0017】電気泳動電着法は、ガラス粉末にアルコー
ルおよび少量の水を加え、ボールミル中で約20時間粉
砕、混合し、ガラスの平均粒径を1〜5μm程度にす
る。得られたスラリーを電解槽に入れて、液を循環す
る。(1)で準備された金属基体を、このスラリー中に
浸漬し、100〜400Vを印加して陰分極させること
により、金属基体表面にガラス粒子を析出させる。これ
を乾燥後、850〜900℃で10分〜1時間焼成し電
気絶縁層が得られる。
In the electrophoretic electrodeposition method, glass powder is admixed with alcohol and a small amount of water and ground in a ball mill for about 20 hours and mixed to give an average glass particle size of about 1 to 5 μm. The obtained slurry is put in an electrolytic cell and the liquid is circulated. The metal substrate prepared in (1) is immersed in this slurry, and 100 to 400 V is applied to cause negative polarization to deposit glass particles on the surface of the metal substrate. After being dried, it is baked at 850 to 900 ° C. for 10 minutes to 1 hour to obtain an electric insulating layer.

【0018】印刷法は、ガラス粉末にターピネオールな
どのオイルと微量の増粘剤を加え、三本ローラで混練し
て印刷ペーストを調製し、このペーストをメッシュスク
リーンなどを通して印刷する。これを乾燥後、850〜
900℃で10分〜1時間焼成して電気絶縁層が得られ
る。
In the printing method, oil such as terpineol and a slight amount of a thickener are added to glass powder, and the mixture is kneaded with a three-roller to prepare a printing paste, and this paste is printed through a mesh screen or the like. After drying this,
An electrical insulating layer is obtained by firing at 900 ° C. for 10 minutes to 1 hour.

【0019】これら電気絶縁層は焼成によって、少なく
とも、MgO系の結晶相を析出する必要がある。その理
由は図2の熱膨張曲線に示すように、上記組成であって
も、ガラス状態(アモルファス状態)の(イ)の場合、
600〜700℃で屈伏点を有する。しかし、これを熱
処理(焼成)し、少なくとも、MgO系の結晶相を析出
させると、(ロ)のように屈伏点が900℃以上とな
り、耐熱性が向上する。さらに、MgO系の結晶層は線
膨張係数が大きいので、この結晶が析出すると絶縁層の
線膨張係数が高膨張側に移行し、金属材料との膨張率の
整合をはかりやすくなる。
It is necessary that at least the MgO-based crystal phase be deposited in these electrically insulating layers by firing. The reason is as shown in the thermal expansion curve of FIG. 2, even in the above composition, in the case of (a) in the glass state (amorphous state),
It has a yield point at 600 to 700 ° C. However, when this is heat-treated (calcined) to precipitate at least the MgO-based crystal phase, the yield point becomes 900 ° C. or higher as shown in (b), and the heat resistance is improved. Further, since the MgO-based crystal layer has a large linear expansion coefficient, when the crystal is deposited, the linear expansion coefficient of the insulating layer shifts to the high expansion side, and it becomes easy to match the expansion coefficient with the metal material.

【0020】なお、この電気絶縁層は、電極体層および
感温抵抗体層との膨張率の整合を図るために、MgO系
結晶相を有する第1の層の他に、中間層として第2の層
を設けることも可能である。 (3)電極体層、感温抵抗体層 上記の結晶化ガラス質の電気絶縁層3上に、図1(B)
に示すように導電回路が形成される。感温抵抗体4の材
料は、ルテニウム、ロジウム、白金などのなかから選択
される。
In addition to the first layer having a MgO-based crystal phase, the electrically insulating layer has a second layer as an intermediate layer in order to match the expansion coefficient with the electrode layer and the temperature sensitive resistor layer. It is also possible to provide a layer of. (3) Electrode layer, temperature-sensitive resistor layer On the crystallized vitreous electrical insulation layer 3 shown in FIG.
A conductive circuit is formed as shown in FIG. The material of the temperature sensitive resistor 4 is selected from ruthenium, rhodium, platinum and the like.

【0021】パターン形成法はメッキ法、溶射法、スク
リーン印刷法などが考えられるが、結晶化ガラス質の電
気絶縁層3と電極5、感温抵抗体4層との密着性がよい
スクリーン印刷法が望ましい。この方法は、所望のパタ
ーン形状のメッシュスクリーンを介して、インクを電気
絶縁層3上に印刷、焼成することにより電極5、感温抵
抗体4が形成される。電極5、感温抵抗体4は通常、5
00〜850℃の焼成炉で焼成されるので、電気絶縁層
3は耐熱性が要求される。また、回路パターンは時とし
て、微細パターンが要求されるので、電気絶縁層の表面
性は重要であり、印刷歩留まりに影響を与える。
The pattern forming method may be a plating method, a thermal spraying method, a screen printing method or the like, but a screen printing method in which the crystallized vitreous electric insulating layer 3 and the electrode 5 and the temperature sensitive resistor 4 layer have good adhesion. Is desirable. In this method, the electrode 5 and the temperature sensitive resistor 4 are formed by printing and firing the ink on the electric insulating layer 3 through a mesh screen having a desired pattern shape. The electrode 5 and the temperature sensitive resistor 4 are usually 5
Since it is fired in a firing furnace at 00 to 850 ° C., the electric insulation layer 3 is required to have heat resistance. Further, since the circuit pattern is sometimes required to have a fine pattern, the surface property of the electrical insulating layer is important and affects the printing yield.

【0022】以下に具体的な実施例を説明する。 (実施例1)(表1)〜(表5)に示す組成の結晶化ガ
ラスを合成した。また、上記の製造工程に従い、SUS
430金属基材(100mm×100mm×0.5mm)1の
表面に、厚さ100μmの結晶化ガラス質層を電気泳動
法で電着し、880℃で10分間焼成し、できた電気絶
縁層3の表面粗度、うねり性、耐熱性などの諸特性を測
定した。測定結果を(表1)〜(表5)に示す。
Specific examples will be described below. (Example 1) Crystallized glass having a composition shown in (Table 1) to (Table 5) was synthesized. In addition, according to the above manufacturing process, SUS
430 metal substrate (100 mm x 100 mm x 0.5 mm) 1 having a 100 μm thick crystallized vitreous layer electrophoretically deposited on the surface and baked at 880 ° C. for 10 minutes to form an electrically insulating layer 3 Various properties such as surface roughness, waviness and heat resistance were measured. The measurement results are shown in (Table 1) to (Table 5).

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】なお、表面粗度はタリサーフ表面粗さ計で
測定し、表面中心線平均粗さRaで示し、うねり性はタ
リサーフ表面粗さ計で得られた山と谷の差Rmax で表わ
した。
The surface roughness was measured by a Talysurf surface roughness meter and indicated by the surface center line average roughness Ra, and the waviness was expressed by the difference Rmax between the peak and the valley obtained by the Talysurf surface roughness meter.

【0029】耐熱性は、サンプルを850℃の電気炉中
に10分間入れ、炉から取り出し30分間、自然放冷す
るサイクルを繰り返すスポーリングテストを行って、サ
ンプルのクラックや剥離の状態を調べた。また、クラッ
クの検出は赤インク中にサンプルを浸漬し、その後、表
面を拭き取って、目視観察によって、その有無を調べ
た。表中の○は10サイクル以上行っても、クラックの
発生が認められないもの、△は5〜9サイクルで発生し
たもの、×は4サイクル以下で発生したものを示す。
Regarding the heat resistance, the sample was put in an electric furnace at 850 ° C. for 10 minutes, taken out of the furnace, and allowed to cool naturally for 30 minutes. A spalling test was repeated, and the state of cracking and peeling of the sample was examined. .. For the detection of cracks, the sample was immersed in red ink, the surface was wiped off, and the presence or absence of the cracks was checked by visual observation. In the table, ∘ indicates that cracking was not observed even after 10 or more cycles, Δ indicates 5 to 9 cycles, and x indicates 4 cycles or less.

【0030】密着性は、基板の曲げ試験を行い、ホーロ
層が剥離して金属部が露出したものを×、金属部が一部
だけ露出したものを△、金属部が露出していないものを
○とした。
The adhesion was evaluated by conducting a bending test of the substrate, and x when the holo layer was peeled off to expose the metal part, Δ when the metal part was partially exposed, and Δ when the metal part was not exposed. ○

【0031】以上の評価にもとずき総合評価を行い、そ
の結果を○、△、×で示した。 No1〜8は他の成分
を一定として、SiO2とB23を変化させたもの、N
o9〜15は、SiO2/B23をほぼ一定にし、Mg
O量を変化させたもの、No16〜19は同じく、Ca
O量を変化させたもの。No20〜24は、同じく、B
aO量を変化させたもの。No25〜29は、同じく、
La23量を変化させたもの。No30〜42はそれぞ
れ、ZrO2、TiO2、SnO2、P25、ZnOの影
響を示す。
Based on the above evaluations, a comprehensive evaluation was performed, and the results are shown by ◯, Δ, and x. Nos. 1 to 8 are obtained by changing SiO 2 and B 2 O 3 while keeping other components constant, N
o 9 to 15 make SiO 2 / B 2 O 3 almost constant,
No. 16 to 19 in which the amount of O was changed was also Ca.
The amount of O changed. No. 20 to 24 are also B
A change in the amount of aO. No25-29 are the same
The amount of La 2 O 3 was changed. No30~42 respectively show the effect of ZrO 2, TiO 2, SnO 2 , P 2 O 5, ZnO.

【0032】表から明らかなように、SiO2を増加し
ていけば、耐熱性は向上するが、表面性、および密着性
が悪くなる。逆に、B23量を増加していけば、たしか
に表面性、密着性は向上するが耐熱性は低下する。した
がって、本実施例では、SiO2 7〜30重量%、B2
3 5〜34重量%の範囲内が望ましい。
As is apparent from the table, if SiO 2 is increased, the heat resistance is improved, but the surface property and the adhesion are deteriorated. On the contrary, if the amount of B 2 O 3 is increased, the surface property and the adhesion are certainly improved, but the heat resistance is decreased. Therefore, in this embodiment, SiO 2 is 7 to 30 wt%, B 2 is
It is desirable that the amount of O 3 be 5 to 34% by weight.

【0033】MgO量は結晶性と相関があり、16重量
%以下では結晶析出が不十分で、耐熱性に劣る。また、
50重量%以上では、結晶が析出しやすく、ガラス溶融
時に簡単に結晶化し、均質なガラスを得ることが難し
く、また、表面粗度が大きくなる。
The amount of MgO has a correlation with the crystallinity, and if it is 16% by weight or less, the precipitation of crystals is insufficient and the heat resistance is poor. Also,
If it is 50% by weight or more, crystals are likely to precipitate, it is difficult to crystallize when the glass melts, it is difficult to obtain a homogeneous glass, and the surface roughness becomes large.

【0034】CaO量は、20重量%以上入れると、表
面性が悪くなり望ましくない。BaO量は、50重量%
以上入れると、耐熱性、および密着性が劣化し望ましく
ない。La23量は、40重量%以上では、耐熱性が劣
化し好ましくない。
When the amount of CaO is 20% by weight or more, the surface property is deteriorated, which is not desirable. BaO content is 50% by weight
If the above amount is added, heat resistance and adhesion are deteriorated, which is not desirable. When the amount of La 2 O 3 is 40% by weight or more, heat resistance deteriorates, which is not preferable.

【0035】その他の添加可能な成分はZrO2、Ti
2、SnO2、P25、ZnOなどが挙げられるが、5
重量%以下までなら添加可能である。
Other components that can be added are ZrO 2 , Ti
Examples thereof include O 2 , SnO 2 , P 2 O 5 , and ZnO.
It can be added up to a weight% of less.

【0036】(実施例2)図1(A)に示すように、厚
さ400μm、直径18mmのステンレス金属基材1を脱
脂、水洗、酸洗、水洗、ニッケルメッキ、水洗して前処
理を行った後、平均粒径が2.5μmの(表1)No7の
ガラス粒子からなるスラリー中に浸漬して、対極と金属
基材1間に直流電圧を印加して(表1)No7組成のガラ
ス粒子を片側の金属基板上にしかも、図1(B)のよう
にガラス被覆面積を直径15mmとし100μmの厚みに
電着した。金属基材の未電着の部分は金属露出部分で円
筒金属基材2と金属基材1を溶接するための領域とし
た。その後、乾燥、焼成して電気絶縁層2を形成した。
さらに、その上に温度センサーの導電回路を印刷法で形
成した。つぎに、この基板を直径18mmの円筒金属基材
2に溶接して、空炊き防止センサーとした。 (実施例3)実施例2と同様の構成で、電気絶縁層3の
形成法のみを印刷法に変えて作成した。なお、電気絶縁
層3は(表1)No7の組成のガラスペーストをスクリー
ン印刷で厚さ約100μmに形成し、乾燥、焼成して得
たものである。 (比較例1)直径15mmの円形アルミナ基板上に印刷法
で実施例1と同様の導電回路を形成し、この温度センサ
ーを、厚さ400μm、直径18mmの円形のステンレス
基材に、線膨張係数が70×10-7/℃のガラスで封着
した。つぎに、この基板を直径18mmの円筒金属基材に
溶接して、空炊き防止センサーとした。 (比較例2)蒸着法で形成したSiCサーミスタを、厚
さ400μm、直径18mmのステンレス基材に、線膨張
係数が70×10-7/℃のガラスで封着した。つぎに、
この基板を直径18mmの円筒金属基材に溶接して、空炊
き防止センサーとした。
Example 2 As shown in FIG. 1 (A), a stainless metal substrate 1 having a thickness of 400 μm and a diameter of 18 mm was degreased, washed with water, pickled, washed with water, nickel-plated and washed with water to perform pretreatment. After that, it was immersed in a slurry composed of No. 7 glass particles (Table 1) having an average particle size of 2.5 μm, and a DC voltage was applied between the counter electrode and the metal substrate 1 (Table 1) glass of No. 7 composition. The particles were electrodeposited on one side of the metal substrate and with a glass coating area of 15 mm in diameter and a thickness of 100 μm as shown in FIG. 1 (B). The un-deposited portion of the metal base material is the exposed metal portion and is the area for welding the cylindrical metal base material 2 and the metal base material 1. Then, it dried and baked and the electric insulation layer 2 was formed.
Further, a conductive circuit of the temperature sensor was formed thereon by a printing method. Next, this substrate was welded to a cylindrical metal base material 2 having a diameter of 18 mm to form a dry cooking prevention sensor. (Embodiment 3) With the same structure as in Embodiment 2, only the method of forming the electric insulating layer 3 was changed to the printing method. The electrically insulating layer 3 was obtained by forming a glass paste having a composition of No. 7 (Table 1) to a thickness of about 100 μm by screen printing, drying and firing. (Comparative Example 1) A conductive circuit similar to that of Example 1 was formed on a circular alumina substrate having a diameter of 15 mm by a printing method, and this temperature sensor was mounted on a circular stainless steel substrate having a thickness of 400 μm and a diameter of 18 mm, and a linear expansion coefficient. Was sealed with glass of 70 × 10 −7 / ° C. Next, this substrate was welded to a cylindrical metal base material having a diameter of 18 mm to form an empty cooking prevention sensor. (Comparative Example 2) A SiC thermistor formed by vapor deposition was sealed on a stainless steel substrate having a thickness of 400 µm and a diameter of 18 mm with glass having a coefficient of linear expansion of 70 × 10 -7 / ° C. Next,
This substrate was welded to a cylindrical metal base material having a diameter of 18 mm to form an empty cooking prevention sensor.

【0037】以上の実施例2、3と比較例1、2の温度
センサについて、熱衝撃試験を行った。試験方法として
は、サンプルを500℃で10分間保持した後、水中に
浸漬し、乾燥させ、抵抗値を測定した。これを100サ
イクル繰り返した。その結果を(表6)に示す。
Thermal shock tests were conducted on the temperature sensors of Examples 2 and 3 and Comparative Examples 1 and 2 described above. As a test method, the sample was held at 500 ° C. for 10 minutes, immersed in water, dried, and the resistance value was measured. This was repeated 100 cycles. The results are shown in (Table 6).

【0038】[0038]

【表6】 [Table 6]

【0039】以上のようにガラスで金属にアルミナ基板
を接着させた比較例1および比較例2はいづれも10サ
イクルでガラス層と金属基材の間で剥離が生じた。これ
はガラスの線膨張率(76×10-7)をアルミナ基板の
線膨張率(70×10-7)とほぼ等しい値にしているた
め、より大きい線膨張率を有する金属(114×1
-7)と接着ガラス層との間で歪が発生し、さらに熱ス
トレスを数回繰り返して加えるにつれて歪が大きくな
り、剥離に至ったと考えられる。
As described above, the glass substrate is made of metal and the alumina substrate is made.
Both Comparative Example 1 and Comparative Example 2 in which
Peeling occurred between the glass layer and the metal substrate with the icicle. this
Is the coefficient of linear expansion of glass (76 × 10-7) Of the alumina substrate
Coefficient of linear expansion (70 × 10-7) Is almost equal to
Therefore, a metal having a larger linear expansion coefficient (114 × 1
0 -7) And the adhesive glass layer, distortion occurs and
The strain increases as you add the tress several times.
It is considered that the peeling occurred.

【0040】これに対して実施例2、3の結晶化ガラス
の線膨張率は110×10-7であり、金属の線膨張率と
ほぼ等しい値を有するので、歪が発生し難く、その結果
100サイクルの試験を行っても剥離が発生しなかった
ものと考えられる。
On the other hand, the linear expansion coefficient of the crystallized glass of Examples 2 and 3 is 110 × 10 −7 , which is almost equal to the linear expansion coefficient of the metal, so that strain is unlikely to occur and, as a result, It is considered that peeling did not occur even after the 100-cycle test.

【0041】[0041]

【発明の効果】以上の実施例の説明からも明らかなよう
に、本発明の温度センサーは、とくに熱衝撃性に優れて
いるのでガステーブルなどの空炊き防止センサに用いる
ことができる。さらに、本発明の温度センサは金属基材
上に直接結晶化ガラス層を形成しているため、比較例
1、2のように金属基材上に接着層を設けた構成のセン
サに比べ、熱応答性にも優れている。
As is apparent from the above description of the embodiments, the temperature sensor of the present invention is particularly excellent in thermal shock resistance, and therefore can be used as an empty cooking prevention sensor such as a gas table. Further, since the temperature sensor of the present invention has the crystallized glass layer directly formed on the metal base material, the temperature sensor has a higher thermal resistance than the sensors of Comparative Examples 1 and 2 in which the adhesive layer is provided on the metal base material. Excellent responsiveness.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)本発明の一実施例の空炊き防止用温度セ
ンサーの断面図 (B)同温度センサーの平面図
FIG. 1 (A) is a cross-sectional view of a temperature sensor for preventing empty cooking according to an embodiment of the present invention (B) is a plan view of the temperature sensor.

【図2】同結晶化ガラスの線膨張率の温度特性を示す図FIG. 2 is a diagram showing temperature characteristics of linear expansion coefficient of the crystallized glass.

【図3】従来の空炊き防止用温度センサーの構成図[Fig. 3] Configuration diagram of a conventional temperature sensor for preventing empty cooking

【符号の説明】[Explanation of symbols]

1 金属基板 2 円筒金属基材 3 電気絶縁層 4 感温抵抗体 5 電極 7 オーバーコート層 8 コイルバネ 9 支持金属基板 1 Metal Substrate 2 Cylindrical Metal Substrate 3 Electrical Insulation Layer 4 Temperature Sensitive Resistor 5 Electrode 7 Overcoat Layer 8 Coil Spring 9 Supporting Metal Substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 昭彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiko Yoshida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】有底円筒金属基材の内側底面部を構成する
金属基板上に、1層または多層の電気絶縁層を介して設
けた一対の電極と、前記一対の電極間にまたがって、前
記電気絶縁層の表面に設けた感温抵抗体と、前記感温抵
抗体の表面に設けたオーバーコート層とを備えた構成で
あって、前記有底円筒金属基材の底面部を構成する金属
基板を、前記有底円筒状金属基材の内側底面部に接して
設けたコイルバネの付勢力により温度検知物体に当接さ
せ、温度検知物体の温度を検知する温度センサ。
1. A pair of electrodes provided on a metal substrate forming an inner bottom surface of a bottomed cylindrical metal base material with one layer or a plurality of electrically insulating layers interposed between the pair of electrodes and the pair of electrodes. A structure comprising a temperature-sensitive resistor provided on a surface of the electrical insulating layer and an overcoat layer provided on a surface of the temperature-sensitive resistor, which constitutes a bottom surface portion of the bottomed cylindrical metal base material. A temperature sensor for detecting the temperature of a temperature detection object by bringing a metal substrate into contact with a temperature detection object by an urging force of a coil spring provided in contact with the inner bottom surface of the bottomed cylindrical metal base material.
【請求項2】電気絶縁層の少なくとも一層がMgO系結
晶相を有する結晶化ガラスであり、かつ、その組成が重
量%で、MgO 16〜50%、BaO 0〜50%、
CaO 0〜20%、La23 0〜40%、B23
5〜34%、SiO2 7〜30%、MO2(MはZr,
Ti,Sn,Znの少なくとも1種)0〜5%、P25
0〜5%を主体としてなる請求項1記載の温度セン
サ。
2. At least one of the electrically insulating layers is a crystallized glass having a MgO-based crystal phase, and its composition is in a weight percentage of 16 to 50% MgO and 0 to 50% BaO.
CaO 0-20%, La 2 O 3 0-40%, B 2 O 3
5 to 34%, SiO 2 7 to 30%, MO 2 (M is Zr,
At least one of Ti, Sn, and Zn) 0 to 5%, P 2 O 5
The temperature sensor according to claim 1, which is mainly composed of 0 to 5%.
JP3207849A 1991-08-20 1991-08-20 Temperature sensor Pending JPH0545234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3207849A JPH0545234A (en) 1991-08-20 1991-08-20 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3207849A JPH0545234A (en) 1991-08-20 1991-08-20 Temperature sensor

Publications (1)

Publication Number Publication Date
JPH0545234A true JPH0545234A (en) 1993-02-23

Family

ID=16546550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3207849A Pending JPH0545234A (en) 1991-08-20 1991-08-20 Temperature sensor

Country Status (1)

Country Link
JP (1) JPH0545234A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505042A (en) * 2005-08-13 2009-02-05 シトリニック ゲス フュール エレクトロテクニッシュ オウスルゥスタング エム ベー ハー ウント コー カー ゲー Sensor configuration for temperature measurement
JP2013012559A (en) * 2011-06-29 2013-01-17 Nichia Chem Ind Ltd Manufacturing method of light emitting element
RU2476835C1 (en) * 2011-07-11 2013-02-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Temperature measuring method of structural surface with resistance sensitive element, device for its implementation and manufacturing method of described device
RU2476836C1 (en) * 2011-07-11 2013-02-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Method for determining temperature characteristic of resistance sensitive element, device for its implementation and manufacturing method of described device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505042A (en) * 2005-08-13 2009-02-05 シトリニック ゲス フュール エレクトロテクニッシュ オウスルゥスタング エム ベー ハー ウント コー カー ゲー Sensor configuration for temperature measurement
US8162539B2 (en) 2005-08-13 2012-04-24 SITRONIC Ges. Fuer Elektrotechnische Ausrüstung mbH & Co. KG Sensor arrangement for temperature measurement
JP2013012559A (en) * 2011-06-29 2013-01-17 Nichia Chem Ind Ltd Manufacturing method of light emitting element
RU2476835C1 (en) * 2011-07-11 2013-02-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Temperature measuring method of structural surface with resistance sensitive element, device for its implementation and manufacturing method of described device
RU2476836C1 (en) * 2011-07-11 2013-02-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Method for determining temperature characteristic of resistance sensitive element, device for its implementation and manufacturing method of described device

Similar Documents

Publication Publication Date Title
JPH09145489A (en) Resistance thermometer
EP0070551B1 (en) Method of manufacturing a gas sensor
JPH09138208A (en) Gas sensor
JP2968111B2 (en) Resistor physical quantity sensor with migration prevention pattern
JPH0593659A (en) Distortion sensor and its manufacture
JPH0545234A (en) Temperature sensor
JPH0696847A (en) Surface heating unit and manufacture thereof
KR920007578B1 (en) Thermistor and making method thereof
JPH0534205A (en) Temperature sensor
JPH06137806A (en) Strain sensor
JP3030947B2 (en) Oil level sensor
JPH0658706A (en) Strain sensor
JPH07318441A (en) Strain sensor for measuring instrument and load cell type measuring instrument using this
JPH0545238A (en) Load sensing device and car suspension using it
JP3487675B2 (en) Manufacturing method of mechanical quantity sensor
JPH0667772B2 (en) Glass-ceramic for coating metal substrates
JPH06174567A (en) Torque sensor and manufacture thereof
JPH06137979A (en) Pressure sensor and pressure detector using it
JPH0572017A (en) Level sensor and manufacture thereof
JPH06104072A (en) Heater element and face heating unit using it
JPH07167720A (en) Pressure sensor
JPH07307210A (en) Manufacture of metal resistor and dynamic quantity sensor
JPH06137971A (en) Pressure sensor
JPH0482294A (en) Manufacture of circuit board
JP2523765B2 (en) Glass ceramic substrate