JPH0544958B2 - - Google Patents

Info

Publication number
JPH0544958B2
JPH0544958B2 JP63293473A JP29347388A JPH0544958B2 JP H0544958 B2 JPH0544958 B2 JP H0544958B2 JP 63293473 A JP63293473 A JP 63293473A JP 29347388 A JP29347388 A JP 29347388A JP H0544958 B2 JPH0544958 B2 JP H0544958B2
Authority
JP
Japan
Prior art keywords
salt
adriamycin
hydrochloride
hydrolysis
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63293473A
Other languages
Japanese (ja)
Other versions
JPH02167294A (en
Inventor
Takeo Yoshioka
Toshio Tsuchida
Ryoichi Myata
Hiroshi Tone
Rokuro Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercian Corp
Original Assignee
Mercian Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mercian Corp filed Critical Mercian Corp
Priority to JP63293473A priority Critical patent/JPH02167294A/en
Priority to US07/297,938 priority patent/US4997922A/en
Priority to HU894321A priority patent/HU201952B/en
Priority to CN89107371A priority patent/CN1040985A/en
Priority to EP89116361A priority patent/EP0358161A3/en
Priority to KR1019890012891A priority patent/KR900004758A/en
Publication of JPH02167294A publication Critical patent/JPH02167294A/en
Publication of JPH0544958B2 publication Critical patent/JPH0544958B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/24Condensed ring systems having three or more rings
    • C07H15/252Naphthacene radicals, e.g. daunomycins, adriamycins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規なアントラサイクリン誘導体に関
し、さらに詳しくは下記式 で示される14−トリフルオロメタンスルホニルオ
キシダウノマイシン及びその塩、その製造法並び
に上記式()の化合物からのアドリアマイシン又
はその塩の製造法に関する。 アドリアマイシンは優れた抗菌作用及び抗腫瘍
作用を有する抗菌剤及び抗腫瘍剤として有用な物
質であり、各種の合成法が知られている。例え
ば、特公昭47−46597号公報(米国特許第3803124
号明細書)には、ダウノマイシンをハロゲンと反
応させて得られる14−ハロダウノマイシンを極性
溶媒中で酢酸アルカリ金属塩と反応させ、得られ
る14−アセトキシダウノマイシンをアルカリ性条
件下に加水分解することによつてアドリアマイシ
ンを製造する方法が開示されている。 しかしながら、上記14−アセトキシダウノマイ
シンをアルカリ性条件下に加水分解する方法の場
合、生成するアドリアマイシンがアルカリに対し
て不安定であるためにアドリアマイシン分解しそ
の収率が低下するという重大な欠点がある。 そこで、本発明者らはそのような欠点のないア
ドリアマイシンの製造法について鋭意研究を行な
つた結果、14−ハロダウノマイシンをトリフルオ
ロメタンスルホン酸金属塩と反応させて得られ新
規な前記式()で示される14−トリフルオロメタ
ンスルホニルオキシダウノマイシンは酸性条件下
に加水分解することが可能であり、アドリアマイ
シンを高収率で製造することが可能であることを
見い出し本発明を完成するに至つた。 かくして、本発明は前記式()で示される14−
トリフルオロメタンスルホニルオキシダウノマイ
シン及びその塩を新規物質として提供するもので
ある。 式()の化合物の塩としては、例えば、塩酸
塩、臭化水素酸塩、ヨウ化水素酸塩などの無機酸
塩、並びに酢酸塩、トリフルオロメタンスルホン
酸塩、トリフルオロ酢酸塩等の有機酸塩が挙げら
れる。 前記式()の化合物は、下記式 式中、Xはハロゲン原子である、 で示される14−ハロダウノマイシン又はその塩を
トリフルオロメタンスルホン酸金属塩と反応せし
めることにより製造することができる。 ()の化合物又はその塩(例えば、塩酸塩、臭
化水素酸塩など)とトリフルオロメタンスルホン
酸金属塩との反応は、通常、反応に不活性な極性
有機溶媒中、例えば、ジメチルホルムアミド、ジ
メチルスルホキシド等の溶媒中、好ましくはジメ
チルホルムアミド中で、約0℃〜約70℃の範囲内
の温度、好ましくはほぼ室温程度の温度で行なう
ことができる。 式()の化合物又はその塩に対するトリフルオ
ロメタンスルホン酸塩の使用量は特に制限されな
いが、一般には、式()の化合物又はその塩1モ
ル当り1〜5モル、好ましくは2〜4モルの範囲
内の量で使用するのが適当である。 上記反応において出発原料として使用される前
記式()の化合物はそれ自体既知の化合物であ
り、それ自体既知の種々の方法、例えば、特公昭
47−46597号公報(米国特許第3803124号明細書)、
特公昭54−26529号公報(米国特許第4225589号明
細書)、特公昭57−13558号公報、特公昭62−
59719号公報(米国特許第4360664号明細書)等の
文献に記載の方法により容易に製造することがで
きる。 また、上記式()の化合物と反応せしめられト
リフルオロメタンスルホン酸金属塩としては、ト
リフルオロメタンスルホン酸の銀塩が最も好まし
いが、その他に、銅塩、スズ塩、リチウム塩、カ
リウム塩、ナトリウム塩等の金属塩もまた使用で
きる。 得られる式()の化合物又はその塩はそれ自体
既知の方法により、例えば、クロマトグラフイ
ー、結晶化、沈殿化等の手段により反応混合物か
ら分離・精製することができ、或いは分離・精製
を行なうことなく、そのまま以下に述べる加水分
解工程に付することもできる。 このようにして得られる式()の化合物又はそ
の塩は、酸性条件下に加水分解することによつ
て、高収率でアドリアマイシン又はその塩に導く
ことができる。 式()の化合物又はその塩の加水分解は、式
()の化合物を、水、緩衝水溶液又は水と水混和
性有機溶媒との混合物などの水性媒体中で約10℃
ないし約60℃の温度、より好ましくはほぼ室温な
いし約50℃の温度に保持することにより行なうこ
とができる。 加水分解時の水性媒体のPHは一般に2〜6.5の
範囲内の酸性条件に保持するのが望ましい。しか
して、式()の化合物又はその塩の水溶液はその
塩の種類にもよるが通常PH2.0〜2.4の範囲内の酸
性を呈するので、加水分解に際しては特にPHの調
整をする必要はないが、必要に応じて、水酸化ナ
トリウム、水酸化カリウム、炭水素ナトリウム、
炭酸ナトリウム、リン酸ナトリウム等のPH調整剤
を添加したり、緩衝水溶液を使用することによ
り、水性媒体のPHを上記好適範囲に調節すること
もできる。 加水分解はかかる条件下に通常10分〜40分程度
で終らせることができ、加水分解後の反応混合物
からの生成するアドリアマイシン又はその塩の分
離・精製はそれ自体既知の方法、例えば、酸転抽
出、結晶化、等の手段により行なうことできる。 生成すアドリアマイシンは適当な製薬学的に許
容しうる酸、例えば塩酸、臭化水素酸等で処理す
ることにより塩に変えることができる。 次に実施例により本発明をさらに具体的に説明
する。 実施例 1 (1) 14−トリフルオロメタンスルホニルオキシダ
ウノマイシンの製造 カツ色容器中の特公昭56−156300号公報(米国
特許第4360664号明細書)の実施例2に記載の方
法により調製した14−ブロモダウノマイシン塩酸
塩(0.500g、0.7777mmol)のDMF10ml溶液に、
窒素雰囲気下でトリフルオロメタンスルホン酸銀
0.5995g、2.333mmol)を加え、室温にて終夜撹
拌した。反応混合液中に析出した固体(AgBr)
をロ過した後、その固体をDMFで洗浄し、ロ液
と洗液とを一緒にして減圧濃縮した。濃縮乾固物
にクロロホルムを加え激しく撹拌し、さらに超音
波をかけ不溶物を分散させ沈殿化させた。沈殿物
をロ別し、クロロホルムで洗浄した後、乾燥する
と、14−トリフルオロメタンスルホニルオキシダ
ウノマイシン塩酸塩が0.5600g(収率定量的)得
られた 14−トリフルオロメタンスルホニルオキシダウノ
マイシン塩酸塩の理化学的性質 Rf値:0.40 (TLCプレト:Merck Art5715 展開系:CHCl3:CH3OH:AcOH=20:6:1) IR νKBr nax cm-1:3420(OH、NH2)、1715(C=
O)、1615、1580(C=O)、1270、1265、1170
(−OSO2CF31H−NMR δppm(DMSO−d6/TMS): 1.17(3H、d、J=6.5Hz、H−6′) 1.68(1H、dd、J=11.8Hz、3.4Hz、H−2′e) 1.90(1H、broad t、J=11.8Hz、H−2′a) 2.09(1H、dd、J=13.3Hz、5.7Hz、H−8a) 2.29(1H、broad d、J=13.3Hz、H−8e) 2.83(1H、d、J=18.4Hz、H−10a) 3.07(1H、d、J=18.4Hz、H−10e) 3.34−3.40(1H、m、H−3′) 3.99(3H、s、O−CH3) 4.19(1H、broad q、J=6.5Hz、H−5′) 4.94−4.99(1H、m、H−7) 5.28−5.30(1H、m、H−1′) 5.25(1H、d、J=19.8Hz、H−14) 5.33(1H、d、J=19.8Hz、H−14) 5.58(1H、s、OH) 7.65−7.70(2H、m、H−2、H−3) 7.70−7.78(2H、broad s、NH2) 7.92(1H、d、J=3.7Hz、H−1) 13C−NMR δppm(DMSO−d6): 20.6 C−6′ 32.2 C−2′ 35.7 C−10 39.8 C−8′ 50.7 C−3′ 60.5 OCH3 68.9 C−14 70.2 C−4′、C−5′ 73.4 C−7 83.1 C−9 103.2 C−1′ 114.5、114.6 (C−5a、C−11a) 122.9 C−3 123.6 C−1 123.7 C−4a 137.6 C−10a 138.4、138.8 (C−12a、C−6a) 138.8 CF3 JCF=320.4Hz 140.1 C−2 158.3 C−11 159.9 C−6 164.7 C−4 190.1、190.2 (C−5、C−12) 211.1 C−13 (2) アドリアマイシン塩酸塩の製造 上記(1)で得た14−トリフルオロメタンスルホ
ニルオキシダウノマイシン塩酸塩(0.200g、
0.2797mmol)を水20mlに溶解し(PH2.4)、室
温で攪拌しながら25時間保持することにより加
水分解を行なつた。反応混合物を水20mlで希釈
し、クロロホルムで2回抽出した。水層に塩化
ナトリウムを約5%水溶液になるように加え、
次いでクロロホルム:メタノール(4:1)を
加え、飽和炭酸水素ナトリウム水溶液で水層の
PHを7.4とした。水層をクロロホルム:メタノ
ール(4:1)で4回抽出し、有機層を飽和食
塩水で洗浄した後、無水硫酸ナトリウムで乾燥
した。溶媒を除去するとアドリアマイシン(遊
離体)が0.1074g(収率:70.7%)得られた。 このアドリアマイシン(遊離体)をクロロホ
ルム:メタノール(10:1)10mlに溶解し、
1N−HCl(CH3OH中、f=1.013)(1.2当量、
0.2377mmol)0.234mlを加え。反応液を濃縮す
ると沈殿が生成した。この沈殿をロ過し、ロ過
物をクロロホルム:メタノール(10:1)で洗
浄し、さらにクロロホルムで洗浄した後、乾燥
するとアドリアマイシン塩酸塩が0.1023g
(HPLC相対純度:94:1%、14−ブロモダウ
ノマイシン塩酸塩からの全収率:63.1%)得ら
れた。 アドリアマイシン塩酸塩の理化学的性質 融点:203−205℃(分解) [α]D 24:+250.8(c=0.096、CH3OH) λmax(CH3OH)nm:531、495、480 IR νKBr nax:3370(−OH、NH2)、 1725(C=O)、1610、1580(C=O) NMR δppm(DMSO−d6/TMS): 1.16(3H、d、J=6Hz、H−6′) 1.67−1・99(2H、m、H−2′) 1.99−2.21(2H、m、H−8) 2.80−3.00(2H、m、H−10) 3.55−3.70(1H、m、H−4′) 3.99(3H、s、−OCH3) 4.08−4.17(1H、m、H−5′) 4.60(2H、s、H−14) 4.89(1H、m、H−7) 5.28(1H、m、H−1′) 5.50(1H、s、9−OH) 7.52−7.70(2H、m、H−2、H−3) 7.80(1H、d、J=3Hz、H−1) 7.92−8.12(2H、m、NH2) 13.25(1H、broad s、Ar−OH) 14.08(1H、s、Ar−OH) 実施例 2 14−トリフルオロメタンスルホニルオキシダウ
ノマイシンを単離しないアドリアマイシン塩酸
塩の製造 カツ色容器中の特公昭56−156300号公報(米国
特許第4360664号明細書)の実施例2に記載の方
法により調整した14−ブロモダウノマイシン塩酸
塩(1.00g、1.555mmol)のDMF5ml溶液に、窒
素雰囲気下でトリフルオロメタンスルホン酸銀
(0.751g、2.923mmol)を加え、室温にて終夜攪
拌した。反応混合液中に析出した固体(AgBr)
を濾過した後、その固体をDMFで洗浄し、ロ液
と洗液とを一緒にした。 このDMF溶液に水40mlを加え、1N−NaOHに
てPHを6.0〜6.5に調整しなら0.5時間加水分解を行
なつた。反応混合物を水で希釈し、1N−HClで
PHを3.5とした後クロロホルムで2回洗浄した。
水層にメタノールを加え、飽和炭酸水素ナトリウ
ム水溶液を水層のPH8〜9になるまで加えた後、
クロロホルムで抽出した。有機層を飽和食塩水で
洗浄した後、無水硫酸ナトリウムで乾燥した。溶
媒を濃縮し1N−HCl(CH3OH中、f=1.013)
1.005mlを加え、さらにクロロホルムを添加し、
アドリアマイシン塩酸塩を沈澱させた。沈澱物を
ロ過し、ロ過物をクロホルム:メタノール(10:
1)で洗浄し、乾燥するとアドリアマイシン塩酸
塩が0.632g(HPLC相対純度:94.7%、14−ブロ
モダウノマイシン塩酸塩からの収率:70.1%)得
られた。このものは実施例1で得られたものと理
化学的性状が一致した。 実施例 3 14−ブロモダウノマイシンのアルカリ加水分解
及び14−アセトキシダウノマイシンのアルカリ
加水分解と14−トリフルオロメタンスルホニル
オキシダウノマイシンの酸加水分解の相異 [方法] アドリアマイシンはアルカリに弱いことが報告
されている[文献:F.ARCAMONE、“To pics
in Antibiotic Chemistry volume 2”ed.by P.
G.SAMMES、ELLIS HORWOOD LIMITED
(1978)、p172)。 特公昭47−46597号公報(米国特許第3803124号
明細書)に記載されているアルカリ加水分解法と
して、リン酸ナトリウムを用いる14−ブロモダウ
ノマイシンの加水分解及び14−アセトキシダウノ
マイシンの重曹水を用いる加水分解を行なつた。 一方、14−トリフルオロメタンスルホニルオキ
シダウノマイシンの酸加水分解として水及び
0.05M−リン酸緩衝溶液(PH6.0)を用い反応を
行なつた。両法の分解物の生成をTLCスキヤナ
ーにより検出し、優劣を比較した。 [反応条件] (1) アルカリ加水分解法 1−a 14−ブロモダウノマイシンのリン酸ナト
リウムによる加水分解 14−ブロモダウノマイシン・塩酸塩 0.1g 0.5M−Na3PO4水 10ml アセトン 10ml PH11に調整 1−b 14−アセトキシダウノマイシンの重曹水
による加水分解 14−アセトキシダウノマイシン 0.01g アセトン/CH3OH(2:1) 5ml 5%NaHCO3水溶液 1ml 水 3ml (2) 14−トリフルオロメタンスルホニルオキシダ
ウノマイシンの酸加水分解 2−1 H2Oによる加水分解 14−トリフルオロメタンスルホニルオキシダウ
ノマイシン塩酸塩 0.2g H2O 20ml PH2.4 2−2 0.05Mリン酸緩衝溶液(PH6.0)による
加水分解 14−トリフルオロメタンスルホニルオキシダウ
ノマイシン・塩酸塩 0.2g 0.05M/PBS(PH6.0) 20ml PH4.2 [TLC条件] TLC板:Merck Art 5715 展開系:CHCl3:CH3OH:CH3COOH=20:
4:1 TLCスキヤナー:島津TLCスキヤナーCS−
930 波長:495nm [結果] 下記表に示す。
The present invention relates to a novel anthracycline derivative, and more specifically, the present invention relates to a novel anthracycline derivative, and more specifically, to The present invention relates to 14-trifluoromethanesulfonyloxydaunomycin and its salts represented by formula (2), a method for producing the same, and a method for producing adriamycin or its salt from the compound of the above formula (). Adriamycin is a substance useful as an antibacterial agent and an antitumor agent that has excellent antibacterial and antitumor effects, and various synthesis methods are known. For example, Japanese Patent Publication No. 47-46597 (U.S. Patent No. 3803124)
14-halodaunomycin obtained by reacting daunomycin with a halogen is reacted with an alkali metal acetate in a polar solvent, and the resulting 14-acetoxydaunomycin is hydrolyzed under alkaline conditions. A method for producing adriamycin is disclosed. However, the above-mentioned method of hydrolyzing 14-acetoxydaunomycin under alkaline conditions has a serious drawback in that the produced adriamycin is unstable to alkali, resulting in decomposition of adriamycin and a decrease in its yield. Therefore, the present inventors conducted intensive research on a method for producing adriamycin that does not have such drawbacks, and as a result, a novel product of the above formula () obtained by reacting 14-halodaunomycin with a metal salt of trifluoromethanesulfonate was obtained. It was discovered that the 14-trifluoromethanesulfonyloxydaunomycin shown above can be hydrolyzed under acidic conditions, and that adriamycin can be produced in high yield, leading to the completion of the present invention. Thus, the present invention provides 14-
The present invention provides trifluoromethanesulfonyloxydaunomycin and its salts as new substances. Examples of salts of the compound of formula () include inorganic acid salts such as hydrochloride, hydrobromide, and hydroiodide, and organic acids such as acetate, trifluoromethanesulfonate, and trifluoroacetate. Salt is an example. The compound of the formula () is represented by the following formula In the formula, X is a halogen atom. It can be produced by reacting 14-halodaunomycin or its salt represented by the following with a trifluoromethanesulfonic acid metal salt. The reaction between the compound () or its salt (e.g., hydrochloride, hydrobromide, etc.) and trifluoromethanesulfonic acid metal salt is usually carried out in a polar organic solvent inert to the reaction, such as dimethylformamide, dimethyl It can be carried out in a solvent such as a sulfoxide, preferably dimethylformamide, at a temperature within the range of about 0°C to about 70°C, preferably at about room temperature. The amount of trifluoromethanesulfonate used for the compound of formula () or its salt is not particularly limited, but is generally in the range of 1 to 5 mol, preferably 2 to 4 mol, per 1 mol of the compound of formula () or salt thereof. It is appropriate to use the amount within. The compound of the formula () used as a starting material in the above reaction is a compound known per se, and can be prepared by various methods known per se, for example,
Publication No. 47-46597 (U.S. Patent No. 3803124),
Japanese Patent Publication No. 54-26529 (U.S. Patent No. 4225589), Japanese Patent Publication No. 13558-1987, Japanese Patent Publication No. 1982-
It can be easily produced by the method described in literature such as No. 59719 (US Pat. No. 4,360,664). Further, as the trifluoromethanesulfonic acid metal salt reacted with the compound of the above formula (), silver salt of trifluoromethanesulfonic acid is most preferable, but in addition, copper salt, tin salt, lithium salt, potassium salt, sodium salt Metal salts such as can also be used. The resulting compound of formula () or a salt thereof can be separated and purified from the reaction mixture by methods known per se, for example, by chromatography, crystallization, precipitation, etc., or can be separated and purified. It can also be directly subjected to the hydrolysis step described below. The thus obtained compound of formula () or its salt can be hydrolyzed under acidic conditions to lead to adriamycin or its salt in high yield. Hydrolysis of a compound of formula () or a salt thereof can be carried out by preparing a compound of formula () in an aqueous medium such as water, an aqueous buffer solution or a mixture of water and a water-miscible organic solvent at about 10°C.
This can be carried out by maintaining the temperature at a temperature of from about room temperature to about 60°C, more preferably from about room temperature to about 50°C. It is generally desirable to maintain the pH of the aqueous medium during hydrolysis under acidic conditions within the range of 2 to 6.5. Therefore, since an aqueous solution of the compound of formula () or a salt thereof usually exhibits acidity within the range of PH2.0 to 2.4, depending on the type of the salt, there is no need to particularly adjust the PH during hydrolysis. However, if necessary, sodium hydroxide, potassium hydroxide, sodium carbonate,
The pH of the aqueous medium can also be adjusted to the above-mentioned preferred range by adding a pH adjuster such as sodium carbonate or sodium phosphate or by using an aqueous buffer solution. Hydrolysis can usually be completed in about 10 to 40 minutes under such conditions, and adriamycin or its salt produced from the reaction mixture after hydrolysis can be separated and purified by methods known per se, such as acid conversion. This can be done by means such as extraction, crystallization, etc. The adriamycin produced can be converted into a salt by treatment with a suitable pharmaceutically acceptable acid, such as hydrochloric acid, hydrobromic acid, etc. Next, the present invention will be explained in more detail with reference to Examples. Example 1 (1) Production of 14-trifluoromethanesulfonyloxydaunomycin Add 10 ml of DMF solution of 14-bromodaunomycin hydrochloride (0.500 g, 0.7777 mmol) prepared by the method described in Example 2 of Japanese Patent Publication No. 56-156300 (U.S. Pat. No. 4,360,664) in a cutlet-colored container.
Silver trifluoromethanesulfonate under nitrogen atmosphere
0.5995g, 2.333mmol) was added thereto, and the mixture was stirred at room temperature overnight. Solid (AgBr) precipitated in the reaction mixture
After filtration, the solid was washed with DMF, and the filtrate and washings were combined and concentrated under reduced pressure. Chloroform was added to the concentrated and dried product, stirred vigorously, and ultrasonic waves were applied to disperse and precipitate insoluble matter. The precipitate was filtered, washed with chloroform, and dried to give 0.5600 g (quantitative yield) of 14-trifluoromethanesulfonyloxydaunomycin hydrochloride.Physical and chemical properties of 14-trifluoromethanesulfonyloxydaunomycin hydrochloride Rf value: 0.40 (TLC plate: Merck Art5715 Development system: CHCl 3 : CH 3 OH: AcOH=20:6:1) IR ν KBr nax cm -1 : 3420 (OH, NH 2 ), 1715 (C=
O), 1615, 1580 (C=O), 1270, 1265, 1170
(-OSO 2 CF 3 ) 1 H-NMR δppm (DMSO-d 6 /TMS): 1.17 (3H, d, J = 6.5Hz, H-6') 1.68 (1H, dd, J = 11.8Hz, 3.4Hz , H-2'e) 1.90 (1H, broad t, J = 11.8Hz, H-2'a) 2.09 (1H, dd, J = 13.3Hz, 5.7Hz, H-8a) 2.29 (1H, broad d, J=13.3Hz, H-8e) 2.83 (1H, d, J=18.4Hz, H-10a) 3.07 (1H, d, J=18.4Hz, H-10e) 3.34-3.40 (1H, m, H-3 ') 3.99 (3H, s, O-CH 3 ) 4.19 (1H, broad q, J=6.5Hz, H-5') 4.94-4.99 (1H, m, H-7) 5.28-5.30 (1H, m, H-1') 5.25 (1H, d, J = 19.8Hz, H-14) 5.33 (1H, d, J = 19.8Hz, H-14) 5.58 (1H, s, OH) 7.65-7.70 (2H, m , H-2, H-3) 7.70-7.78 (2H, broad s, NH 2 ) 7.92 (1H, d, J=3.7Hz, H-1) 13 C-NMR δppm (DMSO-d 6 ): 20.6 C -6' 32.2 C-2' 35.7 C-10 39.8 C-8' 50.7 C-3' 60.5 OCH 3 68.9 C-14 70.2 C-4', C-5' 73.4 C-7 83.1 C-9 103.2 C- 1' 114.5, 114.6 (C-5a, C-11a) 122.9 C-3 123.6 C-1 123.7 C-4a 137.6 C-10a 138.4, 138.8 (C-12a, C-6a) 138.8 CF 3 J CF = 320.4Hz 140.1 C-2 158.3 C-11 159.9 C-6 164.7 C-4 190.1, 190.2 (C-5, C-12) 211.1 C-13 (2) Production of adriamycin hydrochloride 14-trifluoromethanesulfonyloxydaunomycin hydrochloride obtained in (1) above (0.200g,
Hydrolysis was carried out by dissolving 0.2797 mmol) in 20 ml of water (PH2.4) and maintaining it at room temperature for 25 hours with stirring. The reaction mixture was diluted with 20 ml of water and extracted twice with chloroform. Add sodium chloride to the aqueous layer to make an approximately 5% aqueous solution.
Next, chloroform:methanol (4:1) was added, and the aqueous layer was diluted with a saturated aqueous sodium bicarbonate solution.
The pH was set to 7.4. The aqueous layer was extracted four times with chloroform:methanol (4:1), and the organic layer was washed with saturated brine and then dried over anhydrous sodium sulfate. After removing the solvent, 0.1074 g (yield: 70.7%) of adriamycin (educt) was obtained. This adriamycin (free form) was dissolved in 10 ml of chloroform:methanol (10:1),
1N-HCl (in CH 3 OH, f = 1.013) (1.2 equivalents,
Add 0.234ml (0.2377mmol). When the reaction solution was concentrated, a precipitate was formed. This precipitate was filtered, and the filtered product was washed with chloroform:methanol (10:1), further washed with chloroform, and dried to yield 0.1023 g of adriamycin hydrochloride.
(HPLC relative purity: 94:1%, total yield from 14-bromodaunomycin hydrochloride: 63.1%) was obtained. Physical and chemical properties of Adriamycin hydrochloride Melting point: 203-205℃ (decomposition) [α] D 24 : +250.8 (c=0.096, CH 3 OH) λmax (CH 3 OH) nm: 531, 495, 480 IR ν KBr nax : 3370 (-OH, NH2 ), 1725 (C=O), 1610, 1580 (C=O) NMR δppm (DMSO- d6 /TMS): 1.16 (3H, d, J=6Hz, H-6 ') 1.67-1・99 (2H, m, H-2') 1.99-2.21 (2H, m, H-8) 2.80-3.00 (2H, m, H-10) 3.55-3.70 (1H, m, H -4') 3.99 (3H, s, -OCH 3 ) 4.08-4.17 (1H, m, H-5') 4.60 (2H, s, H-14) 4.89 (1H, m, H-7) 5.28 (1H , m, H-1') 5.50 (1H, s, 9-OH) 7.52-7.70 (2H, m, H-2, H-3) 7.80 (1H, d, J=3Hz, H-1) 7.92- 8.12 (2H, m, NH 2 ) 13.25 (1H, broad s, Ar-OH) 14.08 (1H, s, Ar-OH) Example 2 Production of Adriamycin hydrochloride without isolating 14-trifluoromethanesulfonyloxydaunomycin A 5 ml DMF solution of 14-bromodaunomycin hydrochloride (1.00 g, 1.555 mmol) prepared by the method described in Example 2 of Japanese Patent Publication No. 56-156300 (U.S. Pat. No. 4,360,664) in a colored container was added with nitrogen. Silver trifluoromethanesulfonate (0.751 g, 2.923 mmol) was added under atmosphere, and the mixture was stirred at room temperature overnight. Solid (AgBr) precipitated in the reaction mixture
After filtration, the solid was washed with DMF and the filtrate and washings were combined. 40 ml of water was added to this DMF solution, and the pH was adjusted to 6.0 to 6.5 with 1N-NaOH, followed by hydrolysis for 0.5 hours. The reaction mixture was diluted with water and diluted with 1N HCl.
After setting the pH to 3.5, it was washed twice with chloroform.
After adding methanol to the aqueous layer and adding a saturated aqueous sodium hydrogen carbonate solution until the pH of the aqueous layer reached 8 to 9,
Extracted with chloroform. The organic layer was washed with saturated brine and then dried over anhydrous sodium sulfate. Concentrate the solvent and add 1N HCl (in CH 3 OH, f=1.013)
Add 1.005ml, then add chloroform,
Adriamycin hydrochloride was precipitated. The precipitate was filtered, and the filtrate was diluted with chloroform:methanol (10:
After washing with 1) and drying, 0.632 g of adriamycin hydrochloride (HPLC relative purity: 94.7%, yield from 14-bromodaunomycin hydrochloride: 70.1%) was obtained. The physical and chemical properties of this product were consistent with those obtained in Example 1. Example 3 Differences between alkaline hydrolysis of 14-bromodaunomycin, alkaline hydrolysis of 14-acetoxydaunomycin, and acid hydrolysis of 14-trifluoromethanesulfonyloxydaunomycin [Method] Adriamycin is reported to be sensitive to alkali [ Literature: F.ARCAMONE, “To pics
in Antibiotic Chemistry volume 2”ed.by P.
G. SAMMES, ELLIS HORWOOD LIMITED
(1978), p172). The alkaline hydrolysis method described in Japanese Patent Publication No. 47-46597 (U.S. Pat. No. 3,803,124) includes hydrolysis of 14-bromodaunomycin using sodium phosphate and hydrolysis of 14-acetoxydaunomycin using aqueous sodium bicarbonate. I did the disassembly. On the other hand, as acid hydrolysis of 14-trifluoromethanesulfonyloxydaunomycin, water and
The reaction was carried out using a 0.05M phosphate buffer solution (PH6.0). The production of decomposition products of both methods was detected using a TLC scanner, and their superiority was compared. [Reaction conditions] (1) Alkaline hydrolysis method 1-a Hydrolysis of 14-bromodaunomycin with sodium phosphate 14-bromodaunomycin hydrochloride 0.1g 0.5M-Na 3 PO 4 Water 10ml Acetone 10ml Adjust to PH11 1- b Hydrolysis of 14-acetoxydaunomycin with aqueous sodium bicarbonate 14-acetoxydaunomycin 0.01g Acetone/CH 3 OH (2:1) 5ml 5% NaHCO 3 aqueous solution 1ml Water 3ml (2) Acid hydrolysis of 14-trifluoromethanesulfonyloxydaunomycin 2-1 Hydrolysis with H2O 14-trifluoromethanesulfonyloxydaunomycin hydrochloride 0.2g H2O 20ml PH2.4 2-2 Hydrolysis with 0.05M phosphate buffer solution (PH6.0) 14-trifluoromethanesulfonyloxy Daunomycin hydrochloride 0.2g 0.05M/PBS (PH6.0) 20ml PH4.2 [TLC conditions] TLC plate: Merck Art 5715 Developing system: CHCl 3 :CH 3 OH:CH 3 COOH=20:
4:1 TLC scanner: Shimadzu TLC scanner CS-
930 Wavelength: 495nm [Results] Shown in the table below.

【表】 比較例 1 米国特許第3803124号明細書の実施例1に従つ
てアドリアマイシン塩酸塩の製造を試みた。 米国特許第3803124号明細書の実施例1の記載
に従い14−ブロモダウノマイシンを調製したが収
率が18.3%であつたため、米国特許第4360664号
明細書の実施例2に記載の方法で調製した14−ブ
ロモダウノマイシン塩酸塩(1.0g、1.555mmol)
のメタノール150ml溶液に蒸留水70mlを加えた。
窒素雰囲気下、20℃にて0.1N−NaOHをPH10.3に
なるまで加え、同PHで20分加水分解を行なつた。
反応液に蒸留水130mlを加え、クロロホルムで5
回抽出した。有機層を飽和食塩水で洗浄した後、
無水硫酸ナトリウムで乾燥した。溶媒を濃縮し、
0.6N−HCl(CH3OH中、f=0.967)1.86mlを加
え、さらにエーテル70mlを添加し、アドリアマイ
シン塩酸塩を沈澱させた。沈澱物をロ過し、ロ過
物をエーテル60mlで洗浄し乾燥するとアドリアマ
イシン塩酸塩が0.6766g(HPLC相対純度:58
%)得られた。得られたアドリアマイシン塩酸塩
を、上記米国特許の実施例1の記載に従つて、プ
ロパノール−メタノール系、クロロホルム−メタ
ノール系または塩化メチレン−メタノール系の溶
媒から結晶化を試みたが、純度が低いため結晶化
できず、得られたアドリアマイシン塩酸塩の純度
を高めることができなかつた。 比較例 2 前記比較例1のとおり、米国特許第3803124号
明細書の実施例1をそのまま追試した場合、高純
度のアドリアマイシン塩酸塩を取得することがで
きなかつたので、以下のとおり若干操作条件を変
更してアドリアマイシン塩酸塩の製造を試みた。 米国特許第3803124号明細書の実施例1の記載
に従い14−ブロモダウノマイシンを調製したが収
率18.3%であつたため、米国特許第4360664号明
細書の実施例2に記載の方法に従い調製した14−
ブロモダウノマイシン(1.0g、1.555mmol)を
蒸留水200mlに溶かした。窒素雰囲気下、20℃に
て0.1N−NaOHをPH10.3になるまで加え、同PHで
20分加水分解した。反応液にメタノール150mlを
加え、クロロホルムにより5回抽出した。有機層
を飽和食塩水で洗浄した後、無水硫酸ナトリウム
で乾燥した。溶媒を除去した後、残渣をクロロホ
ルム:メタノール(10:1)に溶かし、0.6N−
HCl(CH3OH中、f=0.967)3.01mlを加え、濃
縮、低温放置により沈澱化した。沈澱物をロ過
し、クロロホルムで洗浄後乾燥するとアドリアマ
イシン塩酸塩が0.2152g(HPLC相対純度:94.1
%、収率:23.9%)得られた。 比較例 3 米国特許第3803124号明細書の実施例2に記載
の方法に従、14−アセトキシダウノマイシンを経
由するアドリアマイシン塩酸塩の製造を試みた。 米国特許第3803124号明細書の実施例1の記載
に従い14−ブロモダウノマイシンを調製したが収
率が18.3%であつたため、米国特許第4360664号
明細書の実施例2に記載の方法に従い調製した14
−ブロモダウノマイシン塩酸塩0.6g
(0.933mmol)を無水アセトン200mmolに懸濁
し、溶融した酢酸カリウム1.8gを加え、45分間
加熱還流した。不溶物を濾過後、濾液を減圧下に
濃縮乾固した。残渣をクロロホルムに溶解後、エ
ーテルを加えて析出した沈澱も濾過し固形物
0.429gを得た。これをシリカゲルカラム
(Merck Art7734、塩化メタレン:メタノール:
水=100:20:2)で精製して14−アセトキシダ
ウノマイシン0.247gを得た。14−アセトキシダ
ウノマイシン0.1gをアセトン:メタノール
(2:1)30mlに溶解し、5%炭酸水素ナトリウ
ム水溶液10mlを加え、3時間攪拌した。反応液を
水で希釈後、クロロホルムで抽出した。抽出液を
飽和NaCl水溶液で消浄後無水Na2SO4で脱水し、
減圧下に濃縮し、0.6N塩酸メタノールを加え、
さらに3倍量のエーテルを加え、析出した沈澱を
濾過してアドリアマイシン塩酸塩57.4mg(HPLC
相対純度:72.4%、14−Br−DM体からの全収
率:18.9%)を得た。
[Table] Comparative Example 1 An attempt was made to produce adriamycin hydrochloride according to Example 1 of US Pat. No. 3,803,124. 14-bromodaunomycin was prepared according to the method described in Example 1 of US Pat. No. 3,803,124, but the yield was 18.3%, so 14-bromodaunomycin was prepared by the method described in Example 2 of US Pat. No. 4,360,664. - Bromodaunomycin hydrochloride (1.0g, 1.555mmol)
70 ml of distilled water was added to 150 ml of methanol solution.
Under a nitrogen atmosphere, 0.1N-NaOH was added at 20°C until the pH reached 10.3, and hydrolysis was carried out at the same pH for 20 minutes.
Add 130 ml of distilled water to the reaction solution and dilute with chloroform.
Extracted twice. After washing the organic layer with saturated saline,
It was dried with anhydrous sodium sulfate. Concentrate the solvent
1.86 ml of 0.6N HCl (in CH 3 OH, f=0.967) was added, followed by a further 70 ml of ether to precipitate adriamycin hydrochloride. The precipitate was filtered, and the filtered product was washed with 60 ml of ether and dried to obtain 0.6766 g of adriamycin hydrochloride (HPLC relative purity: 58
%) obtained. Attempts were made to crystallize the obtained adriamycin hydrochloride from propanol-methanol, chloroform-methanol, or methylene chloride-methanol solvents as described in Example 1 of the above-mentioned US patent, but the purity was low. Crystallization failed, and the purity of the obtained adriamycin hydrochloride could not be improved. Comparative Example 2 As in Comparative Example 1 above, when Example 1 of U.S. Pat. No. 3,803,124 was repeated as it was, it was not possible to obtain highly pure Adriamycin hydrochloride, so the operating conditions were changed slightly as follows. An attempt was made to produce adriamycin hydrochloride by making a change. 14-bromodaunomycin was prepared according to the method described in Example 1 of U.S. Pat. No. 3,803,124, but the yield was 18.3%, so 14-bromodaunomycin was prepared according to the method described in Example 2 of U.S. Pat.
Bromodaunomycin (1.0 g, 1.555 mmol) was dissolved in 200 ml of distilled water. Under a nitrogen atmosphere, add 0.1N-NaOH at 20℃ until the pH reaches 10.3.
Hydrolyzed for 20 minutes. 150 ml of methanol was added to the reaction solution, and the mixture was extracted five times with chloroform. The organic layer was washed with saturated brine and then dried over anhydrous sodium sulfate. After removing the solvent, the residue was dissolved in chloroform:methanol (10:1) and diluted with 0.6N-
3.01 ml of HCl (in CH 3 OH, f=0.967) was added, concentrated, and precipitated by standing at low temperature. When the precipitate was filtered, washed with chloroform and dried, 0.2152 g of adriamycin hydrochloride (HPLC relative purity: 94.1
%, yield: 23.9%) was obtained. Comparative Example 3 According to the method described in Example 2 of US Pat. No. 3,803,124, an attempt was made to produce adriamycin hydrochloride via 14-acetoxydaunomycin. 14-bromodaunomycin was prepared according to the method described in Example 1 of US Pat. No. 3,803,124, but the yield was 18.3%, so 14-bromodaunomycin was prepared according to the method described in Example 2 of US Pat. No. 4,360,664.
- Bromodaunomycin hydrochloride 0.6g
(0.933 mmol) was suspended in 200 mmol of anhydrous acetone, 1.8 g of molten potassium acetate was added, and the mixture was heated under reflux for 45 minutes. After filtering off insoluble matter, the filtrate was concentrated to dryness under reduced pressure. After dissolving the residue in chloroform, add ether and filter the precipitate to remove the solid matter.
0.429g was obtained. This was applied to a silica gel column (Merck Art7734, methylene chloride: methanol:
Water = 100:20:2) to obtain 0.247 g of 14-acetoxydaunomycin. 0.1 g of 14-acetoxydaunomycin was dissolved in 30 ml of acetone:methanol (2:1), 10 ml of a 5% aqueous sodium bicarbonate solution was added, and the mixture was stirred for 3 hours. The reaction solution was diluted with water and then extracted with chloroform. The extract was quenched with a saturated NaCl aqueous solution and then dehydrated with anhydrous Na 2 SO 4 .
Concentrate under reduced pressure, add 0.6N hydrochloric acid methanol,
Furthermore, 3 times the amount of ether was added, and the precipitate was filtered to obtain 57.4 mg of adriamycin hydrochloride (HPLC
Relative purity: 72.4%, total yield from 14-Br-DM form: 18.9%).

Claims (1)

【特許請求の範囲】 1 式 で示される14−トリフルオロメタンスルホニルオ
キシダウノマイシン及びその塩。 2 式 式中、Xはハロゲン原子である、 で示される14−ハロダウノマイシン又はその塩を
トリフルオロメタンスルホン酸金属塩と反応せし
めることを特徴とする式 で示される14−トリフルオロメタンスルホニルオ
キシダウノマイシン又はその塩の製造法。 3 式 で示される14−トリフルオロメタンスルホニルオ
キシダウノマイシン又はその塩を酸性条件下に加
水分解し、そして必要に応じて、生成物を塩に変
えることを特徴とするアドリアマイシン又はその
塩の製造法。
[Claims] 1 formula 14-trifluoromethanesulfonyloxydaunomycin and its salts. 2 formulas A formula characterized by reacting 14-halodaunomycin or its salt represented by the formula, wherein X is a halogen atom, with a trifluoromethanesulfonic acid metal salt. A method for producing 14-trifluoromethanesulfonyloxydaunomycin or a salt thereof. 3 formulas 1. A method for producing adriamycin or a salt thereof, which comprises hydrolyzing 14-trifluoromethanesulfonyloxydaunomycin or a salt thereof under acidic conditions, and optionally converting the product into a salt.
JP63293473A 1988-09-06 1988-11-22 Anthracycline derivative and production thereof Granted JPH02167294A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63293473A JPH02167294A (en) 1988-09-06 1988-11-22 Anthracycline derivative and production thereof
US07/297,938 US4997922A (en) 1988-09-06 1989-01-17 Anthracycline derivatives
HU894321A HU201952B (en) 1988-09-06 1989-08-23 Process for producing 14-(trifluoromethanesulfonyloxy)-daunomycin and its salts
CN89107371A CN1040985A (en) 1988-09-06 1989-09-05 Anthracycline derivatives and their manufacture method
EP89116361A EP0358161A3 (en) 1988-09-06 1989-09-05 Novel anthracycline derivatives and process for production thereof
KR1019890012891A KR900004758A (en) 1988-09-06 1989-09-06 Anthracycline Derivatives and Methods for Making the Same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22147488 1988-09-06
JP63-221474 1988-09-06
JP63293473A JPH02167294A (en) 1988-09-06 1988-11-22 Anthracycline derivative and production thereof

Publications (2)

Publication Number Publication Date
JPH02167294A JPH02167294A (en) 1990-06-27
JPH0544958B2 true JPH0544958B2 (en) 1993-07-07

Family

ID=16767284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63293473A Granted JPH02167294A (en) 1988-09-06 1988-11-22 Anthracycline derivative and production thereof

Country Status (4)

Country Link
JP (1) JPH02167294A (en)
KR (1) KR900004758A (en)
HU (1) HU203113B (en)
SU (1) SU1766262A3 (en)

Also Published As

Publication number Publication date
KR900004758A (en) 1990-04-13
JPH02167294A (en) 1990-06-27
SU1766262A3 (en) 1992-09-30
HU203113B (en) 1991-05-28
HU905753D0 (en) 1991-03-28

Similar Documents

Publication Publication Date Title
EP0288268B1 (en) 4-demethoxy-4-amino-anthracyclines
JPH0469634B2 (en)
US5945518A (en) Process for the preparation of anthracycline antibiotics
JP3000562B2 (en) New 4'-epi-4'-aminoanthracyclines
EP0275431B1 (en) Novel anthracycline derivatives, a process for preparing same and their use as medicaments
JPH0660191B2 (en) Novel anthracycline lycosides, method for producing them, and antitumor agent containing them
KR100211417B1 (en) L-talopyranoside derivatives and process for the production of same
JPH0544958B2 (en)
JPH07110873B2 (en) 6-amino anthracycline and method for producing the same and use thereof
JP2516769B2 (en) New anthracyclines
US4997922A (en) Anthracycline derivatives
US5602108A (en) Semisynthetic diastereomerically pure N-glycidylanthracyclines, a process for the stereoselective preparation thereof as the use thereof as cytostatics
US5412081A (en) New 4'-epi-4'-amino anthracyclines
EP0457215B1 (en) 3'-deamino-4'-deoxy-4'-amino-8-fluoroanthracyclines and processes for their preparation
DK170051B1 (en) 14-Chlordaunomycin and acid addition salts thereof, process for the preparation of (2 "R) -4'-O-tetrahydropyranyladriamycin and (2" R) -14-chloro-4'-O-tetrahydropyranyldunomycin
JP2579678B2 (en) Anthracycline derivative and method for producing the same
KR100341166B1 (en) Anthracycline disaccharide, its preparation method and pharmaceutical composition containing the same
JPH07103148B2 (en) Anthracycline-macrolide complex
KR910006983B1 (en) Process for the preparation of pyridine derivatives
KR850000528B1 (en) Method of preparing for antracycline derivate
HU190382B (en) Improved process for preparing salts of adriamicine
JPH01117893A (en) 14-chlorodaunomycin and production thereof
JPH0550518B2 (en)