JPH0544952B2 - - Google Patents

Info

Publication number
JPH0544952B2
JPH0544952B2 JP2324287A JP2324287A JPH0544952B2 JP H0544952 B2 JPH0544952 B2 JP H0544952B2 JP 2324287 A JP2324287 A JP 2324287A JP 2324287 A JP2324287 A JP 2324287A JP H0544952 B2 JPH0544952 B2 JP H0544952B2
Authority
JP
Japan
Prior art keywords
egg yolk
yolk lecithin
ion exchange
exchange resin
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2324287A
Other languages
Japanese (ja)
Other versions
JPS62281884A (en
Inventor
Yasuhiko Shigematsu
Mineo Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kewpie Corp
Original Assignee
QP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QP Corp filed Critical QP Corp
Priority to EP87901125A priority Critical patent/EP0259495B1/en
Priority to DE8787901125T priority patent/DE3769407D1/en
Priority to US07/123,113 priority patent/US4847015A/en
Priority to DK198705323A priority patent/DK172721B1/en
Publication of JPS62281884A publication Critical patent/JPS62281884A/en
Publication of JPH0544952B2 publication Critical patent/JPH0544952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/10Phosphatides, e.g. lecithin
    • C07F9/103Extraction or purification by physical or chemical treatment of natural phosphatides; Preparation of compositions containing phosphatides of unknown structure
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J7/00Phosphatide compositions for foodstuffs, e.g. lecithin

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はホスフアチジルエタノールアミン(本
発明においてPEの略称で表わす)含量が減らさ
れた及び/又は実質上不純物不含の卵黄レシチン
を製造する新規な方法に関するものである。 〔従来の技術〕 従来より、ホスフアチジルコリン(本発明にお
いてPCの略称で表わす)を代表とするリン脂質
を含む卵黄由来の脂質画分、所謂卵黄レシチン
は、含有リン脂質が有する界面活性作用、浸透作
用等の各種特性を利用して乳化剤、薬剤担体とし
てのリポソームの形成剤等として化粧品あるいは
医薬品等の分野で広く用いられている。 ところで、PCは構造上疎水基と親水基の大き
さのバランスがとれたシリンダー型分子であるた
めに、このPC含量の高い卵黄レシチンはリポソ
ーム形成剤として用いた場合安定な脂質二重層を
有するリポソームを形成し得るという利点があ
る。この際PC含量が高くかつPE含量の低い卵黄
レシチンを原料とすると、構造上安定性の一層高
いリポソーム、即ち強い膜であつてしかもしなや
かな膜を作製することができる。このような、
PC含量が高くPE含量の低い卵黄レシチンは、更
にまた、化粧品原料として用いた場合最終製品の
各種物性を安定化しうるという利点もある。 よつて、PE含量が減らされ相対的にPC含量が
高められた卵黄レシチンを製造しうるならば、得
られた卵黄レシチンは産業上益するところが多大
であるといえる。 〔発明が解決しようとする問題点〕 卵黄から常法により抽出して得られる卵黄レシ
チン(脂質画分)は、主として、PC、PEなどの
リン脂質とトリグリセライド、コレステロールな
どの中性脂質とからなるものである。このような
卵黄レシチンからリン脂質を分画する方法は従来
より種々知られており、例えば特開昭59−152392
号公報によれば、脂質画分を非極性または極性の
弱い溶媒に溶解させて得られた溶液を、リン脂質
を優先的に吸着する樹脂に接触させてリン脂質を
吸着させた後、極性溶媒を用いて吸着リン脂質を
溶出させるという方法が開示されている。この方
法によれば、溶出液をフラクシヨン別に集めるこ
とによりPE/PC比の異なるリン脂質画分を得る
ことができるが、PC含量が高くかつPE含量の低
い画分は処理する脂質画分原料に対して極めて低
い割合(約10%程度)でしか得られず、しかもこ
の原料に対して極めて多量(約200倍量(v/
v))の樹脂を必要とするなどのためにこの方法
によつて経済的に工業規模でPC含量が高くPE含
量の低いリン脂質を分画するのは困難である。 また、卵黄レシチンのPC成分を富化させる方
法も従来より種々試みられている。例えば卵黄レ
シチンをエタノールに溶解させたものに水を加え
てPEを沈殿させるという溶媒分画法が知られて
いる。しかしこの方法には、PC含量を上げよう
とすると最終製品の収率が著しく低下してくると
いう欠点がある。別法としてシリカゲル、アルミ
ナ等の吸着剤を用いる方法も知られている。しか
しこの方法はPCとPEの分画能は高い反面、最終
製品の収率は低く、しかも多量の吸着剤を必要と
するなど工業規模での実施に困難が伴うものであ
る。更に他の方法として、Cd,Ca,Mg,Zn等
で金属塩複合体を形成させその溶解度を利用する
という方法も知られている。しかしこの方法では
得られた最終製品中にこれら金属の残留がまぬが
れ得ないという欠点がある。 このような現状にあつて本発明は、PE含量が
減らされ相対的にPC含量が高められた卵黄レシ
チンを収率よく工業規模で製造できる方法を提供
することを目的とする。 〔問題点を解決するための手段〕 本発明者らは上記の目的に即して鋭意研究を重
ねた結果、卵黄レシチンを極性溶媒又は極性溶媒
と非極性溶媒との混合物に溶解させたのちイオン
交換樹脂に接触させるならばこのイオン交換樹脂
は脂質成分中実質上PEのみを選択的に効率よく
吸着除去することを見出して本発明を完成するに
至つた。 よつて、本発明は、一面において、卵黄レシチ
ンを極性溶媒又は極性溶媒と非極性溶媒との混合
物に溶解させ、得られた溶液をイオン交換樹脂に
接触させた後この溶液から上記溶媒を留去するこ
とを特徴とするPE含量が減らされた卵黄レシチ
ンの製造法を提供するものである。 本発明者らはこうして得られた卵黄レシチン
を、原料由来の無機塩類および遊離アミノ酸を主
とする不純物の残存含量の観点から調べてみたと
ころ、意外にもこれら不純物が実質上ほとんど検
出されないことを知見した。 よつて、本発明は、他面において、主たる不純
物として無機塩類および遊離アミノ酸を含む粗製
卵黄レシチンあるいはその半精製卵黄レシチンを
出発原料として用いて上記本発明の方法を実施
し、最終製品としてPE含量が減らされかつ実質
上該不純物不含の卵黄レシチンを製造する方法を
提供するものである。 本発明者らは更に研究を重ねたところ、PEお
よび不純物除去効果は主としてイオン交換樹脂の
使用量に比例すること、しかもPEは不純物が実
施上ほとんど除去された後で除去されることを見
出した。 よつて、本発明は、更に他の側面から、粗製卵
黄レシチンあるいはその半精製卵黄レシチンを出
発原料として用いて上記本発明の方法を実施し、
最終製品として実質上不純物不含の卵黄レシチン
を製造する方法を提供するものであると言える。 以下、本発明を詳しく説明する。 本発明の方法が適用される原料の卵黄レシチン
は、卵黄から常法により例えばエタノール、ジク
ロロメタン、ヘキサン、エーテル等を用いて溶媒
抽出して得られるPCを主とするリン脂質を含む
脂質画分である。この脂質画分は、無機塩類(例
えば、ナトリウム、カリウム、カルシウム、マグ
ネシウム、鉄などの塩)および遊離アミノ酸を主
たる不純物として含むもの(粗製卵黄レシチン)、
あるいは粗製卵黄レシチンをケイソウ土過、メ
ンブランフイルター過等に処して不純物の量を
減じたもの(半精製卵黄レシチン)、更には粗製
卵黄レシチン又は半精製卵黄レシチンを常法によ
りアセトン等で処理してリン脂質含量を高めたも
の(高リン脂質卵黄レシチン)を含むものとす
る。 本発明の方法において用いる卵黄レシチンの溶
剤は、極性溶媒、例えばメタノール、エタノー
ル、アセトン、ジクロロメタン、水などである
か、あるいはこれら極性溶媒と非極性溶媒、例え
ばn−ペンタン、n−ヘキサン、n−ヘプタン、
クロロホルム、酢酸エチル、エーテル、ベンゼン
など、との混合物である。後述の試験例の結果よ
り明らかなように、非極性溶媒だけではPEおよ
び不純物除去効果は得難い。尚、極性溶媒と非極
性溶媒との混合物における両者の混合割合は特に
限定的でないが、一般的には極性溶媒の割合が多
い方が好ましい。 溶剤中の卵黄レシチンの濃度は、即ち得られる
溶液中における卵黄レシチンの濃度は0.5〜20%
(v/v)程度であるのが好ましい。0.5%未満で
は溶剤量が多すぎて経済的でなく、また20%を越
すと粘度が増加するために次のイオン交換樹脂と
の接触操作に困難が伴なうようになるからであ
る。 本発明の方法において用いるイオン交換樹脂は
特に限定的なものではないが、市販の強酸性又は
弱酸性陽イオン交換樹脂、あるいは強塩基性又は
弱塩基性陰イオン交換樹脂が好ましく用いられ
る。強酸性樹脂としては、例えばAmberlite
IR120B、200C(いずれもRohm & Hass社
製);Dowex 50W,MSC−1(いずれもDow
Chemical社製);DuoLite C−20,C−25D(い
ずれもDiamond Shamrock 社製);Lewatit
S−100,SP−120(いずれもBayer社製)など
を、また弱酸性樹脂としては、例えばAmberlite
IRC50,IRC84;Dowex CCR−2;DuoLite
CC−4;Lewatit CNP−80などを挙げることが
できる。強塩基性樹脂として、例えばAmberlite
IRA400, IRA900;Dowex 1, MSA−1;DuoLite A−101D; Lewatit M−500,MP−500などを、また弱塩基
性樹脂としては、例えばAmberlite IRA68,
IRA45; Lewatit MP−62などを挙げることができる。こ
れらの樹脂は単独で用いても、あるいは種類を問
わず二種以上を任意の割合で混合の形態であるい
は逐次的に用いてもよい。具体的には例えば、酸
性樹脂の一種と塩基性樹脂の一種とを1:3〜
2:1の割合で混合して用いる。尚、使用に際し
て吸着効率を上げる目的で酸性樹脂はH型に塩基
性樹脂をOH型に調製するとよい。 イオン交換樹脂の使用量は原料の卵黄レシチン
中に含有せるPEおよび不純物の量あるいは使用
する樹脂の種類に依り変わりうるが、一般的には
原料の卵黄レシチン中に含有せるPEの量に対し
て容量基準で通常3倍以上用いるとよい。使用量
が3倍より少ないと充分なPEおよび不純物除去
効果が得難いからである。好ましくは、原料中の
PEおよび不純物の量に応じて4.0〜40倍の範囲内
で適宜選択すればよい。この範囲内であればPE
含量を工業的規模での容認残量とされている2%
以下乃至痕跡量にまで減らすことが可能で、しか
も不純物は実質上ほとんど不含のものとし得る。
よつて、樹脂をあまり多く用い過ぎても経済的で
ない。 尚、PEは不純物が実質上ほとんど除去された
後で除去されることから、粗製卵黄レシチンある
いは半精製卵黄レシチンを出発原料として用いて
本発明の方法を実施する際用いるイオン交換樹脂
の量をコントロールすればPE含量はほぼ維持さ
れた実質上不純物不含の卵黄レシチンを製造する
ことができる。この場合イオン交換樹脂の使用量
は粗製卵黄レシチンあるいは半精製卵黄レシチン
原料に対して容量基準で通常0.2倍以上用いると
よい。使用量が0.2倍より少ないと充分な不純物
除去効果が得がたいからである。好ましくは原料
中の不純物の量に応じて0.3〜3.0倍の範囲内で適
宜選択すればよい。あまり多過ぎるとPEが除去
されるようになる。 卵黄レシチンの溶液とイオン交換樹脂との接触
は、所定量の樹脂を常法により充填したカラムに
該溶液を流すか、あるいは該溶液中に所定量の樹
脂を加えて撹拌下懸濁させることにより実施すれ
ばよい。この接触は溶媒の蒸発を防止する観点よ
り溶媒の沸点より低い温度下で実施するとよい。 本発明の方法によれば、上記の接触によりイオ
ン交換樹脂にPEおよび(または)不純物を選択
的に吸着させたのちは、カラムを通した溶液はそ
のまま次いで、または撹拌接触をさせた溶液は樹
脂を例えば過して除去した後に、いずれも該溶
液から用いた溶媒を例えば減圧下で留去する。 このような本発明の方法によれば、原料の卵黄
レシチン中のPE含量は極めて効果的に減らされ、
相対的にPC含量が高められた卵黄レシチンであ
つてしかも実質上不純物不含のものを製造するこ
とができる。しかも後述の試験例の結果より明ら
かなように、イオン交換樹脂の使用量が原料卵黄
レシチン中のPE含量の3倍容量(v/v)程度
であつてもそのPE含量を半分程度にまで減らす
ことができ、即ち、樹脂の使用量は極めて少なく
てよく、その上樹脂は不純物と実質上脂質成分中
PEのみを選択的に吸着除去するので最終製品を
収率よく製造し得、よつて、不純物を実質上含ま
ず、PC含量が高くPE含量の低いないしPEをほ
とんど含まない卵黄レシチンを工業的規模で製造
し得る。尚、このような本発明の方法は、繰返し
実施により一段と合目的的に実施されうることは
言うまでもない。 また、本発明の方法によれば、イオン交換樹脂
の使用量を適宜コントロールすることによりPE
含量はほぼ維持されたままで実質上不純物不含の
卵黄レシチンを極めて容易に工業的規模で製造し
得る。 〔発明の効果〕 本発明の方法によつて得られる卵黄レシチン
は、一態様において、PE含量が極めて効果的に
ないしほとんど含まない程度にまで減らされ相対
的にPC含量が高められた、しかも実質上不純物
不含の卵黄レシチンであるので、このものの各種
分野、とりわけ医薬品および化粧品の分野での利
用拡大を図ることが期待できる。 また、本発明の方法によつて得られる卵黄レシ
チンは、他の態様において、PE含量はほぼ維持
されたままの、即ちリン脂質組成は維持されたま
まの、実質上不純物のみ不含の卵黄レシチンであ
るので、精製された一リン脂質材料として各種分
野での、例えば乳化剤としての利用拡大が期待さ
れる。とりわけ、従来、粗卵黄レシチンから実質
上完全に無機塩類、遊離アミノ酸、ポリペプチド
等の不純物を除去することが困難であり、それ故
通常の有機溶媒への溶解性は良くなくその利用範
囲が限定されていた卵黄レシチンであるが、本発
明の方法によりこのような不純物は実質上含まれ
ておらず溶解性が一段と改良された卵黄レシチン
が得られるので各種分野での一層の利用拡大が図
りうる。 以下、本発明の効果を試験例の結果でもつて更
に説明する。尚、本発明において%は特にことわ
りのない限りすべて重量%である。また、卵黄レ
シチンおよびPEとも比重はほぼ1である。 試験例 1 この試験例は、本発明の方法のPEおよび不純
物除去効果が、用いる溶媒の種類に依り如何に異
なるかを示す。 用意した卵黄レシチン(PC:58.0%,PE:
10.0%)各20gを無水エタノール、n−ヘキサ
ン、クロロホルム、酢酸エチル、95%エタノー
ル、クロロホルム−メタノール−水(10:10:
1)各200ml中にそれぞれ溶解させ、得られた溶
液をそれぞれ、いずれも予めAmberlite IR120B
(H型)とAmberlite IRA400(OH型)とを各10
mlの割合で混合したものを常法に従つて充填した
カラムに流したのち、各溶液からそれぞれ用いた
溶媒を減圧下で完全に留去させ、最終卵黄レシチ
ン試料を得た。 次いで各試料についてPE残量はイヤトロスキ
ヤンTH−10で、また、不純物は原子吸光分析で
金属イオンを、更にアミノ酸分析で遊離アミノ酸
の各量を調べた。その結果を下記の表1に示す。
[Industrial Field of Application] The present invention relates to a new method for producing egg yolk lecithin with a reduced content of phosphatidylethanolamine (in the present invention abbreviated as PE) and/or substantially free of impurities. be. [Prior Art] Conventionally, a lipid fraction derived from egg yolk containing phospholipids such as phosphatidylcholine (in the present invention, abbreviated as PC), so-called egg yolk lecithin, has been developed due to the surfactant action of the phospholipid contained therein. It is widely used in the fields of cosmetics and pharmaceuticals as an emulsifier, a liposome forming agent as a drug carrier, etc., taking advantage of its various properties such as osmotic action. By the way, PC is structurally a cylindrical molecule with a well-balanced size of hydrophobic and hydrophilic groups, so when egg yolk lecithin with a high PC content is used as a liposome forming agent, it can form liposomes with a stable lipid bilayer. It has the advantage of being able to form In this case, if egg yolk lecithin, which has a high PC content and a low PE content, is used as a raw material, a liposome with higher structural stability, that is, a strong yet flexible membrane can be produced. like this,
Egg yolk lecithin with a high PC content and a low PE content also has the advantage of stabilizing various physical properties of the final product when used as a cosmetic raw material. Therefore, if it is possible to produce egg yolk lecithin with a reduced PE content and a relatively increased PC content, the obtained egg yolk lecithin can be of great industrial benefit. [Problems to be solved by the invention] Egg yolk lecithin (lipid fraction) obtained by extraction from egg yolk by a conventional method mainly consists of phospholipids such as PC and PE, and neutral lipids such as triglyceride and cholesterol. It is something. Various methods for fractionating phospholipids from egg yolk lecithin have been known, for example, as described in Japanese Patent Application Laid-Open No. 152392-1982.
According to the publication, a solution obtained by dissolving a lipid fraction in a non-polar or weakly polar solvent is brought into contact with a resin that preferentially adsorbs phospholipids to adsorb the phospholipids, and then the solution is dissolved in a polar solvent. A method is disclosed in which adsorbed phospholipids are eluted using. According to this method, phospholipid fractions with different PE/PC ratios can be obtained by collecting the eluate in fractions, but the fractions with high PC content and low PE content are used as the lipid fraction raw material to be processed. It can only be obtained in an extremely low proportion (approximately 10%), and in an extremely large amount (approximately 200 times the amount (v/v)) of this raw material.
It is difficult to economically fractionate phospholipids with a high PC content and a low PE content on an industrial scale by this method due to the necessity of the resin of (v))). Furthermore, various methods have been attempted to enrich the PC component of egg yolk lecithin. For example, a solvent fractionation method is known in which PE is precipitated by adding water to a solution of egg yolk lecithin in ethanol. However, this method has the disadvantage that increasing the PC content significantly reduces the yield of the final product. Alternatively, a method using an adsorbent such as silica gel or alumina is also known. However, although this method has a high separation ability for PC and PE, the yield of the final product is low, and it requires a large amount of adsorbent, making it difficult to implement on an industrial scale. Another known method is to form a metal salt complex with Cd, Ca, Mg, Zn, etc. and utilize its solubility. However, this method has the disadvantage that residual metals cannot be avoided in the final product obtained. Under these circumstances, it is an object of the present invention to provide a method for producing egg yolk lecithin with a reduced PE content and a relatively increased PC content in a high yield on an industrial scale. [Means for Solving the Problems] As a result of extensive research in accordance with the above-mentioned objective, the present inventors have found that after dissolving egg yolk lecithin in a polar solvent or a mixture of a polar solvent and a non-polar solvent, ions The present invention was completed by discovering that this ion exchange resin selectively and efficiently adsorbs and removes substantially only PE among lipid components when brought into contact with an exchange resin. Therefore, in one aspect, the present invention provides the steps of dissolving egg yolk lecithin in a polar solvent or a mixture of a polar solvent and a non-polar solvent, contacting the resulting solution with an ion exchange resin, and then distilling off the solvent from the solution. The present invention provides a method for producing egg yolk lecithin with reduced PE content. The present inventors investigated the egg yolk lecithin thus obtained from the viewpoint of the residual content of impurities, mainly inorganic salts and free amino acids derived from raw materials, and surprisingly found that these impurities were virtually undetectable. I found out. Therefore, in another aspect of the present invention, the method of the present invention is carried out using crude egg yolk lecithin or semi-purified egg yolk lecithin containing inorganic salts and free amino acids as main impurities as a starting material, and the final product has a PE content. The object of the present invention is to provide a method for producing egg yolk lecithin with reduced and substantially free of said impurities. The inventors conducted further research and found that the effect of removing PE and impurities is mainly proportional to the amount of ion exchange resin used, and that PE is removed after most of the impurities have been practically removed. . Therefore, the present invention has another aspect, in which the method of the present invention is carried out using crude egg yolk lecithin or semi-purified egg yolk lecithin as a starting material,
It can be said that the present invention provides a method for producing egg yolk lecithin that is substantially free of impurities as a final product. The present invention will be explained in detail below. Egg yolk lecithin, which is a raw material to which the method of the present invention is applied, is a lipid fraction containing phospholipids mainly containing PC, which is obtained by solvent extraction from egg yolk by a conventional method using, for example, ethanol, dichloromethane, hexane, ether, etc. be. This lipid fraction contains inorganic salts (e.g. salts of sodium, potassium, calcium, magnesium, iron, etc.) and free amino acids as main impurities (crude egg yolk lecithin);
Alternatively, crude egg yolk lecithin is subjected to diatomaceous earth filtration, membrane filtering, etc. to reduce the amount of impurities (semi-purified egg yolk lecithin), or crude egg yolk lecithin or semi-purified egg yolk lecithin is treated with acetone etc. by a conventional method. Contains a product with increased phospholipid content (high phospholipid egg yolk lecithin). The solvent for the egg yolk lecithin used in the method of the invention is either a polar solvent, such as methanol, ethanol, acetone, dichloromethane, water, etc., or a combination of these polar solvents and a non-polar solvent, such as n-pentane, n-hexane, n- heptane,
It is a mixture with chloroform, ethyl acetate, ether, benzene, etc. As is clear from the results of the test examples described below, it is difficult to obtain the effect of removing PE and impurities using a nonpolar solvent alone. Although the mixing ratio of the polar solvent and the non-polar solvent in the mixture is not particularly limited, it is generally preferable that the ratio of the polar solvent is larger. The concentration of egg yolk lecithin in the solvent, i.e. the concentration of egg yolk lecithin in the resulting solution is 0.5-20%.
(v/v) is preferable. This is because if the amount is less than 0.5%, the amount of solvent is too large and is not economical, and if it exceeds 20%, the viscosity increases and the subsequent contact operation with the ion exchange resin becomes difficult. The ion exchange resin used in the method of the present invention is not particularly limited, but commercially available strongly acidic or weakly acidic cation exchange resins, or strongly basic or weakly basic anion exchange resins are preferably used. Examples of strong acidic resins include Amberlite.
IR120B, 200C (both manufactured by Rohm &Hass); Dowex 50W, MSC-1 (both manufactured by Dow
Chemical); DuoLite C-20, C-25D (both manufactured by Diamond Shamrock); Lewatit
S-100, SP-120 (both manufactured by Bayer), etc., and weakly acidic resins such as Amberlite
IRC50, IRC84; Dowex CCR-2; DuoLite
CC-4; Lewatit CNP-80, etc. can be mentioned. As a strong basic resin, for example, Amberlite
IRA400, IRA900; Dowex 1, MSA-1; DuoLite A-101D; Lewatit M-500, MP-500, and weakly basic resins such as Amberlite IRA68,
Examples include IRA45; Lewatit MP-62. These resins may be used alone, or two or more of them may be used in a mixed form or sequentially in any proportion. Specifically, for example, one type of acidic resin and one type of basic resin are mixed in a ratio of 1:3 to 1:3.
They are used by mixing at a ratio of 2:1. In addition, in order to increase the adsorption efficiency during use, it is preferable to prepare the acidic resin to be H type and the basic resin to be OH type. The amount of ion exchange resin used may vary depending on the amount of PE and impurities contained in the raw egg yolk lecithin or the type of resin used, but generally it is based on the amount of PE contained in the raw egg yolk lecithin. It is recommended to use at least 3 times the normal capacity on a capacity basis. This is because if the amount used is less than 3 times, it is difficult to obtain a sufficient PE and impurity removal effect. Preferably, in the raw material
The amount may be appropriately selected within the range of 4.0 to 40 times depending on the amount of PE and impurities. If within this range, PE
The content is 2%, which is considered to be an acceptable residual amount on an industrial scale.
It is possible to reduce the amount to less than a trace amount, and moreover, it can be substantially free of impurities.
Therefore, it is not economical to use too much resin. In addition, since PE is removed after virtually all impurities have been removed, the amount of ion exchange resin used is controlled when carrying out the method of the present invention using crude egg yolk lecithin or semi-purified egg yolk lecithin as a starting material. In this way, it is possible to produce egg yolk lecithin that is substantially free of impurities and has almost the same PE content. In this case, the amount of ion exchange resin used is usually 0.2 times or more of the crude egg yolk lecithin or semi-purified egg yolk lecithin raw material on a volume basis. This is because if the amount used is less than 0.2 times, it is difficult to obtain a sufficient impurity removal effect. Preferably, the amount may be appropriately selected within the range of 0.3 to 3.0 times depending on the amount of impurities in the raw material. If the amount is too high, PE will be removed. The egg yolk lecithin solution and the ion exchange resin can be brought into contact by flowing the solution through a column packed with a predetermined amount of resin in a conventional manner, or by adding a predetermined amount of resin into the solution and suspending it under stirring. All you have to do is implement it. This contact is preferably carried out at a temperature lower than the boiling point of the solvent in order to prevent evaporation of the solvent. According to the method of the present invention, after selectively adsorbing PE and/or impurities on the ion exchange resin through the above-mentioned contact, the solution passed through the column can be directly adsorbed, or the solution that has been brought into contact with the column can be directly adsorbed on the ion exchange resin. After removing, for example, by filtration, the solvent used is distilled off from the solution, for example, under reduced pressure. According to the method of the present invention, the PE content in egg yolk lecithin as a raw material is extremely effectively reduced.
Egg yolk lecithin with a relatively increased PC content and substantially free of impurities can be produced. Moreover, as is clear from the results of the test examples described below, even if the amount of ion exchange resin used is about three times the volume (v/v) of the PE content in raw egg yolk lecithin, the PE content can be reduced to about half. This means that the amount of resin used can be extremely small, and moreover, the resin is free of impurities and virtually no lipid components.
Since only PE is selectively adsorbed and removed, the final product can be produced with high yield, and therefore egg yolk lecithin that is virtually free of impurities, has a high PC content, and has a low or almost no PE content can be produced on an industrial scale. It can be manufactured in It goes without saying that the method of the present invention can be carried out more efficiently by repeated implementation. In addition, according to the method of the present invention, by appropriately controlling the amount of ion exchange resin used, PE
Egg yolk lecithin which is substantially free of impurities and whose content remains approximately the same can be produced very easily on an industrial scale. [Effects of the Invention] In one embodiment, the egg yolk lecithin obtained by the method of the present invention has a PE content that is extremely effectively reduced to almost no content, and a PC content that is relatively increased. Since this egg yolk lecithin does not contain any upper impurities, it is expected that its use will be expanded in various fields, especially in the fields of pharmaceuticals and cosmetics. In another embodiment, the egg yolk lecithin obtained by the method of the present invention is an egg yolk lecithin that is substantially free of impurities, with the PE content substantially maintained, that is, the phospholipid composition maintained. Therefore, it is expected that it will be used as a purified monophospholipid material in various fields, for example, as an emulsifier. In particular, it has been difficult to virtually completely remove impurities such as inorganic salts, free amino acids, and polypeptides from crude egg yolk lecithin, and its solubility in ordinary organic solvents is therefore poor, limiting its range of use. However, the method of the present invention allows egg yolk lecithin to be obtained which is substantially free of such impurities and has further improved solubility, so that its use can be further expanded in various fields. . The effects of the present invention will be further explained below using the results of test examples. In the present invention, all percentages are by weight unless otherwise specified. Furthermore, both egg yolk lecithin and PE have a specific gravity of approximately 1. Test Example 1 This test example shows how the PE and impurity removal effectiveness of the method of the present invention varies depending on the type of solvent used. Prepared egg yolk lecithin (PC: 58.0%, PE:
10.0%) 20g each of absolute ethanol, n-hexane, chloroform, ethyl acetate, 95% ethanol, chloroform-methanol-water (10:10:
1) Dissolve each in 200ml of each, and add the resulting solution to Amberlite IR120B in advance.
(H type) and Amberlite IRA400 (OH type) 10 each
After flowing the mixture in a ratio of 1.0 ml to a column packed according to a conventional method, the solvent used in each solution was completely distilled off under reduced pressure to obtain a final egg yolk lecithin sample. Next, for each sample, the remaining amount of PE was determined using Iyatroscan TH-10, impurities were determined by atomic absorption spectrometry for metal ions, and amino acid analysis was performed for the amount of free amino acids. The results are shown in Table 1 below.

【表】 上記の結果から、極性溶媒又は極性溶媒と非極
性溶媒との混合物を用いると原料の卵黄レシチン
中のPEおよび不純物含量を極めて効果的に減ら
すことができるが、他方、非極性溶媒だけを用い
た場合にはPEおよび不純物除去効果は得難いこ
とがわかる。 試験例 2 この試験例は、本発明の方法においてはイオン
交換樹脂の使用量は極めて少量でもつてPEを効
果的に除去しうることを示す。 用意した卵黄レシチン(PC:78.2%,PE:
20.0%)各20g(PE含量:4.0g)を95%エタノ
ール各180ml中にそれぞれ溶解させ、得られたこ
れら溶液をそれぞれ、予めDowex50W(H型)と
Dowex1(OH型)との等量混合物を2ml,4ml,
6ml,8ml,10ml,12ml,14ml,16mlおよび20ml
の量で常法に従つて充填した各カラムに流したの
ち、各溶液からそれぞれ溶媒を減圧下で完全に留
去させ、最終卵黄レシチン試料を得た。 次いで各試料について残存するPE含量をイヤ
トロスキヤンTH10で調べた。その結果を下記の
表2に示す。
[Table] From the above results, it can be seen that using a polar solvent or a mixture of a polar solvent and a non-polar solvent can very effectively reduce the PE and impurity content in the raw egg yolk lecithin, but on the other hand, only a non-polar solvent It can be seen that it is difficult to obtain the effect of removing PE and impurities when using . Test Example 2 This test example shows that in the method of the present invention, PE can be effectively removed even when the amount of ion exchange resin used is extremely small. Prepared egg yolk lecithin (PC: 78.2%, PE:
20.0%) each (PE content: 4.0 g) was dissolved in 180 ml of 95% ethanol, and each of the resulting solutions was mixed with Dowex 50W (H type) in advance.
2ml, 4ml of equal amounts of mixture with Dowex1 (OH type),
6ml, 8ml, 10ml, 12ml, 14ml, 16ml and 20ml
After flowing through each column packed according to a conventional method, the solvent was completely distilled off from each solution under reduced pressure to obtain a final egg yolk lecithin sample. The remaining PE content of each sample was then examined using an Iatroscan TH10. The results are shown in Table 2 below.

【表】 上記の結果から、樹脂の使用量が原料の卵黄レ
シチン中に含有せるPE含量の3倍容量(v/v)
程度でそのPE含量を半分程度にまで減らすこと
ができ、よつて本発明の方法においては樹脂の使
用量は極めて少なくてよいことがわかる。 試験例 3 この試験例は、本発明の方法においてイオン交
換樹脂の使用量をコントロールして不純物のみの
除去を図つた場合のその不純物除去効果が、用い
る溶媒の種類に依り如何に異なるかを示す。 用意した卵黄レシチン(PC:79.2%、PE:
20.0%、金属イオン:1100mg%、遊離アミノ酸:
800mg%)各20gをエーテル、n−ヘキサン、95
%エタノール、クロロホルム−メタノール(2:
1)、n−ヘキサン−アセトン(2::1)各200
ml中にそれぞれ溶解させ、得られた溶液にそれぞ
れAmberlite IR120B(H型)2mlおよび
Amberlite IR400(OH型)3mlを添加し、30分間
撹拌後過してイオン交換樹脂を除いたのち、各
溶液からそれぞれ用いた溶媒を減圧下で完全に留
去させ、最終卵黄レシチン試料を得た。 次いで各試料について5w/v%エマルジヨン
を調製し、電気伝導度を測定した。その結果を下
記の表3に示す。
[Table] From the above results, the amount of resin used is 3 times the volume (v/v) of the PE content contained in the raw egg yolk lecithin.
It can be seen that the PE content can be reduced to about half in a matter of seconds, and therefore, in the method of the present invention, the amount of resin used can be extremely small. Test Example 3 This test example shows how the impurity removal effect differs depending on the type of solvent used when only impurities are removed by controlling the amount of ion exchange resin used in the method of the present invention. . Prepared egg yolk lecithin (PC: 79.2%, PE:
20.0%, metal ions: 1100mg%, free amino acids:
800mg%) 20g each of ether, n-hexane, 95
% ethanol, chloroform-methanol (2:
1), n-hexane-acetone (2::1) 200 each
ml of Amberlite IR120B (H type) and 2 ml of Amberlite IR120B (H type) and
After adding 3 ml of Amberlite IR400 (OH type) and stirring for 30 minutes, the ion exchange resin was removed, and the solvent used from each solution was completely distilled off under reduced pressure to obtain the final egg yolk lecithin sample. . Next, a 5 w/v% emulsion was prepared for each sample, and the electrical conductivity was measured. The results are shown in Table 3 below.

〔実施例〕〔Example〕

以下、本発明を実施例でもつて更に詳しく説明
する。 実施例 1 用意した卵黄レシチン(PC:56.9%,PE:9.6
%,コレステロール:14.9%,トリグリセライ
ド:18.6%、金属イオン:960mg%、遊離アミノ
酸:680mg%、電気伝導度:690μS/cm)500gを
95%エタノール4.5中に溶解させ、得られた溶
液を、予めAmberlite IR120B(H型)500mlと
Amberlite IRA400(OH型)1000mlとを混合した
ものを常法に従つて充填したカラムに流したの
ち、この溶液から用いた溶媒を減圧下で完全に留
去させ、PE含量が1.0%まで減らされた卵黄レシ
チン450gを得た。この製品のPE以外の成分割合
はPC:62.0%、コレステロール:15.7%、トリグ
リセライド:19.9%、金属イオン:72mg%、遊離
アミノ酸:59mg%で、電気伝導度は28μS/cmで
あつた。 実施例 2 用意した卵黄レシチン(PC:79.6%、PE:
18.0%、コレステロール1.2%、金属イオン:
1100mg%、遊離アミノ酸:600mg%、電気伝導
度:720μS/cm)200gをクロロホルム−メタノ
ール−水(10:10:1)2中に溶解させ、得ら
れた溶液を、予めDowex 50W(H型)200mlと
Dowex1(OH型)400mlとを混合したものを常法
に従つて充填したカラムに流したのち、この溶液
から用いた溶媒を減圧下で完全に留去させ、PE
含量が1.0%まで減らされた卵黄レシチン80gを
得た。この製品のPE以外の成分割合はPC:96.1
%、コレステロール:1.4%、金属イオン:40mg
%、遊離アミノ酸:20mg%で、電気伝導度は
12μS/cmであつた。 実施例 3 用意した卵黄レシチン(PC:29.6%,PE:3.3
%,コレステロール4.3%,トリグリセライド
62.3%、金属イオン:520mg%、遊離アミノ酸:
210mg%、電気伝導度:230μS/cm)500g(PE
含量:16.5g)を99.5%エタノール4.5中に溶解
させ、得られた溶液を、予めLawatit S−100
(H型)25mlとLawatit M−500(OH型)25mlと
を混合したものを常法に従つて充填したカラムに
流したのち、この溶液から用いた溶液を減圧下で
完全に留去させ、PE含量が1.6%まで減らされた
卵黄レシチン490gを得た。この製品のPE以外の
成分割合はPC:30.2%、コレステロール:4.5%、
トリグリセライド:63.1%、金属イオン:73mg
%、遊離アミノ酸:26mg%で、電気伝導度は
32μS/cmであつた。 尚、上記実施例1〜3においては、卵黄レシチ
ンの溶液とイオン交換樹脂との接触をカラムを用
いることなく単に撹拌接触させた場合でも、いず
れの実施例においてもPEおよび不純物含量がほ
ぼ同等に減らされた卵黄レシチンが得られた。 実施例 4 用意した卵黄レシチン(PC:78.0%、PE:
18.3%、コレステロール:2.0%、トリグリセラ
イド:0%、金属イオン:1000mg%、遊離アミノ
酸:700mg%、電気伝導度:730μS/cm)100gを
ヘキサン−エタノール(80:20)中に溶解させ、
得られた溶液にAmberlite IR 120B(H型)60ml
とAmberlite IRA 400、OH型)120mlを加えて
30分間撹拌混合した。次いでこの溶液からイオン
交換樹脂を別したのち用いた溶媒を減圧下で完
全に留去させ、而る後アセトン処理をすることに
よりPE含量0%の卵黄レシチン76gを得た。こ
の製品のPE以外の成分割合はPC:96.8%、コレ
ステロール:1.5%、金属イオン:50mg%、遊離
アミノ酸:120mg%で、電気伝導度は5.3μS/cmで
あつた。 実施例 5 乾燥状卵黄を超臨界二酸化炭素に接触させて油
脂分を抽出し、この油脂分をエタノール処理して
得た卵黄レシチン(PC:80.5%、PE:17.3%、
コレステロール:0.5%、トリグリセライド:0.1
%、金属イオン:430mg%、遊離アミノ酸:180mg
%、電気伝導度:120μS/cm)2Kgをクロロホル
ム−メタノール−水(10:10:1)中に溶解さ
せ、得られた溶液にDuoLite C−20(H型)1000
mlとDuoLite A−l0lD(OH型)2000mlを加えて
30分間撹拌混合した。 次いでこの溶液からイオン交換樹脂を別した
のち用いた溶媒を減圧下で完全に留去させ、而る
後アセトン処理をすることによりPE含量が2%
まで減らされた卵黄レシチン1.4Kgを得た。この
卵黄レシチンのPE以外の成分割合は、PC:94.2
%、コレステロール:0.8%、トリグリセライ
ド:0.1%、金属イオン:48mg%、遊離アミノ
酸:16mg%で電気伝導度は7.3μS/cmであつた。 実施例 6〜8 各実施例において、下記の表4に示した粗製卵
黄レシチンを同表に示した溶媒に溶解させて所要
数の溶液を調製し、この各溶液に同表に示したイ
オン交換樹脂の混合物を使用量を変えて加え、い
ずれも常温(20℃)で30分間撹拌混合したのち使
用した樹脂を別し、次いで用いた溶媒を減圧下
で完全に留去させ、それぞれ樹脂の使用量に応じ
た卵黄レシチン試料を得た。 次いで各実施例において得られた各試料につい
てPEおよび不純物残量を試験例1で用いた方法
で測定した。その結果を実施例毎にグラフでもつ
て示した(第1〜3図参照)。
Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 Prepared egg yolk lecithin (PC: 56.9%, PE: 9.6
%, cholesterol: 14.9%, triglyceride: 18.6%, metal ion: 960mg%, free amino acid: 680mg%, electrical conductivity: 690μS/cm) 500g
Dissolve in 95% ethanol 4.5 and mix the resulting solution in advance with 500 ml of Amberlite IR120B (H type).
A mixture of 1,000 ml of Amberlite IRA400 (OH type) was poured into a column packed in a conventional manner, and the solvent used was completely distilled off from this solution under reduced pressure to reduce the PE content to 1.0%. 450g of egg yolk lecithin was obtained. The ratio of components other than PE in this product was PC: 62.0%, cholesterol: 15.7%, triglyceride: 19.9%, metal ion: 72 mg%, free amino acid: 59 mg%, and the electrical conductivity was 28 μS/cm. Example 2 Prepared egg yolk lecithin (PC: 79.6%, PE:
18.0%, cholesterol 1.2%, metal ions:
1100mg%, free amino acid: 600mg%, electrical conductivity: 720μS/cm) 200g was dissolved in chloroform-methanol-water (10:10:1) 2, and the resulting solution was preliminarily prepared using Dowex 50W (H type). 200ml and
A mixture of 400 ml of Dowex 1 (OH type) was poured into a column packed in a conventional manner, and the solvent used from this solution was completely distilled off under reduced pressure.
80 g of egg yolk lecithin whose content was reduced to 1.0% was obtained. The ratio of ingredients other than PE in this product is PC: 96.1
%, cholesterol: 1.4%, metal ions: 40mg
%, free amino acid: 20mg%, electrical conductivity is
It was 12μS/cm. Example 3 Prepared egg yolk lecithin (PC: 29.6%, PE: 3.3
%, cholesterol 4.3%, triglycerides
62.3%, metal ions: 520mg%, free amino acids:
210mg%, electrical conductivity: 230μS/cm) 500g (PE
Content: 16.5 g) was dissolved in 99.5% ethanol 4.5 g, and the resulting solution was preliminarily mixed with Lawatit S-100.
A mixture of 25 ml of (H type) and 25 ml of Lawatit M-500 (OH type) was poured into a column packed in a conventional manner, and the solution used was completely distilled off from this solution under reduced pressure. 490 g of egg yolk lecithin with PE content reduced to 1.6% was obtained. The ratio of ingredients other than PE in this product is PC: 30.2%, cholesterol: 4.5%,
Triglyceride: 63.1%, Metal ion: 73mg
%, free amino acid: 26mg%, electrical conductivity is
It was 32μS/cm. In addition, in Examples 1 to 3 above, even when the egg yolk lecithin solution and the ion exchange resin were simply brought into contact with stirring without using a column, the PE and impurity contents were almost the same in all Examples. A reduced egg yolk lecithin was obtained. Example 4 Prepared egg yolk lecithin (PC: 78.0%, PE:
18.3%, cholesterol: 2.0%, triglyceride: 0%, metal ion: 1000mg%, free amino acid: 700mg%, electrical conductivity: 730μS/cm) was dissolved in hexane-ethanol (80:20),
Add 60ml of Amberlite IR 120B (H type) to the obtained solution.
and Amberlite IRA 400, OH type) 120ml
Stir and mix for 30 minutes. Next, after separating the ion exchange resin from this solution, the solvent used was completely distilled off under reduced pressure, and then treated with acetone to obtain 76 g of egg yolk lecithin with a PE content of 0%. The proportions of components other than PE in this product were PC: 96.8%, cholesterol: 1.5%, metal ions: 50 mg%, free amino acids: 120 mg%, and the electrical conductivity was 5.3 μS/cm. Example 5 Egg yolk lecithin (PC: 80.5%, PE: 17.3%,
Cholesterol: 0.5%, triglyceride: 0.1
%, metal ions: 430mg%, free amino acids: 180mg
%, electrical conductivity: 120 μS/cm) was dissolved in chloroform-methanol-water (10:10:1), and DuoLite C-20 (H type) 1000 was added to the resulting solution.
ml and DuoLite A-l0lD (OH type) 2000ml
Stir and mix for 30 minutes. Next, after separating the ion exchange resin from this solution, the solvent used was completely distilled off under reduced pressure, and then treated with acetone to reduce the PE content to 2%.
1.4 kg of egg yolk lecithin was obtained. The ratio of components other than PE in this egg yolk lecithin is PC: 94.2
%, cholesterol: 0.8%, triglyceride: 0.1%, metal ion: 48 mg%, free amino acid: 16 mg%, and the electrical conductivity was 7.3 μS/cm. Examples 6 to 8 In each example, the required number of solutions were prepared by dissolving the crude egg yolk lecithin shown in Table 4 below in the solvent shown in the same table, and each solution was treated with the ion exchange agent shown in the same table. A mixture of resins was added in different amounts, mixed with stirring for 30 minutes at room temperature (20°C), and then the used resin was separated, and the solvent used was then completely distilled off under reduced pressure. Egg yolk lecithin samples according to quantity were obtained. Next, the amount of PE and impurity remaining in each sample obtained in each example was measured using the method used in Test Example 1. The results are shown in graphs for each example (see Figures 1 to 3).

【表】 以下の実施例9〜11は、本発明の方法において
イオン交換樹脂の使用量を所定量内にコントロー
ルすることにより原料卵黄レシチン中の不純物の
みを除去する場合の例である。 実施例 9 用意した卵黄レシチン(PC:51.7%、PE:
10.2%、中性脂質:37.2%、遊離アミノ酸:660
mg%、金属イオン:1090mg%、電気伝導度:
566μS/cm)1200gを水飽和ジクロロメタン12
中に溶解させ、得られた溶液にAmberlite IR
120B(H型)200mlとAmberlite IRA 400(OH
型)400mlとを加えて30分間撹拌混合したのち使
用したイオン交換樹脂を別し、次いで用いた溶
媒を減圧下で完全に留去させ、精製卵黄レシチン
1170gを得た。この精製卵黄レシチンの成分割合
は、PC:52.0%、PE:10.0%、中性脂質:37.3
%、遊離アミノ酸:37mg%、金属イオン:180mg
%で、電気伝導度は6.4μS/cmであつた。 次いでこうして得られた精製卵黄レシチンにつ
いて原料との比較において有機溶媒への溶解性を
調べた。その結果を下記の表5に示す。尚、溶解
性は各溶媒を用いて10w/v%溶液を調製するこ
とによつて行なつた。
[Table] Examples 9 to 11 below are examples in which only impurities in raw egg yolk lecithin are removed by controlling the amount of ion exchange resin used within a predetermined amount in the method of the present invention. Example 9 Prepared egg yolk lecithin (PC: 51.7%, PE:
10.2%, neutral lipids: 37.2%, free amino acids: 660
mg%, metal ion: 1090mg%, electrical conductivity:
566μS/cm) 1200g in water-saturated dichloromethane 12
Amberlite IR in the resulting solution
120B (H type) 200ml and Amberlite IRA 400 (OH
After stirring and mixing for 30 minutes, the ion exchange resin used was separated, the solvent used was completely distilled off under reduced pressure, and purified egg yolk lecithin was added.
Obtained 1170g. The component ratios of this purified egg yolk lecithin are: PC: 52.0%, PE: 10.0%, neutral lipid: 37.3
%, free amino acids: 37mg%, metal ions: 180mg
%, and the electrical conductivity was 6.4 μS/cm. Next, the solubility of the thus obtained purified egg yolk lecithin in organic solvents was examined in comparison with the raw material. The results are shown in Table 5 below. The solubility was measured by preparing a 10 w/v% solution using each solvent.

【表】 実施例 10 用意した卵黄レシチン(PC:79.9%、PE:
16.6%、中性脂質:1.7%、遊離アミノ酸:570mg
%、金属イオン:1100mg%、電気伝導度:
750μS/cm)500gをn−ヘキサン−アセトン
(2:1)3中に溶解させ、得られた溶液に
Dowex 50W(H型)250mlとDowex (OH型)
250mlとを加えて15分間撹拌混合したのち使用し
たイオン交換樹脂を別し、次いで用いた溶媒を
減圧下で完全に留去させ、精製卵黄レシチン490
gを得た。この精製卵黄レシチンの成分割合は
PC:79.8%、PE:16.4%、中性脂質:1.8%、遊
離アミノ酸:10mg%、金属イオン:127mg%で電
気伝導度は29μS/cmであつた。 次いでこうして得られた精製レシチンについて
原料との比較において有機溶媒への溶解性を上記
実施例9の方法に準じて調べた。その結果を下記
の表6に示す。
[Table] Example 10 Prepared egg yolk lecithin (PC: 79.9%, PE:
16.6%, neutral lipids: 1.7%, free amino acids: 570mg
%, Metal ion: 1100mg%, Electrical conductivity:
750 μS/cm) was dissolved in 3 n-hexane-acetone (2:1), and the resulting solution was
Dowex 50W (H type) 250ml and Dowex (OH type)
After stirring and mixing for 15 minutes, the ion exchange resin used was separated, and the solvent used was completely distilled off under reduced pressure.
I got g. The component ratio of this purified egg yolk lecithin is
PC: 79.8%, PE: 16.4%, neutral lipid: 1.8%, free amino acid: 10 mg%, metal ion: 127 mg%, and the electrical conductivity was 29 μS/cm. Next, the solubility of the thus obtained purified lecithin in organic solvents was examined in comparison with the raw material according to the method of Example 9 above. The results are shown in Table 6 below.

【表】 実施例 11 用意した卵黄レシチン(PC:77.0%、PE:
17.5%、中性脂質:4.6%、遊離アミノ酸:274mg
%、金属イオン:346mg%、電気伝導度:
250μS/cm)1000gをクロロホルム−メタノール
−水(10:5:1)5中に溶解させ、得られた
溶液にDuoLite C−20(H型)50mlとDuoLite
A−101D(OH型)150mlを加えて30分間撹拌混合
したのち使用したイオン交換樹脂を別し、次い
で用いた溶媒を減圧下で完全に留去させ、精製卵
黄レシチン980gを得た。この精製卵黄レシチン
の成分割合は、PC:77.6%、PE:16.5%、中性
脂質:4.8%、遊離アミノ酸:45mg%、金属イオ
ン:190mg%で、電気伝導度は28μS/cmであつ
た。 次いでこうして得られた精製レシチンについて
原料との比較において有機溶媒への溶解性を上記
実施例9の方法に準じて調べた。その結果を下記
の表7に示す。
[Table] Example 11 Prepared egg yolk lecithin (PC: 77.0%, PE:
17.5%, neutral lipids: 4.6%, free amino acids: 274mg
%, Metal ion: 346mg%, Electrical conductivity:
250μS/cm) was dissolved in chloroform-methanol-water (10:5:1), and 50ml of DuoLite C-20 (H type) and DuoLite were added to the resulting solution.
After adding 150 ml of A-101D (OH type) and stirring and mixing for 30 minutes, the ion exchange resin used was separated, and the solvent used was then completely distilled off under reduced pressure to obtain 980 g of purified egg yolk lecithin. The component ratios of this purified egg yolk lecithin were PC: 77.6%, PE: 16.5%, neutral lipids: 4.8%, free amino acids: 45 mg%, metal ions: 190 mg%, and the electrical conductivity was 28 μS/cm. Next, the solubility of the thus obtained purified lecithin in organic solvents was examined in comparison with the raw material according to the method of Example 9 above. The results are shown in Table 7 below.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図はそれぞれ実施例6〜8で行なつた
試験の結果を示すグラフである。
1 to 3 are graphs showing the results of the tests conducted in Examples 6 to 8, respectively.

Claims (1)

【特許請求の範囲】 1 卵黄レシチンを極性溶媒又は極性溶媒と非極
性溶媒との混合物に溶解させ、得られた溶液をイ
オン交換樹脂に接触させた後この溶液から上記溶
媒を留去することを特徴するPE(ホスフアチジル
エタノールアミン)含量が減らされた卵黄レシチ
ンの製造法。 2 出発原料の卵黄レシチンが、主たる不純物と
して無機塩類および遊離アミノ酸を含む粗製卵黄
レシチンあるいはその半導精卵黄レシチンであ
り、溶媒留去後得られる製品がPE含量が減らさ
れ、かつ実質上該不純物不含の卵黄レシチンであ
る、特許請求の範囲第1項に記載の製造法。 3 出発原料の卵黄レシチンが、リン脂質と中性
脂質を主成分とするものである、特許請求の範囲
第1項に記載の製造法。 4 出発原料の卵黄レシチンが、高リン脂質卵黄
レシチンである、特許請求の範囲第1項に記載の
製造法。 5 卵黄レシチン原料中のPE含量に対してイオ
ン交換樹脂を容量基準で3倍以上用いる、特許請
求の範囲第2項乃至第4項のいずれか一項に記載
の製造法。 6 イオン交換樹脂を容量基準で4.0〜40倍の範
囲で用いる、特許請求の範囲第5項に記載の製造
法。 7 極性溶媒がメタノール、エタノール、アセト
ン、ジクロロメタンおよび水の中から選ばれる、
特許請求の範囲第1項乃至第6項のいずれか一項
に記載の製造法。 8 溶剤中の卵黄レシチンの濃度が0.5〜20%
(v/v)である、特許請求の範囲第1項乃至第
7項のいずれか一項に記載の製造法。 9 主たる不純物として無機塩類および遊離アミ
ノ酸を含む粗製卵黄レシチンあるいはその半精製
卵黄レシチンを極性溶媒又は極性溶媒と非極性溶
媒との混合物に溶解させ、得られた溶液をイオン
交換樹脂に接触させた後この溶液から上記容媒を
留去することを特徴とする実質上不純物不含の卵
黄レシチンの製造法。 10 粗製卵黄レシチンあるいはその半精製卵黄
レシチン原料に対してイオン交換樹脂を容量基準
で0.2倍以上用いる、特許請求の範囲第9項に記
載の製造法。 11 イオン交換樹脂を容量基準で、0.3〜3.0倍
の範囲で用いる、特許請求の範囲第10項に記載
の製造法。
[Claims] 1. Dissolving egg yolk lecithin in a polar solvent or a mixture of a polar solvent and a non-polar solvent, contacting the resulting solution with an ion exchange resin, and then distilling off the solvent from the solution. Characteristic method for producing egg yolk lecithin with reduced PE (phosphatidylethanolamine) content. 2. Egg yolk lecithin as a starting material is a crude egg yolk lecithin or its semi-fertilized egg yolk lecithin containing inorganic salts and free amino acids as main impurities, and the product obtained after solvent distillation has a reduced PE content and substantially contains the impurities. The manufacturing method according to claim 1, which is egg yolk lecithin-free. 3. The production method according to claim 1, wherein the starting material, egg yolk lecithin, contains phospholipids and neutral lipids as main components. 4. The production method according to claim 1, wherein the starting material egg yolk lecithin is high phospholipid egg yolk lecithin. 5. The production method according to any one of claims 2 to 4, wherein the ion exchange resin is used at least three times the PE content in the egg yolk lecithin raw material on a volume basis. 6. The manufacturing method according to claim 5, wherein the ion exchange resin is used in a range of 4.0 to 40 times on a volume basis. 7 the polar solvent is selected from methanol, ethanol, acetone, dichloromethane and water;
A manufacturing method according to any one of claims 1 to 6. 8 The concentration of egg yolk lecithin in the solvent is 0.5-20%
(v/v), the manufacturing method according to any one of claims 1 to 7. 9 After dissolving crude egg yolk lecithin or semi-purified egg yolk lecithin containing inorganic salts and free amino acids as main impurities in a polar solvent or a mixture of a polar solvent and a non-polar solvent, and contacting the resulting solution with an ion exchange resin. A method for producing egg yolk lecithin substantially free of impurities, which comprises distilling off the medium from this solution. 10. The production method according to claim 9, wherein the ion exchange resin is used at least 0.2 times the volume of crude egg yolk lecithin or its semi-purified egg yolk lecithin raw material. 11. The manufacturing method according to claim 10, wherein the ion exchange resin is used in a range of 0.3 to 3.0 times on a capacity basis.
JP2324287A 1986-02-10 1987-02-03 Production of egg yolk lecithin having reduced pe content and/or substantially containing no impurity Granted JPS62281884A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP87901125A EP0259495B1 (en) 1986-02-10 1987-02-06 Process for producing egg yolk lecithin containing a reduced amount of pe and/or containing substantially no impurities
DE8787901125T DE3769407D1 (en) 1986-02-10 1987-02-06 PRODUCTION OF EGG BLBLITHITH WITH A LOW CONTENT OF PHOSPHATIDYL AETHANOLAMINE AND / OR CONTAINING NO IMPURITIES.
US07/123,113 US4847015A (en) 1986-02-10 1987-02-06 Process for producing egg yolk lecithin having reduced PE content and/or containing substantially no impurities
DK198705323A DK172721B1 (en) 1986-02-10 1987-10-12 Process for making egg yolk lecithin substantially free of impurities and, if desired, with reduced phosphatidy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-27099 1986-02-10
JP2709986 1986-02-10

Publications (2)

Publication Number Publication Date
JPS62281884A JPS62281884A (en) 1987-12-07
JPH0544952B2 true JPH0544952B2 (en) 1993-07-07

Family

ID=12211635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2324287A Granted JPS62281884A (en) 1986-02-10 1987-02-03 Production of egg yolk lecithin having reduced pe content and/or substantially containing no impurity

Country Status (2)

Country Link
JP (1) JPS62281884A (en)
WO (1) WO1987004711A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021215A1 (en) * 1996-11-13 1998-05-22 Q.P. Corporation Phospholipid composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654882B2 (en) * 1991-12-31 1997-09-17 株式会社ホーネンコーポレーション Lecithin modification method and edible oil / fat composition containing the lecithin
EP2100897A1 (en) * 2008-01-30 2009-09-16 BNLfood Investments SARL Lecithin based composition and its use in food
CN109661265A (en) * 2016-08-31 2019-04-19 丘比株式会社 Yolk phospholipid composition and its manufacturing method and the fat emulsion and steatolysis preparation for using the yolk phospholipid composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2540119B1 (en) * 1983-02-01 1986-10-17 Synthelabo PHOSPHATIDE FRACTIONATION PROCESS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021215A1 (en) * 1996-11-13 1998-05-22 Q.P. Corporation Phospholipid composition

Also Published As

Publication number Publication date
WO1987004711A1 (en) 1987-08-13
JPS62281884A (en) 1987-12-07

Similar Documents

Publication Publication Date Title
EP0259495B1 (en) Process for producing egg yolk lecithin containing a reduced amount of pe and/or containing substantially no impurities
DE3047048C2 (en)
PL132453B1 (en) Process for preparing phosphatidyl choline,containing an oil and/or phosphatidyl ethanolamine in specified reduced amounts
CA2164124A1 (en) Process for obtaining highly purified phosphatidylcholine
JP3483908B2 (en) Method for producing glycerophospholipid
US5833858A (en) Method of concentration of acidic phospholipid
US5677472A (en) Method for extracting sphingomyelin
JPH06128278A (en) Phosphatidylchloline and its production
JPH0544952B2 (en)
US3544605A (en) Process for obtaining highly purified phosphatidylcholine and the product of this process
KR100450501B1 (en) Phospholipid composition
JP2005263632A (en) Method for producing composition containing high concentration of chlorogenic acid
WO1983001782A1 (en) Fat refining
EP0187931A2 (en) Process for isolating phosphatidyl choline free from accompanying phospholipids
KR830000794B1 (en) Process for preparing oil-containing high purity phosphatidylcholine
US2494726A (en) Process for treating lipoidal material
JPH0355090B2 (en)
EP0053016A2 (en) Fat refining
JP6763521B2 (en) 2-DHA-lysophosphatidylcholine-containing lipid composition and method for producing the same
JP2793317B2 (en) Method for separating phosphatidylcholine or phosphatidylethanolamine
EP0291993B1 (en) Process for concentration and separation of highly unsaturated fatty acid ester
KR100540221B1 (en) Method for Separation and Concentration and of EPA and DHA Using Silver Ion Exchanged Resin
DE3230895A1 (en) METHOD FOR PURIFYING RIBOFLAVIN 5'-MONOPHOSPHATE
JPH0597872A (en) Method for separating and purifying phosphatidylinositol
JPH0597873A (en) Method for separating, purifying and concentrating phosphatidylinositol

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term