JPH0544888A - Vacuum heat insulator for high temperature - Google Patents

Vacuum heat insulator for high temperature

Info

Publication number
JPH0544888A
JPH0544888A JP3228771A JP22877191A JPH0544888A JP H0544888 A JPH0544888 A JP H0544888A JP 3228771 A JP3228771 A JP 3228771A JP 22877191 A JP22877191 A JP 22877191A JP H0544888 A JPH0544888 A JP H0544888A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum
heat
insulating wall
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3228771A
Other languages
Japanese (ja)
Other versions
JP2768573B2 (en
Inventor
Tadao Yamaji
忠雄 山路
Hiroshi Yamazaki
洋 山崎
Shigeru Tanaka
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3228771A priority Critical patent/JP2768573B2/en
Publication of JPH0544888A publication Critical patent/JPH0544888A/en
Application granted granted Critical
Publication of JP2768573B2 publication Critical patent/JP2768573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

PURPOSE:To provide a vacuum heat insulator for high temperature which is a heat insulting wall in contact with high temperature, whose inside vacuum is maintained at high level despite the influence of such a high temperature and which is capable of high-level heat insulation and easy to be manufactured. CONSTITUTION:An inorganic fiber or inorganic powder 3 which was compressed by a pressure equivalent to the atmospheric pressure against vacuum to the thickness almost the same as heat insulating space of a heat insulating wall 1 is inserted into the heat insulating space of the insulating wall 1. And a synthetic zeolite 4 is maldistributed as a gas absorbent on the inner face on the low-temperature side of the heat insulating wall 1, and inside of the heat insulating wall is sealed to vacuum. By arranging the absorbent at a portion not affected by high temperature, the inside vacuum is maintained at high level.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は高温用真空断熱体の改
良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a vacuum heat insulator for high temperature.

【0002】[0002]

【従来の技術】従来高熱断熱を行う断熱壁の構造とし
て、内外壁よりなる断熱壁内を密閉空間とし内部に無機
質発泡粉末を高密充填しさらに真空化してなる断熱壁が
知られている(例えば特公昭60−8399号公報) 。この種
断熱壁は内部の真空化された雰囲気と高密充填された無
機質発泡粉末の断熱効果との相乗により高次の断熱効果
が得られ、例えば厚さ4〜5cm程度の厚さの壁体で常温
と 300〜400 ℃の温度差の断熱が可能とされている。
2. Description of the Related Art Conventionally, as a structure of a heat insulating wall for performing high heat insulation, there is known a heat insulating wall in which a heat insulating wall composed of an inner wall and an outer wall is a hermetically sealed space and the inside is densely filled with an inorganic foamed powder and further evacuated. Japanese Patent Publication No. 60-8399). This kind of heat insulating wall can obtain a higher heat insulating effect by the synergistic effect of the vacuum atmosphere inside and the heat insulating effect of the highly densely packed inorganic foamed powder. For example, a wall body with a thickness of about 4 to 5 cm is used. It is possible to insulate between room temperature and the temperature difference of 300-400 ℃.

【0003】[0003]

【従来技術の問題点】しかしながら、上記断熱体は、高
温側に接する面は非常な高温にさらされるのでその隣接
内面部分も同時に高熱に熱せられ、この熱に起因して内
部充填材からガスが放出されることがあり、このアウト
ガスにより真空度が低下し断熱効果が低下する問題があ
った。このようなアウトガスを吸着し内部を真空に維持
する手段として例えば特公平2-43945 号公報、あるいは
同3-32719 号公報に開示されているようにゲッター材を
断熱壁内部に封入することが提案されている。しかし、
200 ℃以上に及ぶ高温断熱を行う場合、この熱の影響に
よりゲッター材からの吸着ガスの再放出が生じ、真空度
維持の効果がさほど期待できない問題が有った。
However, since the surface contacting the high temperature side of the heat insulator is exposed to extremely high temperature, the adjacent inner surface portion is also heated to high heat at the same time, and this heat causes gas from the internal filler to be generated. There is a problem in that this outgas lowers the degree of vacuum and the heat insulating effect. As a means for adsorbing such outgas and maintaining a vacuum inside, it is proposed to enclose a getter material inside the heat insulating wall as disclosed in, for example, Japanese Patent Publication No. 2-43945 or 3-32719. Has been done. But,
In the case of performing high-temperature heat insulation at 200 ℃ or more, the effect of this heat causes the release of the adsorbed gas from the getter material, and there is a problem that the effect of maintaining the degree of vacuum cannot be expected so much.

【0004】[0004]

【発明が解決しようとする課題】この発明は上記問題点
に鑑み、高温に接する断熱壁であって内部真空度がこの
ような高温の影響にも係わらず高次の断熱が可能であり
しかも製造が容易な高温用断熱体を提供することを目的
としてなされたものである。
In view of the above problems, the present invention is a heat insulating wall which is in contact with a high temperature, and the internal vacuum degree is capable of high-order heat insulation despite the influence of such a high temperature, and is manufactured. The purpose of the present invention is to provide a high-temperature heat insulator that is easy to manufacture.

【0005】[0005]

【課題を解決するための手段】即ち、この発明の高温用
真空断熱体は、断熱壁の断熱空間にほヾ等しい厚さとな
るまで真空に対する大気圧に等しい圧力で圧縮した無機
繊維または無機粉末が、断熱壁の断熱空間内に挿入され
ていると共に、ガス吸着材が前記断熱壁の低温側内面に
偏在配置され、該断熱壁内部を真空密封してなることを
特徴とするものである。
That is, the vacuum insulator for high temperature according to the present invention comprises an inorganic fiber or an inorganic powder compressed at a pressure equal to atmospheric pressure against a vacuum until the heat insulating space of the heat insulating wall has a substantially equal thickness. It is characterized in that it is inserted into the heat insulating space of the heat insulating wall, the gas adsorbent is unevenly arranged on the inner surface of the heat insulating wall on the low temperature side, and the inside of the heat insulating wall is vacuum-sealed.

【0006】[0006]

【作用】この発明において対象となる断熱壁は表裏面が
耐熱性メンブレン、例えばステンレス鋼メンブレンとさ
れ、その間が断熱用密閉空間とされた構造をなす。そし
て、断熱のための主構成として上記断熱壁内にガラス繊
維、ロックウール等の無機繊維あるいは無機多孔質粉体
よりなる断熱材を充填すると共に内部を真空化した構成
とされるが、上記断熱材は充填に先立ち、真空と大気圧
との差にほヾ等しい圧力で圧縮硬化して凝結させたもの
が使用される。従って断熱空間へ収納した後はその圧密
力によって断熱壁が内部より補強され断熱の他、強度も
向上する。
In the present invention, the heat insulating wall to which the present invention is applied has a structure in which the front and back surfaces are heat resistant membranes, for example, stainless steel membranes, and a space between them is a heat insulating closed space. And, as a main structure for heat insulation, the inside of the heat insulating wall is filled with a heat insulating material made of inorganic fibers such as rock wool or inorganic porous powder, and the inside is evacuated. Prior to filling, the material is used by being compressed and hardened at a pressure substantially equal to the difference between vacuum and atmospheric pressure to be solidified. Therefore, after being housed in the heat insulating space, the heat insulating wall is reinforced from the inside by the consolidation force, and the heat is improved and the strength is improved.

【0007】そして、断熱壁内の低温側内面に合成ゼオ
ライト等のガス吸着材が偏在配置され、該断熱壁内部が
真空密封される。この場合、ガス吸着を行う合成ゼオラ
イトは断熱壁の低温側内面に配置されているので断熱壁
自体の断熱効果と相まって高温にさらされるのが防止さ
れ、吸着ガスの再放出は殆ど生じない。即ち、断熱壁内
部の残留ガス、あるいは高温側内面に接する補強材等か
ら放出されるアウトガスがあってもガス吸着能が維持さ
れ内部真空度の低下が防止されるのである。
Then, a gas adsorbent such as synthetic zeolite is unevenly arranged on the inner surface of the heat insulating wall on the low temperature side, and the inside of the heat insulating wall is vacuum-sealed. In this case, since the synthetic zeolite for adsorbing the gas is arranged on the inner surface of the heat insulating wall on the low temperature side, it is prevented from being exposed to high temperature in combination with the heat insulating effect of the heat insulating wall itself, and re-emission of the adsorbed gas hardly occurs. That is, even if there is residual gas inside the heat insulating wall or outgas released from the reinforcing material or the like in contact with the inner surface on the high temperature side, the gas adsorption ability is maintained and the internal vacuum degree is prevented from lowering.

【0008】[0008]

【実施例】次にこの発明の実施例を説明する。図1はこ
の発明の実施例の断面図、図2〜図4はこの発明の実施
工程を示す斜視図及び断面図である。
Embodiments of the present invention will be described below. FIG. 1 is a sectional view of an embodiment of the present invention, and FIGS. 2 to 4 are a perspective view and a sectional view showing the steps for carrying out the present invention.

【0009】実施例1 厚さ0.5 mmのステンレスメンブレンを内外壁1A、1B
とし、断熱空間の厚さを30mmとした断熱壁1を有する容
器2に、繊維径5μm 〜8μm のガラス繊維よりなる短
繊維を1kg/cm2でプレス圧縮し500mm ×500mm ×30mmに
成形した板状の圧縮成形体3を断熱壁1内に容器底面2
Aの開口部(図2)より挿入し、内部に密充填の状態と
し、次いで容器2の底面部2A(図3)に合成ゼオライ
ト4を層状に配置し容器底面部2Aを密閉し(図4)図
1に示す断熱容器2を得た。
Example 1 A stainless steel membrane having a thickness of 0.5 mm was used to form inner and outer walls 1A and 1B.
A plate formed by press-compressing short fibers made of glass fiber having a fiber diameter of 5 μm to 8 μm at 1 kg / cm 2 into a container 2 having a heat insulating wall 1 having a thickness of the heat insulating space of 30 mm and molding it into 500 mm × 500 mm × 30 mm. The compression-molded body 3 in the shape of
Inserted from the opening A (FIG. 2) to make a tightly packed state inside, and then arranging synthetic zeolite 4 in layers on the bottom 2A (FIG. 3) of the container 2 to seal the container bottom 2A (FIG. 4). ) The heat insulation container 2 shown in FIG. 1 was obtained.

【0010】実施例2 実施例1で使用したガラス繊維マットに替えて平均繊維
径5μm の無機多孔質のシリカ粉末を使用した他は実施
例1と同様に断熱壁1を有する容器2を得た。
Example 2 A container 2 having a heat insulating wall 1 was obtained in the same manner as in Example 1 except that the glass fiber mat used in Example 1 was replaced with an inorganic porous silica powder having an average fiber diameter of 5 μm. .

【0011】比較例1 実施例1におけるガラス繊維内に合成ゼオライトを均一
分散の状態として圧縮成形体3を得、これを実施例1と
同じ断熱壁1内に充填し、底面部には合成ゼオライトを
偏在させることなく内部を密閉し真空化して断熱容器を
得た。 比較例2 実施例2におけるシリカ粉末内に合成ゼオライトを均一
分散状態に混入し比較例2と同様にして断熱容器を得
た。
Comparative Example 1 A compression molded body 3 was obtained by uniformly dispersing synthetic zeolite in the glass fiber in Example 1, and the same was filled in the heat insulating wall 1 as in Example 1, and the synthetic zeolite was placed on the bottom. The inside was sealed and vacuumized without uneven distribution to obtain a heat-insulating container. Comparative Example 2 A heat-insulating container was obtained in the same manner as in Comparative Example 2 by mixing the synthetic zeolite in the silica powder in Example 2 in a uniformly dispersed state.

【0012】次に、実施例と比較例について断熱試験を
行った。試験条件は図5に示すように内部にヒータHを
挿入し、開口を断熱蓋5で閉じ内部を350 ℃まで加熱し
た。なお外部温度は20℃であった。断熱壁1内部の真空
度(Torr)を測定したところ図6の結果となった。図6よ
り明らかなように実施例では2日経過までは急激に真空
度の低下が見られたがその後は合成ゼオライトの吸着力
により真空度が当初の状態にほぼ復帰したのに対し、比
較例の場合は2日経過まで急激に真空度が低下しその後
も真空度の漸次低下が見られ真空度の回復現象は全く見
られなかった。
Next, an adiabatic test was conducted on the examples and comparative examples. As for the test conditions, as shown in FIG. 5, a heater H was inserted inside, the opening was closed with a heat insulating lid 5, and the inside was heated to 350 ° C. The external temperature was 20 ° C. When the degree of vacuum (Torr) inside the heat insulating wall 1 was measured, the results shown in FIG. 6 were obtained. As is clear from FIG. 6, in the example, the vacuum degree was drastically reduced until the lapse of 2 days, but thereafter, the vacuum degree was almost returned to the initial state due to the adsorption force of the synthetic zeolite. In the case of No. 2, the degree of vacuum sharply decreased until the lapse of 2 days, and thereafter, the degree of vacuum was gradually decreased, and no recovery phenomenon of the degree of vacuum was observed.

【0013】[0013]

【発明の効果】以上説明したように、この発明によれ
ば、ガス吸着材となる合成ゼオライトを熱の影響のない
低温側内面に偏在させたので高温に起因するガス吸着材
からのガス再放出が完全に防止され、断熱壁内部の真空
度の低下が効率良く防止され、長期にわたり安定した断
熱効果が維持されるのである。
As described above, according to the present invention, since the synthetic zeolite serving as the gas adsorbent is unevenly distributed on the inner surface of the low temperature side which is not affected by heat, the gas re-release from the gas adsorbent due to the high temperature is released. Is completely prevented, a decrease in the degree of vacuum inside the heat insulating wall is efficiently prevented, and a stable heat insulating effect is maintained for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例の高温用真空断熱体の断面図
である。
FIG. 1 is a cross-sectional view of a high temperature vacuum heat insulator according to an embodiment of the present invention.

【図2】この発明の実施例の高温用真空断熱体の製造工
程を示す断面図である。
FIG. 2 is a cross-sectional view showing a manufacturing process of a high temperature vacuum heat insulator according to an embodiment of the present invention.

【図3】この発明の実施例の高温用真空断熱体の製造工
程を示す断面図である。
FIG. 3 is a cross-sectional view showing the manufacturing process of the high-temperature vacuum heat insulator of the embodiment of the present invention.

【図4】この発明の実施例の高温用真空断熱体の製造工
程を示す断面図である。
FIG. 4 is a cross-sectional view showing the manufacturing process of the high-temperature vacuum heat insulator of the embodiment of the present invention.

【図5】実施例の試験条件の説明図である。FIG. 5 is an explanatory diagram of test conditions of an example.

【図6】実施例及び比較例の試験結果を示すグラフであ
る。
FIG. 6 is a graph showing test results of examples and comparative examples.

【符号の説明】[Explanation of symbols]

1 断熱壁 2 容器 2A 開口部 2B 底面部 3 圧縮成形体 4 合成ゼオライト 1 Insulation Wall 2 Container 2A Opening 2B Bottom Part 3 Compression Molded Body 4 Synthetic Zeolite

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 断熱壁の断熱空間にほヾ等しい厚さとな
るまで真空に対する大気圧に等しい圧力で圧縮した無機
繊維または無機粉末が、断熱壁の断熱空間内に挿入され
ていると共に、ガス吸着材が前記断熱壁の低温側内面に
偏在配置され、該断熱壁内部を真空密封してなることを
特徴とする高温用真空断熱体。
1. An inorganic fiber or an inorganic powder compressed at a pressure equal to atmospheric pressure against a vacuum until the thickness of the heat insulating wall is approximately equal to the thickness of the heat insulating wall is inserted into the heat insulating space of the heat insulating wall, and at the same time, gas adsorption is performed. A high-temperature vacuum heat insulator, characterized in that the material is unevenly arranged on the inner surface of the heat insulation wall on the low temperature side, and the inside of the heat insulation wall is vacuum-sealed.
JP3228771A 1991-08-13 1991-08-13 Vacuum insulation for high temperature Expired - Lifetime JP2768573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3228771A JP2768573B2 (en) 1991-08-13 1991-08-13 Vacuum insulation for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3228771A JP2768573B2 (en) 1991-08-13 1991-08-13 Vacuum insulation for high temperature

Publications (2)

Publication Number Publication Date
JPH0544888A true JPH0544888A (en) 1993-02-23
JP2768573B2 JP2768573B2 (en) 1998-06-25

Family

ID=16881586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3228771A Expired - Lifetime JP2768573B2 (en) 1991-08-13 1991-08-13 Vacuum insulation for high temperature

Country Status (1)

Country Link
JP (1) JP2768573B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277631A (en) * 2013-05-31 2013-09-04 重庆再升科技股份有限公司 Glass-fiber vacuum insulation panel nano core material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110437A (en) * 1980-12-29 1982-07-09 Nippon Oxygen Co Ltd Vacuum heat insulating structure
JPS608399A (en) * 1983-06-29 1985-01-17 ライオン株式会社 Additive for granular detergent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110437A (en) * 1980-12-29 1982-07-09 Nippon Oxygen Co Ltd Vacuum heat insulating structure
JPS608399A (en) * 1983-06-29 1985-01-17 ライオン株式会社 Additive for granular detergent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277631A (en) * 2013-05-31 2013-09-04 重庆再升科技股份有限公司 Glass-fiber vacuum insulation panel nano core material and preparation method thereof

Also Published As

Publication number Publication date
JP2768573B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
KR100210110B1 (en) Device for maintaining vacuum in thermally insulating jackets and process for manufacturing such a device
US3167159A (en) Insulating structures with variable thermal conductivity and method of evacuation
JP3212309B2 (en) High insulation panel
KR101015356B1 (en) Method for the production of a vacuum insulation element wrapped in a film, filled with powder
EP0181778A2 (en) Evacuated heat insulation unit and method of manufacturing same
JPH06159922A (en) Heat-insulating case and manufacture thereof
EP0205617B1 (en) Vacuum insulation system and method of manufacture
US8590243B2 (en) Thermally insulated building brick
JPH0544888A (en) Vacuum heat insulator for high temperature
CN203525724U (en) Composite getter for vacuum insulation plate
JPS59225275A (en) Vacuum heat-insulating material
JPH04194498A (en) Clearance filling expansion heat insulating material and mounting method thereof
JPH09210290A (en) Method and device for manufacturing evacuated insulator
JP2001108186A (en) Vacuum heat insulating body
JPH06159915A (en) Heat insulating door
JPH0684798B2 (en) Method for accommodating adsorbent in the insulating space of a vacuum-insulated double-walled container for storing low-boiling liquefied gas and vacuum-insulated double-walled container
JPH0587292A (en) Manufacture of vacuum heat insulating wall
US3245195A (en) Method of producing heat insulating panels
JPH0544887A (en) Absorbent storing structure for vacuum heat insulator
JPS6356858B2 (en)
JPS596795B2 (en) Support material for vacuum insulated containers
JP2914415B2 (en) Manufacturing method of vacuum insulation wall
JPH04351396A (en) Manufacture of vacuum heat insulating wall
JPH04224397A (en) Manufacture of powder vacuum heat insulating body
JPS63190999A (en) Heat-insulating panel including heat-insulating powder and heat-insulating gas