JPH0545157A - Interatomic force microscope and its control method - Google Patents

Interatomic force microscope and its control method

Info

Publication number
JPH0545157A
JPH0545157A JP20060691A JP20060691A JPH0545157A JP H0545157 A JPH0545157 A JP H0545157A JP 20060691 A JP20060691 A JP 20060691A JP 20060691 A JP20060691 A JP 20060691A JP H0545157 A JPH0545157 A JP H0545157A
Authority
JP
Japan
Prior art keywords
sample
cantilever
probe
sample surface
force microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20060691A
Other languages
Japanese (ja)
Other versions
JP3008583B2 (en
Inventor
Takao Toda
隆夫 任田
Hiroyuki Kado
博行 加道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16427168&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0545157(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3200606A priority Critical patent/JP3008583B2/en
Publication of JPH0545157A publication Critical patent/JPH0545157A/en
Application granted granted Critical
Publication of JP3008583B2 publication Critical patent/JP3008583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a noise due to scanning from being generated and a probe from being damaged and to enable a sample with minute recessed and projecting portions and a groove shape to be measured with a high accuracy by iterating approaching, separation and movement between the sample and the probe within a specified position of a cantilever. CONSTITUTION:A displacement of a cantilever 6 is detected by an optical lever by allowing a lens 8 to focus light which is emitted from a semiconductor laser 7 on the lever 6 and then the reflection light to be detected by a bisected photodiode 9. A sample 5 is installed at a position directly below a probe 12, a voltage is applied to a piezoelectric body 3 by a piezoelectric driving body 11, and a diode 9 allows a repulsive force which the lever 6 receives from the sample 5 to be measured while the sample 5 is brought closer to the probe 12. When the repulsive force reaches a specified value, approaching is stopped and then the application voltage is stored into a CPU 13 and is used as information on recessed/projecting portions. Then, the sample 5 is separated until no repulsive force remains, the piezoelectric body 1 is driven, the sample 5 is moved in a direction of X, and then similar procedures are iterated. The same applies to a direction of Y. Also, when a pillarshaped or needle- shaped whisker is mounted, a groove-shaped surface can be observed easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ノイズレベルが低く
0.1nm以下の極めて小さな凹凸や深い溝形状等を安定
に精度良く測定するための原子間力顕微鏡およびその制
御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atomic force microscope for stably and accurately measuring extremely small irregularities of 0.1 nm or less and deep groove shapes, and a control method thereof.

【0002】[0002]

【従来の技術】近年、固体表面を原子オーダで観察でき
る装置として原子間力顕微鏡(以後AFMと呼ぶ)が開
発されている。AFMおよびその制御方法を図4により
説明する。AFMでは微小な力を検出するために、探針
を有する長さ100μm程度のカンチレバーが用いられ
る。試料5を探針12に近づけると、探針と試料との間
に働く原子間力によりカンチレバー6にたわみが生じ
る。このたわみ量を一定に保つように制御信号発生回路
10を通して、圧電体駆動装置11によりZ方向圧電体
3を制御しながら試料表面を走査する。走査は圧電体駆
動装置11とX,Y方向の圧電体1、2により行われ
る。前記フィードバックにおける制御量が試料表面の凹
凸に相当し、したがって、この制御量をコンピュータ1
3等により画像化することでAFM像が得られる。この
カンチレバーのたわみ量は変位測定部19により測定さ
れる。変位測定部19には、光てこ、レーザー干渉、ト
ンネル電流などの方式が用いられている。AFMの分解
能は探針の先端曲率半径に依存し、曲率半径が小さいほ
ど分解能は上がる。現在のところ200から300Åの
曲率の探針が作製され、このカンチレバーを用いてMI
CA等の原子像が観察されている。一方、AFMを用い
てグレーティング等の深い溝形状を有する試料の測定も
行われている。このような測定には、探針の先端曲率が
小さいのと同時に、溝部の底まで届くような、細長い形
状の探針を用いる必要がある。
2. Description of the Related Art In recent years, an atomic force microscope (hereinafter referred to as AFM) has been developed as an apparatus for observing a solid surface on the atomic order. The AFM and its control method will be described with reference to FIG. In AFM, a cantilever having a probe and having a length of about 100 μm is used to detect a minute force. When the sample 5 is brought closer to the probe 12, the cantilever 6 is bent by the atomic force acting between the probe and the sample. The surface of the sample is scanned while controlling the Z-direction piezoelectric body 3 by the piezoelectric body driving device 11 through the control signal generating circuit 10 so as to keep this amount of deflection constant. The scanning is performed by the piezoelectric body driving device 11 and the piezoelectric bodies 1 and 2 in the X and Y directions. The controlled variable in the feedback corresponds to the unevenness of the sample surface. Therefore, this controlled variable is calculated by the computer 1.
An AFM image can be obtained by imaging with 3 or the like. The amount of deflection of the cantilever is measured by the displacement measuring section 19. The displacement measuring unit 19 uses a method such as an optical lever, laser interference, or tunnel current. The resolution of the AFM depends on the radius of curvature of the tip of the probe, and the smaller the radius of curvature, the higher the resolution. At present, a probe with a curvature of 200 to 300 Å has been manufactured. Using this cantilever, MI
Atomic images such as CA have been observed. On the other hand, a sample having a deep groove shape such as a grating is also measured by using AFM. For such measurement, it is necessary to use an elongated probe that reaches the bottom of the groove while having a small tip curvature.

【0003】[0003]

【発明が解決しようとする課題】試料表面を探針で走査
した場合、試料表面の凹凸によるカンチレバーの変位以
外に、試料表面の摩擦係数の違いなどによるカンチレバ
ーの変位やカンチレバーのねじれによる変位などが発生
し、これらがノイズとなり極微細な表面形状が測定でき
ないことがある。また、溝部の壁面が垂直に近いような
形状の試料では、探針の側面が走査中に溝部の壁面に衝
突する。この状態ではカンチレバーのたわみはほとんど
生じることがなく、試料と探針間の距離はそのままの状
態で走査が続けられる。その結果、正確なAFM像が得
られないばかりでなく、探針やカンチレバーが破壊され
ることもある。
When the sample surface is scanned by the probe, in addition to the displacement of the cantilever due to the unevenness of the sample surface, the displacement of the cantilever due to the difference in the friction coefficient of the sample surface or the displacement due to the torsion of the cantilever, etc. Occurrence occurs, and these become noise, and it may not be possible to measure an extremely fine surface shape. Further, in the case of a sample in which the wall surface of the groove is close to vertical, the side surface of the probe collides with the wall surface of the groove during scanning. In this state, the deflection of the cantilever hardly occurs, and the scanning can be continued with the distance between the sample and the probe unchanged. As a result, not only an accurate AFM image cannot be obtained, but also the probe and the cantilever may be destroyed.

【0004】本発明は、このような従来の原子間力顕微
鏡の制御方法の課題を考慮し、極めて小さな凹凸や垂直
に近い側面形状を有するような試料でも、精度良く観察
することが可能な原子間力顕微鏡およびその制御方法を
提供することを目的とする。
In consideration of the problems of the conventional control method of the atomic force microscope, the present invention is capable of accurately observing even a sample having extremely small unevenness or a side surface shape close to vertical. An object of the present invention is to provide a force microscope and a control method thereof.

【0005】[0005]

【課題を解決するための手段】カンチレバー、カンチレ
バーの変位検出装置、試料あるいはカンチレバーの3次
元微動装置、および画像化装置を有する原子間力顕微鏡
において、試料表面の1点でカンチレバーと試料とを接
近させ、カンチレバーの変位が決められた値になった
時、カンチレバーと試料とを引き離し、その後試料表面
の別の点で同じ操作を繰り返すことを特徴とする原子間
力顕微鏡の制御方法、または柱状あるいは針状の突起物
が形成されたカンチレバー、カンチレバーの変位検出装
置、試料あるいはカンチレバーの3次元微動装置、およ
び画像化装置を有し、試料表面の1点でカンチレバーと
試料とを接近させ、カンチレバーの変位が決められた値
になった時、カンチレバーと試料とを引き離し、その後
試料表面の別の点で同じ操作を繰り返すことにより、試
料表面各点における凹凸状態を測定し、試料表面の形状
を画像化することを特徴とする原子間力顕微鏡。
In an atomic force microscope having a cantilever, a cantilever displacement detection device, a sample or a three-dimensional fine movement device of the cantilever, and an imaging device, the cantilever and the sample are brought close to each other at one point on the sample surface. Then, when the displacement of the cantilever reaches a predetermined value, the cantilever and the sample are separated, and then the same operation is repeated at another point on the sample surface, or a method for controlling an atomic force microscope, or a columnar or It has a cantilever with a needle-shaped protrusion, a displacement detection device for the cantilever, a three-dimensional fine movement device for the sample or cantilever, and an imaging device. The cantilever and the sample are brought close to each other at one point on the sample surface, When the displacement reaches a specified value, separate the cantilever and the sample, and then at another point on the sample surface. Flip By repeating the operation, measure the irregularity on the surface of the sample points, atomic force microscope, wherein imaging the shape of the sample surface.

【0006】[0006]

【作用】カンチレバーが試料表面から一定の力を受けた
状態で、試料表面を探針で走査するのではなく、あたか
も、杖を用いて道路の表面形状を調べるように、試料表
面の各点における試料(あるいは探針)の移動距離と、
試料と探針間に働く力との関係を測定し、表面形状を画
像化することにより、試料表面の摩擦係数の違いなどに
よるカンチレバーの変位やカンチレバーのねじれによる
変位などのノイズ成分を除去することができる。また細
長い形状の探針を用いて、溝部等の壁面が垂直に近いよ
うな形状の試料を観察する際も、探針の側面が走査中に
壁面に衝突し、探針やカンチレバーが破壊されることな
く表面形状を観察することが可能となる。
Function: With the cantilever receiving a constant force from the sample surface, instead of scanning the sample surface with the probe, it is as if the cane is used to examine the surface shape of the road. The travel distance of the sample (or probe),
By measuring the relationship between the force acting between the sample and the probe and imaging the surface shape, it is possible to remove noise components such as cantilever displacement due to differences in the friction coefficient of the sample surface and displacement due to torsion of the cantilever. You can Also, when using an elongated probe to observe a sample whose wall surface such as a groove is nearly vertical, the side surface of the probe collides with the wall surface during scanning, and the probe and cantilever are destroyed. It is possible to observe the surface shape without any need.

【0007】[0007]

【実施例】【Example】

(実施例1)以下、具体例について詳細に述べる。図1
は、本発明の原子間力顕微鏡およびその制御方法の第1
実施例を示す概略図である。試料は、X,Y,Zの3方
向の圧電体1、2、3で形成されたトライポッド型の微
動機構上に設置される。試料5の水平面内の走査は、圧
電体駆動装置11により発生した電圧をX、およびY方
向の圧電体に印加することにより行った。試料と探針間
に働く力、すなわちカンチレバー6の変位は出力5mW
の半導体レーザー7から出射されたレーザー光をレンズ
8によりカンチレバー上に集光し、その反射光を2分割
フォトダイオード9により検出する光てこにより検出し
た。試料とカンチレバーとの距離の制御は制御信号発生
回路10と圧電体駆動装置11により、制御電圧をZ方
向の圧電体3に印加することにより行った。以下にAuの
スパッタ膜を観察したときの具体的な制御方法について
説明する。
(Example 1) Hereinafter, a specific example will be described in detail. Figure 1
The first aspect of the atomic force microscope and the control method thereof according to the present invention.
It is the schematic which shows an Example. The sample is set on a tripod-type fine movement mechanism formed of piezoelectric bodies 1, 2, and 3 in three directions of X, Y, and Z. The scanning of the sample 5 in the horizontal plane was performed by applying the voltage generated by the piezoelectric body driving device 11 to the piezoelectric bodies in the X and Y directions. The force acting between the sample and the probe, that is, the displacement of the cantilever 6, outputs 5 mW.
The laser light emitted from the semiconductor laser 7 was focused on the cantilever by the lens 8, and the reflected light was detected by the optical lever detected by the two-divided photodiode 9. The control of the distance between the sample and the cantilever was performed by applying the control voltage to the piezoelectric body 3 in the Z direction by the control signal generation circuit 10 and the piezoelectric body drive device 11. A specific control method when observing the Au sputtered film will be described below.

【0008】試料台4の上に、Si基板上にAu薄膜が形成
された試料5を試料の中央部分が探針12の下に位置す
るように設置した。圧電体駆動装置11によりZ方向の
圧電体3に徐々に電圧を印可し、試料5を探針12に近
ずけながら、同時に2分割フォトダイオード9によりカ
ンチレバー6が試料5から受ける力を測定した。カンチ
レバー6が決められた大きさの斥力を受けたとき試料の
探針への接近を停止し、その時のZ方向の圧電体3に印
加されている電圧をコンピュータ13に記憶させた。こ
の電圧値が基板表面の各点における凹凸情報となる。こ
の試料の測定の際は、斥力の大きさを1×10ー8Nとし
た。つぎにカンチレバー6が試料5から力を受けなくな
る距離まで試料5を探針12から離した。次に圧電体駆
動装置11をもちいて、X方向の圧電体1により試料5
を2nm左に移動させた。その後、Z方向の圧電体3に徐
々に電圧を印可し、カンチレバー6が1×10ー8Nの斥
力を受けるまで、試料5を探針12に近ずけ、その時の
Z方向の圧電体3に印加されている電圧をコンピュータ
13に記憶させた。次にX方向の圧電体1により試料5
をさらに左へ2nm移動させた。この様な測定を256回
X方向へ繰り返し1ライン分の走査を終了した。次にY
方向の圧電体2により試料5を2nm下に移動させ、同様
の操作によりさらに1ラインの走査を行った。256回
の走査の後、256×256個の試料表面の凹凸情報が
得られた。
A sample 5 having an Au thin film formed on a Si substrate was placed on the sample table 4 so that the central portion of the sample was located below the probe 12. A voltage was gradually applied to the piezoelectric body 3 in the Z direction by the piezoelectric body driving device 11, and the force applied to the cantilever 6 from the sample 5 was simultaneously measured by the two-divided photodiode 9 while the sample 5 was approaching the probe 12. .. When the cantilever 6 receives a repulsive force of a predetermined magnitude, the approach of the sample to the probe is stopped, and the voltage applied to the piezoelectric body 3 in the Z direction at that time is stored in the computer 13. This voltage value becomes unevenness information at each point on the substrate surface. In the measurement of this sample, the magnitude of the repulsive force was 1 × 10 −8 N. Next, the sample 5 was separated from the probe 12 until the cantilever 6 received a force from the sample 5. Next, by using the piezoelectric body driving device 11, the sample 5 is moved by the piezoelectric body 1 in the X direction.
Was moved to the left by 2 nm. Thereafter, a voltage is gradually applied to the piezoelectric body 3 in the Z direction, and the sample 5 is moved closer to the probe 12 until the cantilever 6 receives a repulsive force of 1 × 10 −8 N. The voltage applied to the computer 13 was stored in the computer 13. Next, the sample 5 is formed by the piezoelectric body 1 in the X direction.
Was further moved to the left by 2 nm. Such measurement was repeated 256 times in the X direction to complete scanning for one line. Then Y
The sample 5 was moved downward by 2 nm by the piezoelectric body 2 in the direction, and one line was scanned by the same operation. After 256 scans, 256 × 256 pieces of unevenness information on the sample surface were obtained.

【0009】AFMを本発明のように制御することによ
り、従来のようにカンチレバーが一定の斥力を受けたま
ま試料表面を連続的に走査した場合に比べてノイズレベ
ルが低く、高分解能な画像が得られた。この原因の1つ
として試料表面をX方向に走査したときに生ずる、カン
チレバーのねじれ成分によるノイズが皆無になったこと
が考えられる。
By controlling the AFM as in the present invention, the noise level is low and a high resolution image can be obtained as compared with the conventional case where the cantilever continuously scans the sample surface while receiving a constant repulsive force. Was obtained. As one of the causes of this, it is considered that the noise due to the torsion component of the cantilever, which is generated when the surface of the sample is scanned in the X direction, is completely eliminated.

【0010】前記実施例では凹凸情報の測定を各点につ
き1回行ったが、各点における測定を複数回繰り返し、
その平均値を用いて画像化することにより、よりノイズ
レベルの低い画像が得られた。またカンチレバーの変位
測定手段として前記実施例では光てこ法を用いたが、レ
ーザー干渉法やトンネル電流法を用いても同様の結果が
得られた。
In the above embodiment, the unevenness information was measured once for each point, but the measurement at each point was repeated a plurality of times,
An image with a lower noise level was obtained by imaging using the average value. Further, although the optical lever method was used as the displacement measuring means of the cantilever in the above embodiment, the same result was obtained by using the laser interferometry method or the tunnel current method.

【0011】(実施例2)次に本発明の第2実施例にお
ける原子間力顕微鏡のカンチレバー部分の概略図を図2
に示す。フォトリソグラフィにより作成した長さ100
μm、厚さ1.5μmのV型のSiO2薄膜カンチレバー14
の先端部分に、1つの針状部分の長さが2〜5μmの酸
化亜鉛ウィスカ15を取り付けた。このウィスカはCV
D法により作成したものであり、正四面体の体心から4
頂点に向かって延びたテトラポッド型の3次元構造の結
晶であるため、図2に示すように接着剤を用いて極めて
容易にカンチレバーに取り付けることができた。このカ
ンチレバーを用いて、試料表面をカンチレバーが一定の
斥力を受けたまま連続的に走査する従来の制御方法で、
深さ1μm、幅1μmの溝形状18を測定したところ安定
に測定ができず、時としてウィスカが破損することがあ
った。またSiのエッチピットを鋳型としてSi 3N4薄膜で
作成したカンチレバーを用いて、従来の制御方法で測定
した画像と本発明のウィスカを具備したカンチレバーを
用いて、本発明の制御方法により測定した画像とを比較
したところ、本発明の装置の方が溝形状を正確に観察で
きることが判明した。この原因は図3に示すように、従
来の探針は頂角が70度のピラミッド形状となるため、
探針16が溝の底まで届かず実際の試料形状とは異なる
破線で示したような像が得られた(図3(a))のに対
し、ウィスカの探針17は溝の底まで到達し、破線で示
したような表面形状に忠実な像が得られた(図3
(b))ものと考えられる。
(Second Embodiment) Next, a second embodiment of the present invention will be described.
Figure 2 shows a schematic diagram of the cantilever part of the atomic force microscope.
Shown in. Length 100 created by photolithography
μm, thickness 1.5μm V type SiO2Thin film cantilever 14
At the tip of the needle, the length of one needle is 2-5μm
A zinc oxide whisker 15 was attached. This whisker is CV
It was created by the D method and is 4 from the body center of the tetrahedron.
Tetrapod-shaped three-dimensional structure extending toward the apex
Since it is a crystal, using an adhesive as shown in FIG.
It could be easily attached to the cantilever. This power
Use a cantilever to keep the cantilever
With the conventional control method of continuously scanning while receiving a repulsive force,
Stable when measuring a groove shape 18 with a depth of 1 μm and a width of 1 μm
May not be able to be measured and the whisker may be damaged.
It was. In addition, Si etch pits are used as a template for Si 3NFourIn thin film
Measured by the conventional control method using the created cantilever
Image and the cantilever equipped with the whisker of the present invention
And compare it with the image measured by the control method of the present invention.
However, the device of the present invention can more accurately observe the groove shape.
It turned out to be possible. The reason for this is as shown in FIG.
Since the conventional probe has a pyramid shape with an apex angle of 70 degrees,
The probe 16 does not reach the bottom of the groove, so it differs from the actual sample shape.
The image shown by the broken line was obtained (Fig. 3 (a)).
However, the whisker probe 17 reaches the bottom of the groove and is shown by the broken line.
An image faithful to the surface shape was obtained (Fig. 3).
(B)).

【0012】本実施例では酸化亜鉛ウィスカを用いた場
合について説明したが、酸化錫、炭化珪素、アルミナ、
金属あるいは有機物の針状結晶を用いても、本発明の制
御方法を用いることにより、垂直な壁面を有する溝部に
おいても、表面形状に忠実なA像が安定に得られた。
In this embodiment, the case of using zinc oxide whiskers has been described, but tin oxide, silicon carbide, alumina,
Even if a needle crystal of a metal or an organic material is used, by using the control method of the present invention, an A image faithful to the surface shape can be stably obtained even in a groove having a vertical wall surface.

【0013】[0013]

【発明の効果】以上述べたところから明らかなように、
本発明によれば、ノイズレベルが低く0.1nm以下の極
めて小さな凹凸等を安定に高精度に測定でき、さらにグ
レーティング等の深い溝形状や、垂直に近い壁面を有す
る試料を測定する際、カンチレバーや探針を破壊するこ
となく、精度よく測定できる。
As is clear from the above description,
According to the present invention, it is possible to stably and highly accurately measure extremely small irregularities having a low noise level of 0.1 nm or less, and further, when measuring a sample having a deep groove shape such as a grating or a wall surface close to vertical, a cantilever. Accurate measurement is possible without destroying the probe.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる第1実施例の原子間力顕微鏡お
よびその制御方法を説明するための概略図を示す。
FIG. 1 is a schematic view for explaining an atomic force microscope and a control method therefor according to a first embodiment of the present invention.

【図2】本発明にかかる第2実施例における原子間力顕
微鏡のカンチレバー部分の概略図を示す。
FIG. 2 is a schematic view of a cantilever portion of an atomic force microscope according to a second embodiment of the present invention.

【図3】従来のカンチレバー、および本発明のカンチレ
バーにより得られた溝状形状のAFM像の説明図を示
す。
FIG. 3 is an explanatory view of a conventional cantilever and an AFM image of a groove shape obtained by the cantilever of the present invention.

【図4】従来の原子間力顕微鏡およびその制御方法を説
明するための概略図を示す。
FIG. 4 is a schematic diagram for explaining a conventional atomic force microscope and a control method thereof.

【符号の説明】[Explanation of symbols]

1 X方向圧電体 2 Y方向圧電体 3 Z方向圧電体 4 試料台 5 試料 6 カンチレバー 7 半導体レーザー 8 集光レンズ 9 2分割フォトダイオード 10 制御信号発生回路 11 圧電体駆動装置 12 探針 13 制御コンピュータ 14 カンチレバー 15 酸化亜鉛ウィスカ 16、17 探針 18 変位測定部 1 X-direction piezoelectric body 2 Y-direction piezoelectric body 3 Z-direction piezoelectric body 4 Sample stage 5 Sample 6 Cantilever 7 Semiconductor laser 8 Condensing lens 9 Two-divided photodiode 10 Control signal generation circuit 11 Piezoelectric body drive device 12 Probe 13 Control computer 14 cantilever 15 zinc oxide whisker 16, 17 probe 18 displacement measuring unit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】カンチレバー、カンチレバーの変位検出装
置、試料あるいはカンチレバーの3次元微動装置、およ
び画像化装置を有する原子間力顕微鏡において、試料表
面の1点でカンチレバーと試料とを接近させ、カンチレ
バーの変位が決められた値になった時、カンチレバーと
試料とを引き離し、その後試料表面の別の点で同じ操作
を繰り返すことを特徴とする原子間力顕微鏡の制御方
法。
1. An atomic force microscope having a cantilever, a displacement detecting device for the cantilever, a three-dimensional fine movement device for the sample or the cantilever, and an imaging device, wherein the cantilever and the sample are brought close to each other at one point on the sample surface. A method for controlling an atomic force microscope, wherein when the displacement reaches a predetermined value, the cantilever and the sample are separated, and then the same operation is repeated at another point on the sample surface.
【請求項2】試料表面の1点でカンチレバーと試料とを
接近させ、カンチレバーの変位が決められた値になった
時、カンチレバーと試料とを引き離すという操作を複数
回繰り返した後、試料表面の別の点で同じ操作を繰り返
すことを特徴とする請求項1に記載の原子間力顕微鏡の
制御方法。
2. When the cantilever and the sample are brought close to each other at one point on the sample surface and when the displacement of the cantilever reaches a predetermined value, the operation of separating the cantilever and the sample is repeated a plurality of times, and then the sample surface The atomic force microscope control method according to claim 1, wherein the same operation is repeated at another point.
【請求項3】柱状あるいは針状の突起物が形成されたカ
ンチレバー、カンチレバーの変位検出装置、試料あるい
はカンチレバーの3次元微動装置、および画像化装置を
有し、試料表面の1点でカンチレバーと試料とを接近さ
せ、カンチレバーの変位が決められた値になった時、カ
ンチレバーと試料とを引き離し、その後試料表面の別の
点で同じ操作を繰り返すことにより、試料表面各点にお
ける凹凸状態を測定し、試料表面の形状を画像化するこ
とを特徴とする原子間力顕微鏡。
3. A cantilever having a columnar or needle-like protrusion formed thereon, a cantilever displacement detection device, a sample or a three-dimensional fine movement device of the cantilever, and an imaging device, and the cantilever and the sample are provided at one point on the sample surface. , And when the displacement of the cantilever reaches a predetermined value, the cantilever and the sample are separated, and then the same operation is repeated at another point on the sample surface to measure the unevenness state at each point on the sample surface. , An atomic force microscope characterized by imaging the shape of a sample surface.
【請求項4】試料表面の1点でカンチレバーと試料とを
接近させ、カンチレバーの変位が決められた値になった
時、カンチレバーと試料とを引き離すという操作を複数
回繰り返した後、試料表面の別の点で同じ操作を繰り返
すことにより、試料表面各点における平均的な凹凸状態
を測定することを特徴とする請求項3に記載の原子間力
顕微鏡。
4. When the cantilever and the sample are brought close to each other at one point on the sample surface, and when the displacement of the cantilever reaches a predetermined value, the operation of separating the cantilever and the sample is repeated a plurality of times, and then the sample surface The atomic force microscope according to claim 3, wherein an average unevenness state at each point on the sample surface is measured by repeating the same operation at another point.
【請求項5】柱状あるいは針状の突起物が、金属、酸化
亜鉛、酸化錫、アルミナ、炭化珪素、あるいはフタロシ
アニンなどの有機物の針状結晶であることを特徴とする
請求項3および4に記載の原子間力顕微鏡。
5. The columnar or needle-shaped protrusion is a needle-shaped crystal of an organic material such as metal, zinc oxide, tin oxide, alumina, silicon carbide, or phthalocyanine, according to claim 3 or 4. Atomic force microscope.
JP3200606A 1991-08-09 1991-08-09 Atomic force microscope and control method thereof Expired - Fee Related JP3008583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3200606A JP3008583B2 (en) 1991-08-09 1991-08-09 Atomic force microscope and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3200606A JP3008583B2 (en) 1991-08-09 1991-08-09 Atomic force microscope and control method thereof

Publications (2)

Publication Number Publication Date
JPH0545157A true JPH0545157A (en) 1993-02-23
JP3008583B2 JP3008583B2 (en) 2000-02-14

Family

ID=16427168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3200606A Expired - Fee Related JP3008583B2 (en) 1991-08-09 1991-08-09 Atomic force microscope and control method thereof

Country Status (1)

Country Link
JP (1) JP3008583B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423962A (en) * 2015-11-05 2016-03-23 黑龙江大学 Surface morphology measurement teaching instrument and method for using teaching instrument to measure surface morphology
CN109238181A (en) * 2018-09-29 2019-01-18 昆明理工大学 A kind of elevator rail planeness detection system and method based on multistage optical lever

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423962A (en) * 2015-11-05 2016-03-23 黑龙江大学 Surface morphology measurement teaching instrument and method for using teaching instrument to measure surface morphology
CN109238181A (en) * 2018-09-29 2019-01-18 昆明理工大学 A kind of elevator rail planeness detection system and method based on multistage optical lever
CN109238181B (en) * 2018-09-29 2023-09-26 昆明理工大学 Elevator track flatness detection system and method based on multistage optical lever

Also Published As

Publication number Publication date
JP3008583B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
EP0536827B1 (en) Combined scanning force microscope and optical metrology tool
US5831181A (en) Automated tool for precision machining and imaging
US7716970B2 (en) Scanning probe microscope and sample observation method using the same
US7323684B2 (en) Scanning probe microscope and specimen observation method and semiconductor device manufacturing method using said scanning probe microscope
EP0574234B1 (en) Automatic tip approach method and apparatus for scanning probe microscope
JPH0642953A (en) Interatomic force microscope
JP2003227788A (en) Scanning probe microscope and measuring method of surface structure of sample
JPH06194154A (en) Method and apparatus for two-dimensional profile description with contact force and atomic force microscope
CN1854793A (en) Scan probe microscope, sample observation method using same and method for manufacturing the device
Serry et al. Characterization and Measurement of Microcomponents with the Atomic Force Microscope (AFM)
JPH0545157A (en) Interatomic force microscope and its control method
JP2005147979A (en) Scanning probe microscope
JP3656399B2 (en) Atomic force microscope with scratch mechanism
JPH0727560A (en) Scanning type probe microscope and control method thereof
JP2694783B2 (en) Atomic force microscope
JP3473937B2 (en) Scanning probe microscope and its scanning method
JPH06258068A (en) Interatomic force microscope
JP4931640B2 (en) Scanning probe microscope
JPH0771951A (en) Controlling method for scanning probing microscope
JPH06300556A (en) Control method for interatomic force microscope
Serry et al. 4 Characterization and Measurement of Microcomponents with the Atomic Force Microscope (AFM)
JPH08226925A (en) Probe microscope and measurement method by the microscope
JPH117667A (en) Device and method for recording/reproducing
JP3175342B2 (en) Surface shape measurement method
JPH0526645A (en) Interatomic force microscope and control method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees