JP3656399B2 - Atomic force microscope with scratch mechanism - Google Patents

Atomic force microscope with scratch mechanism Download PDF

Info

Publication number
JP3656399B2
JP3656399B2 JP08885198A JP8885198A JP3656399B2 JP 3656399 B2 JP3656399 B2 JP 3656399B2 JP 08885198 A JP08885198 A JP 08885198A JP 8885198 A JP8885198 A JP 8885198A JP 3656399 B2 JP3656399 B2 JP 3656399B2
Authority
JP
Japan
Prior art keywords
probe
cantilever
scratch
observation
atomic force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08885198A
Other languages
Japanese (ja)
Other versions
JPH11287815A (en
Inventor
信明 高澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP08885198A priority Critical patent/JP3656399B2/en
Publication of JPH11287815A publication Critical patent/JPH11287815A/en
Application granted granted Critical
Publication of JP3656399B2 publication Critical patent/JP3656399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スクラッチ機構を有する原子間力顕微鏡に関し、特にスクラッチ付与探針と観察用探針を独立としてカンチレバーに設け、スクラッチ付与による探針のコンタミおよび損耗を防止して測定データの精度向上を可能とするスクラッチ機構を有する原子間力顕微鏡に関する。
【0002】
【従来の技術】
原子間力顕微鏡(AFM)を用いて、金属薄膜の表面解析として溶媒等に浸漬して金属表面の変化を把握する場合に、微小部最表面の状況および存在する物質をできるだけコンタミのない状態で、材料に直接関わる特性を把握することが重要である。そのため、試料の観察位置をスクラッチして清浄な表面を露出して観察するAFMの観察方式が採用されている。
特に原子間力顕微鏡は電子顕微鏡では、検出不可能なナノメートルオーダーの表面起伏形状の測定が可能であるが、その部位がコンタミを受けているとしてもその影響を分離することは不可能であった。この分野の公知技術として、特開平6−323834号公報には、試料の凹凸と摩擦力を良好に分離できる原子間力顕微鏡の測定方法として、1つの探針に横振動の検出機能を兼ね備えた原子間力顕微鏡が開示されている。
【0003】
前記のようにAFMでは、数ミクロン平方領域から、さらに微小領域の表面形状観察に最適である。特に非常に高い垂直方向分解能(=0.1Å)により、SEMやレーザー顕微鏡では検出できない形状を画像化することができる。しかし現状では、測定データーから表面のコンタミによる外乱の影響を消去しないかぎり、その精度を向上させることが難しいという問題があった。
材料最表面の状態は、材料の機能発現に直接関わるものであり、その把握は重要である。この目的のためには、原子間力顕微鏡(AFM)では数ミクロン平方領域から、さらに微小領域の観察(=数十万〜数百万倍)が可能であり有利である。加えて、垂直分解能が非常に高い(=0.1Å)ので、電子顕微鏡では検出不可能なナノオーダーの表面起伏形状を画像化できる。
【0004】
そこで、AFMを適用して材料最表面の状態測定の際の前記のような問題を解決し、特に溶媒等に浸漬された状態において、金属薄膜等の表面の観察のためにコンタミを除去し、かつスクラッチ付与における探針の損耗や、異物の付着を防止することを可能とする原子間力顕微鏡の開発が望まれている。
【0005】
【発明が解決しようとする課題】
本発明の目的は、カンチレバーに2つの探針を設けることを検討し、1つはスクラッチ用として傾斜することによって試料表面に疵を付け、他方でこのスクラッチ面を観察可能とするスクラッチ機構を有する原子間力顕微鏡を提供することにある。
また、本発明の他の目的は、前記2つの探針の用途を独立化することを検討し、これをカンチレバーの傾斜角度の調整によって可能とするために、探針の長さの差と傾斜角度の関係を規定したスクラッチ機構を有する原子間力顕微鏡を提供することにある。
さらに、本発明の別の目的は、前記カンチレバーの傾斜角度の調整のためにピエゾ素子からなる角度設定装置をカンチレバーに近接して設けたスクラッチ機構を有する原子間力顕微鏡を提供することにある。
【0006】
【課題を解決するための手段】
上記の目的は、原子間力顕微鏡(AFM)のカンチレバーに2つの探針を近接して設け、カンチレバーを傾斜させ先端側の1つの探針を傾斜させた状態で試料表面を移動させることによって、前記探針で試料表面にスクラッチを付した後、カンチレバーを水平位置にもどして他の一つの探針で、当該スクラッチを付した箇所を観察できるようになし、かつ、カンチレバーの傾斜をピエゾ素子によって調整し、下記の関係式を満足してスクラッチを付する探針の先端部が観察用探針の先端部より低くできることを特徴とするスクラッチ機構を有する原子間力顕微鏡によって達成される。
dtanθ>α
但し、d:探針の中心間距離、θ:カンチレバーの傾斜角、
α:観察用探針長さ−スクラッチ用探針長さ
【0008】
【発明の実施の形態】
本発明によれば、薄い酸または有機溶媒中で形成される表面皮膜等が、どのように金属等の表面で変化するかを測定するのに使用される。その変化している時点で、その場で観測できる。この時スクラッチ用の探針を傾斜させて1〜2μm深さの疵をつけ、この疵の箇所に測定用探針を精度良くセットすることができる。このためには、例えば2つの探針の間隔を約10μmになるように設け、前記傾斜による測定用探針の位置の設定誤差を約15μmに調整すれば、この設定ずれが生じても、通常の観察範囲が約100×100μmをカバーしているので十分に観察範囲内とできる。
本発明の観察時は、通常の方法と同様であって、探針の材質を、Si3 4 またはSi等として、形状は好ましくは三角錐に成形し、上部よりレーザー光を照射した場合に焦点が十分に絞れる形状であればよい。また、カンチレバーが測定中常に水平となるように試料表面をなぞり、試料からカンチレバーの距離が一定となるように走査する。この時、レーザー光の水平に対するずれをなくすようにピエゾ素子でカンチレバーをフィードバック制御する。そのフィードバックの変化量を探針の高さの変化量として、すなわち試料表面の上下起伏している高さとして捕らえる。その変化量を試料の表面起伏像としてモニターで観察する。
【0009】
カンチレバーを傾斜させるピエゾ素子は、xy面上の変位で十分に対応でき、これへの電圧の入力のみで作動させる。この傾斜角度θが余り大きいと、観察用探針の移動距離または位置降下が大きくなり、スクラッチのところに位置合わせするのが難しくなる。従来の1つの探針で兼用して使用するタイプのものでは、この位置合わせが難しく、かつスクラッチに用いた後では、探針の磨耗またはスクラッチ破片が付着が発生し、安定したその場の観察ができない。この事情は、探針にダイヤモンド等を使用したものでも同様であり、程度の差こそあれ、この問題が発生する。そのため、従来法では観察精度の向上は得られなかった。これに対して本発明の技術的特徴は、AFM自体を全体に動かすことなく、傾きを変えることのみによってその場で、同一位置でスクラッチ部を捕らえることができる点である。
【0010】
具体的な本発明の観察手順は、まず観察用探針を走査させて試料の表面の1ヶ所に疵を付ける。このため、カンチレバーを傾斜させ垂直に振動させたり、押しつけてもよく、さらに好ましくは、カンチレバーを横に走らせて疵を付ける。その後、水平位置にカンチレバーを戻し、観察用探針で観察する。
なお、本発明のピエゾ素子としては、ZnS,ZnSe,ZnTe,CdTe,InSb,ZnO,CdS,CdSe等が使用できる。
以下に、本発明について実施例の図面に基づいてさらに詳述する。
【0011】
【実施例】
本実施例のスクラッチ機構を有する原子間力顕微鏡の概要を図1に示す。この図1(a)では、カンチレバー1の先端部に観察用探針2を設け、このカンチレバー1の傾斜機構は、セット台との間に設けたピエゾ素子3の膨張・収縮によって調節でき、さらに、カンチレバー1の位置調整として板ばね4とピン5が傾斜角の変更時に補助的に使用される。この図で特に○で囲んだ箇所の探針とピエゾ素子の機構に特徴がある。
【0012】
図1(b)は、水平状態で探針2による観察状況を示す。探針2が走査するスクラッチは、図1(c)に示すように、試料8に対してカンチレバー1を傾斜させて付けられた。なお、前記観察には、図3のようにレーザー発振器9からレーザー10を発振して、試料からの反射波をレーザー検出器11で検出する従来の方法と同一方法で行われる。
図2にカンチレバーの傾斜角度と各探針の長さの差の関係から、傾斜角度を調整する方法を示したものである。図2(a)の観察時の水平とした状態のもので、例えばカンチレバー全体の長さを3mmとして、スクラッチ用探針長さl1 :5μmで、観察用探針長さl2 :6μmで、両者の中心間距離が10μmとし、これを傾斜させた状態を図2(b)に示す。
【0013】
この図2(b)では、傾斜させてスクラッチを付けるには、スクラッチ用の探針長さl1 の先端位置が、観察用の探針長さl2 の先端より低くなる下記の条件を満足する必要がある。
dtanθ>α
但し、d=10、α=1を設定し、代入すると、
傾斜角:θ>5.7°、この角度はピエゾ素子で対応可能である。
この時の観察位置のずれは、
D=L(1−cosθ)=14.8μmとなった。この距離は、スクラッチ位置を見失うことなく、また、これは通常の観察領域としての十分に対応できる100×100□の範囲にあった。
【0014】
また、探針の位置降下距離は、
Lsinθ=298μmとなった。
以上のような条件で、カンチレーバーを設定することによって、スクラッチ用と観察用の探針を使い分け、最初にスクラッチ用でスクラッチを付けて、その後その場での位置観察をすることができた。
【0015】
【発明の効果】
本発明によれば、試料表面をスクラッチし、清浄表面を観察できるので、液中での材料表面の変化を精度よく解析できる。また、スクラッチ用と観察用探針を使い分けるので、観察用探針の磨耗やスクラッチ破片の付着をなくし、常に安定したその場の観察が可能となる。
【図面の簡単な説明】
【図1】本発明に係る実施例の原子間力顕微鏡装置の概要を示す図で、(a)カンチレバー概要、(b)観察時状況、(c)スクラッチの状況を示す図である。
【図2】本発明に係るカンチレバーの動きを示し、(a)観察時状況、(b)スクラッチ時の状況を示す図である。
【図3】従来の原子間力顕微鏡のレーザーによる観察状況を示す図である。
【符号の説明】
1…カンチレバー
2…観察用探針
3…ピエゾ素子
4…板ばね
5…ピン
6…セット台
7…スクラッチ用探針
8…試料
9…レーザー発振器
10…レーザー光
11…レーザー光検出器
1 …スクラッチ用探針長さ
2 …観察用探針長さ
d…探針間距離
α…探針の長さの差
θ…カンチレバー傾斜角
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an atomic force microscope having a scratch mechanism, and in particular, a scratch imparting probe and an observation probe are provided independently on a cantilever to prevent contamination and wear of the probe due to scratching and improve the accuracy of measurement data. The present invention relates to an atomic force microscope having a scratch mechanism.
[0002]
[Prior art]
When using atomic force microscope (AFM) to ascertain changes in the metal surface by immersing in a solvent or the like as a surface analysis of a metal thin film, the condition of the outermost surface of the microscopic part and the existing substances should be as free of contamination as possible. It is important to understand the properties directly related to the material. Therefore, an AFM observation method is employed in which the observation position of the sample is scratched to expose and observe a clean surface.
In particular, the atomic force microscope can measure nanometer-order surface undulations that cannot be detected by an electron microscope, but it is impossible to separate the effects even if the site is contaminated. It was. As a known technique in this field, Japanese Patent Application Laid-Open No. 6-323834 has a function of detecting a lateral vibration in one probe as a measurement method of an atomic force microscope that can satisfactorily separate the unevenness and frictional force of a sample. An atomic force microscope is disclosed.
[0003]
As described above, AFM is most suitable for observing the surface shape of a micro area from a few micron square area. In particular, with a very high vertical resolution (= 0.1 mm), a shape that cannot be detected by an SEM or a laser microscope can be imaged. However, at present, there is a problem that it is difficult to improve the accuracy unless the influence of disturbance due to surface contamination is eliminated from the measurement data.
The condition of the outermost surface of the material is directly related to the function expression of the material, and it is important to grasp it. For this purpose, the atomic force microscope (AFM) is advantageous because it enables observation of a micro area from several micron square area (= several hundred thousand to several million times). In addition, since the vertical resolution is very high (= 0.1 mm), it is possible to image a nano-order surface relief shape that cannot be detected by an electron microscope.
[0004]
Therefore, AFM is applied to solve the above-mentioned problems when measuring the state of the outermost surface of the material. In particular, in a state where the material is immersed in a solvent, the contamination is removed for observing the surface of the metal thin film, In addition, it is desired to develop an atomic force microscope that can prevent the wear of the probe and the adhesion of foreign matters when applying a scratch.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to consider providing two probes on a cantilever, and one has a scratch mechanism that makes it possible to observe the scratch surface while scoring the sample surface by tilting it for scratching. It is to provide an atomic force microscope.
Further, another object of the present invention is to examine the independence of the use of the two probes, and to make this possible by adjusting the inclination angle of the cantilever, It is an object of the present invention to provide an atomic force microscope having a scratch mechanism that defines an angular relationship.
Furthermore, another object of the present invention is to provide an atomic force microscope having a scratch mechanism in which an angle setting device composed of a piezo element is provided close to the cantilever for adjusting the tilt angle of the cantilever.
[0006]
[Means for Solving the Problems]
The above purpose is to provide two probes close to the cantilever of an atomic force microscope (AFM), tilt the cantilever, and move the sample surface while tilting one probe on the tip side. After scratching the sample surface with the probe, the cantilever is returned to a horizontal position so that the other scratched spot can be observed with the other probe, and the inclination of the cantilever is tilted by a piezo element. This is achieved by an atomic force microscope having a scratch mechanism characterized in that the tip of the probe that is adjusted and satisfies the following relational expression can be made lower than the tip of the observation probe.
dtan θ> α
Where d: distance between the centers of the probes, θ: tilt angle of the cantilever,
α: length of observation probe-length of scratch probe
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, it is used to measure how a surface film or the like formed in a thin acid or organic solvent changes on the surface of a metal or the like. It can be observed on the spot at the time of the change. At this time, the scratching probe is tilted to have a hook having a depth of 1 to 2 μm, and the measuring probe can be accurately set at the position of the hook. For this purpose, for example, the distance between the two probes is set to about 10 μm, and the setting error of the position of the measurement probe due to the inclination is adjusted to about 15 μm. Since the observation range covers about 100 × 100 μm, it can be sufficiently within the observation range.
At the time of observation of the present invention, it is the same as a normal method, and when the probe material is Si 3 N 4 or Si, the shape is preferably formed into a triangular pyramid, and laser light is irradiated from above. Any shape can be used as long as the focal point is sufficiently narrowed. Further, the sample surface is traced so that the cantilever is always horizontal during the measurement, and scanning is performed so that the distance from the sample to the cantilever is constant. At this time, the cantilever is feedback-controlled by a piezo element so as to eliminate the deviation of the laser beam from the horizontal. The amount of change in the feedback is captured as the amount of change in the height of the probe, that is, the height of the sample surface that is undulating. The amount of change is observed on the monitor as a surface relief image of the sample.
[0009]
The piezo element for tilting the cantilever can sufficiently respond to the displacement on the xy plane, and is operated only by inputting a voltage thereto. If the inclination angle θ is too large, the moving distance or position drop of the observation probe becomes large, and it becomes difficult to align with the scratch. This type is difficult to align with the conventional type that is also used as a single probe, and after using it for scratching, the probe wears or scratches are attached, and stable in-situ observation is possible. I can't. This situation is the same even when diamond or the like is used for the probe, and this problem occurs to some extent. Therefore, the conventional method cannot improve the observation accuracy. On the other hand, the technical feature of the present invention is that the scratch portion can be captured at the same position on the spot only by changing the tilt without moving the AFM itself as a whole.
[0010]
In the specific observation procedure of the present invention, first, an observation probe is scanned to make a crease on one surface of the sample. For this reason, the cantilever may be tilted and vibrated vertically, or may be pressed, and more preferably, the cantilever is run sideways to attach a ridge. Thereafter, the cantilever is returned to the horizontal position and observed with an observation probe.
As the piezoelectric element of the present invention, ZnS, ZnSe, ZnTe, CdTe, InSb, ZnO, CdS, CdSe, etc. can be used.
Hereinafter, the present invention will be described in more detail with reference to the drawings of the embodiments.
[0011]
【Example】
An outline of an atomic force microscope having a scratch mechanism of this embodiment is shown in FIG. In FIG. 1 (a), an observation probe 2 is provided at the tip of the cantilever 1, and the tilting mechanism of the cantilever 1 can be adjusted by expansion / contraction of the piezo element 3 provided between the cantilever 1 and In order to adjust the position of the cantilever 1, the leaf spring 4 and the pin 5 are used supplementarily when the inclination angle is changed. In this figure, there is a feature in the mechanism of the probe and the piezo element especially in the circled area.
[0012]
FIG.1 (b) shows the observation condition by the probe 2 in a horizontal state. The scratch scanned by the probe 2 was attached with the cantilever 1 inclined with respect to the sample 8 as shown in FIG. The observation is performed by the same method as the conventional method in which the laser 10 is oscillated from the laser oscillator 9 and the reflected wave from the sample is detected by the laser detector 11 as shown in FIG.
FIG. 2 shows a method for adjusting the tilt angle from the relationship between the tilt angle of the cantilever and the length of each probe. FIG. 2 (a) shows a state in which the cantilever is in a horizontal state. For example, the length of the entire cantilever is 3 mm, the scratch probe length l 1 is 5 μm, and the observation probe length l 2 is 6 μm. FIG. 2B shows a state in which the distance between the centers of the two is 10 μm and the center is inclined.
[0013]
In FIG. 2B, in order to apply the scratch by inclining, the following condition is satisfied, where the tip position of the scratch probe length l 1 is lower than the tip of the observation probe length l 2. There is a need to.
dtan θ> α
However, if d = 10 and α = 1 are set and substituted,
Tilt angle: θ> 5.7 °, this angle can be handled by a piezo element.
The displacement of the observation position at this time is
D = L (1-cos θ) = 14.8 μm. This distance did not lose sight of the scratch position, and it was in the range of 100 × 100 □ which can sufficiently cope with the normal observation area.
[0014]
Also, the tip position descent distance is
Lsin θ = 298 μm.
By setting the cantilever under the conditions as described above, it was possible to use the scratching probe and the observation probe separately, first scratching the scratching probe, and then observing the position on the spot.
[0015]
【The invention's effect】
According to the present invention, since the sample surface can be scratched and the clean surface can be observed, the change of the material surface in the liquid can be analyzed with high accuracy. In addition, since the scratching probe and the observation probe are properly used, the observation probe is not worn and the scratch debris is not attached, so that stable in-situ observation is always possible.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overview of an atomic force microscope apparatus according to an embodiment of the present invention, and is a diagram showing (a) an outline of a cantilever, (b) an observation state, and (c) a scratch state.
FIGS. 2A and 2B are views showing the movement of a cantilever according to the present invention, and FIG.
FIG. 3 is a view showing a state of observation by a laser of a conventional atomic force microscope.
[Explanation of symbols]
1 ... cantilever 2 ... observing stylus 3 ... piezoelectric elements 4 ... leaf spring 5 ... pin 6 ... set table 7 ... scratch stylus 8 ... sample 9 ... laser oscillator 10 ... laser beam 11 ... laser beam detector l 1 ... Scratch probe length l 2 ... Observation probe length d ... Distance between probes α ... Difference in probe length θ ... Cantilever tilt angle

Claims (1)

原子間力顕微鏡のカンチレバーに2つの探針を近接して設け、カンチレバーを傾斜させ先端側の1つの探針を傾斜させた状態で試料表面を移動させることによって、該探針で試料表面にスクラッチを付与した後、カンチレバーを水平位置に戻して他の一つの探針で、当該スクラッチを付した箇所を観察できるようになし、かつ
カンチレバーの傾斜をピエゾ素子によって調整し、下記の関係式を満足してスクラッチを付与する探針の先端部が観察用探針の先端部より低くできることを特徴とするスクラッチ機構を有する原子間力顕微鏡。
dtanθ>α
但し、d:探針の中心間距離、θ:カンチレバーの傾斜角、
α:観察用探針長さ−スクラッチ用探針長さ
Two probes are provided close to the cantilever of the atomic force microscope, and the sample surface is moved while the cantilever is tilted and one tip on the tip side is tilted. after imparting, to return the cantilever in a horizontal position in the other one of the probe, to such as can be observed locations denoted by the scratch, and
An atomic force microscope having a scratch mechanism, characterized in that the tip of the probe for adjusting the inclination of the cantilever with a piezo element and satisfying the following relational expression can be made lower than the tip of the probe for observation. .
dtan θ> α
Where d: distance between the centers of the probes, θ: tilt angle of the cantilever,
α: Observation probe length−Scratch probe length
JP08885198A 1998-04-01 1998-04-01 Atomic force microscope with scratch mechanism Expired - Fee Related JP3656399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08885198A JP3656399B2 (en) 1998-04-01 1998-04-01 Atomic force microscope with scratch mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08885198A JP3656399B2 (en) 1998-04-01 1998-04-01 Atomic force microscope with scratch mechanism

Publications (2)

Publication Number Publication Date
JPH11287815A JPH11287815A (en) 1999-10-19
JP3656399B2 true JP3656399B2 (en) 2005-06-08

Family

ID=13954497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08885198A Expired - Fee Related JP3656399B2 (en) 1998-04-01 1998-04-01 Atomic force microscope with scratch mechanism

Country Status (1)

Country Link
JP (1) JP3656399B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697708B2 (en) * 2006-02-01 2011-06-08 セイコーインスツル株式会社 Multifunctional cantilever, scanning probe microscope, and method of cutting a workpiece
JP4931640B2 (en) * 2007-02-27 2012-05-16 セイコーインスツル株式会社 Scanning probe microscope
CN112325836A (en) * 2020-11-06 2021-02-05 合肥潜望镜机械科技有限公司 Plate surface roughness detection device

Also Published As

Publication number Publication date
JPH11287815A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
US7107694B2 (en) Method for observation of microstructural surface features in heterogeneous materials
RU2459214C2 (en) Probe assembly for scanning probe microscope
US7241994B2 (en) Scanning probe microscope and specimen surface structure measuring method
EP0701102B1 (en) Combined scanning near-field optical and atomic-force microscope with observing function in liquid
DE19544299C2 (en) Method and device for measuring structures
US8220066B2 (en) Vibration compensation in probe microscopy
Bennett et al. Scanning force microscope as a tool for studying optical surfaces
JPH05231863A (en) Apparatus and method for measuring limit dimension
JPH0642953A (en) Interatomic force microscope
US5633455A (en) Method of detecting particles of semiconductor wafers
JP3656399B2 (en) Atomic force microscope with scratch mechanism
Walls et al. STM profilometry of low-load Vickers indentations in a silicon crystal
US6404207B1 (en) Scanning capacitance device for film thickness mapping featuring enhanced lateral resolution, measurement methods using same
US5992225A (en) Cantilever probe and scanning type probe microscope utilizing the cantilever probe
JPH07134137A (en) Probe microscope device, and method for measuring probe-to-probe distance
Sokolov Atomic force microscopy for protein nanotechnology
JPH06117844A (en) Evaluating method for probe for spm
US11035878B2 (en) Atomic force microscopy system, method for mapping one or more subsurface structures located in a semiconductor device or for monitoring lithographic parameters in a semiconductor device and use of such an atomic force microscopy system
KR100549215B1 (en) Nearfield scanning optical microscope for measuring optical phase
Blunt et al. Topography instrumentation
Göring Advanced Atomic Force Microscopy: 3D Printed Micro-Optomechanical Sensor Systems
Ringel et al. Manufacture and calibration of optical supersmooth roughness artifacts for intercomparisons
CN114156218A (en) Substrate lateral displacement monitoring and lateral alignment system and method
JPH0769145B2 (en) Position measurement method for the tip of the probe
RU2121130C1 (en) Test structure for determination of form and geometrical dimensions of needle of scanning proving microscope

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees