JPH0544770Y2 - - Google Patents

Info

Publication number
JPH0544770Y2
JPH0544770Y2 JP6057388U JP6057388U JPH0544770Y2 JP H0544770 Y2 JPH0544770 Y2 JP H0544770Y2 JP 6057388 U JP6057388 U JP 6057388U JP 6057388 U JP6057388 U JP 6057388U JP H0544770 Y2 JPH0544770 Y2 JP H0544770Y2
Authority
JP
Japan
Prior art keywords
liner
sliding surface
wear
inner end
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6057388U
Other languages
Japanese (ja)
Other versions
JPH01163849U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6057388U priority Critical patent/JPH0544770Y2/ja
Publication of JPH01163849U publication Critical patent/JPH01163849U/ja
Application granted granted Critical
Publication of JPH0544770Y2 publication Critical patent/JPH0544770Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Of Engines (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、デイーゼル機関などにおけるシリン
ダライナの摩耗診断装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a cylinder liner wear diagnostic device for diesel engines and the like.

(従来の技術) デイーゼル機関について従来例を説明すると、
第14図に示すようにシリンダa、ピストンリン
グf付きピストンb、シリンダカバーc、排気弁
d、燃料弁e等が具備し、ピストンbが上死点付
近になると燃料が燃焼弁eから燃焼室g内へ噴射
されて燃焼し、そのエネルギーによる圧力上昇に
よりピストンbが図示下方へ押し下げられてクラ
ンク軸(図示省略)を回転し出力するとともに、
慣性力でピストンが上方へ戻る往復動となりその
繰り返しによつて作動し、ピストンの往復動によ
つて各ピストンリングfがシリンダaライナと摺
動し摩耗が生じる構造になつている。
(Prior art) To explain a conventional example of a diesel engine,
As shown in Fig. 14, it is equipped with a cylinder a, a piston b with a piston ring f, a cylinder cover c, an exhaust valve d, a fuel valve e, etc. When the piston b reaches near the top dead center, fuel flows from the combustion valve e into the combustion chamber. The piston b is injected into the interior of g and combusted, and the pressure rise due to the energy pushes the piston b downward in the figure, rotating the crankshaft (not shown) and producing output.
The structure is such that the piston moves back upwards due to inertia and operates by repeating the movement, and each piston ring f slides on the cylinder A-liner due to the reciprocating movement of the piston, causing wear.

(考案が解決しようとする課題) 従来の前記デイーゼル機関(エンジン)は、ピ
ストンリングとシリンダの相対摺動によつて摩耗
が生じ、不完全な潤滑、金属接触、材質選択の不
適当、腐食、塵等によつて異常摩耗を引き起す場
合があり、該異常摩耗は急激に発生し勝ちであつ
て常にチエツクしなければ予測できず、出力低
下、リング折損、ライナ焼付きなどの事故を惹起
し、リングやライナの交換が面倒になり経済的な
損失が大きくなる。
(Problems to be solved by the invention) In the conventional diesel engine, wear occurs due to relative sliding between the piston ring and the cylinder, incomplete lubrication, metal contact, inappropriate material selection, corrosion, Abnormal wear may be caused by dust, etc., and this abnormal wear tends to occur rapidly and cannot be predicted without constant checking, leading to accidents such as reduced output, ring breakage, and liner seizure. , replacing rings and liners becomes troublesome, resulting in large economic losses.

従来の前記チエツクは、例えば船舶では入渠中
にシリンダライナの内径を計測したり、シリンダ
のライナ摺動面に傷を付けておきその深さの変化
を見たり、潤滑油のPH値を測るなどの方法によつ
ていたが、チエツク間隔が長過ぎて異常摩耗に対
処できないのが実状である。
Conventional checks include, for example, measuring the inner diameter of a cylinder liner while a ship is in dock, making scratches on the sliding surface of the cylinder liner and observing changes in its depth, and measuring the pH value of lubricating oil. However, the actual situation is that the check interval is too long, making it impossible to deal with abnormal wear.

本考案は、前記のような実状に鑑みて開発され
たものであつて、その目的とする処は、運転中に
シリンダライナの摩耗状態を常時に自動検知可能
とし、シリンダライナの摩耗検出性能、信頼性を
向上したシリンダライナの摩耗診断装置を提供す
るにある。
The present invention was developed in view of the above-mentioned circumstances, and its purpose is to automatically detect the wear state of the cylinder liner at all times during operation, and to improve the wear detection performance of the cylinder liner. An object of the present invention is to provide a cylinder liner wear diagnostic device with improved reliability.

(課題を解決するための手段) 本考案は、シリンダ側面の貫通孔にライナ摩耗
検出センサを嵌着し、該検出センサはさや管内に
接着剤で束ねられ相互間隔をおいて配設された複
数の測定素子を有し、略各測定素子内端側の各検
出接点部をライナ摺動面に対し順次に凹ませて異
なる距離に配置するとともに、前記さや管の内端
部にライナ摺動面と面一の埋設層を設けた構成に
特徴を有し、また、前記構成においてライナ摩耗
検出センサは固定棒間の配線基板に相互間隔をお
き平行に配設されて絶縁された電気導線からなる
複数の測定素子を有し、該各測定素子内端部の各
検出接点部をライナ摺動面に対して順次に凹ませ
て異なる距離に配置するとともに、前記配線基板
の内端部をライナ摺動面に対し面一に設けた構成
に特徴を有し、ライナ摺動面の摩耗進行に伴つて
各測定素子の各検出接点が順次に断線されるよう
にして、各測定素子の断線進行に伴つてライナ摩
耗量を常時に把握し、寿命予測を可能にしてい
る。
(Means for Solving the Problems) The present invention has a liner wear detection sensor fitted into a through hole on the side of the cylinder, and a plurality of liner wear detection sensors bundled with adhesive in a sheath pipe and arranged at intervals. The detection contacts on the inner end of each measuring element are sequentially recessed and arranged at different distances from the liner sliding surface, and the liner sliding surface is arranged at the inner end of the sheath tube. The liner wear detection sensor is characterized by a structure in which a buried layer is flush with the fixed rod, and in the structure, the liner wear detection sensor is made of insulated electrical conductors arranged parallel to each other at a distance from each other on the wiring board between the fixed rods. It has a plurality of measuring elements, each detection contact portion at the inner end of each measuring element is sequentially recessed and arranged at different distances from the liner sliding surface, and the inner end of the wiring board is arranged at different distances from the liner sliding surface. It is characterized by a configuration in which it is installed flush with the sliding surface of the liner, so that each detection contact of each measuring element is sequentially disconnected as the wear of the liner sliding surface progresses. This makes it possible to constantly monitor the amount of liner wear and predict its service life.

(作用) ライナ摺動面の摩耗によつて埋設層あるいは配
線基板の内端部が同様に摩耗し、摩耗の進行に伴
つて各測定素子の各検出接点部が順次に断線し、
該断線の進行によつてライナ摩耗量が常時に検知
されるとともに、寿命予測が可能となり、優れた
摩耗検知性能を有し信頼性が得られ、ライナの補
修等が適時に行われ事故発生が防止される。
(Function) Due to the wear of the liner sliding surface, the buried layer or the inner end of the wiring board is also worn, and as the wear progresses, the detection contacts of each measuring element are sequentially disconnected.
As the liner wear progresses, the amount of liner wear can be constantly detected, making it possible to predict the lifespan, providing excellent wear detection performance and reliability, and allowing liner repairs to be carried out in a timely manner to prevent accidents from occurring. Prevented.

さや管内に接触剤で束ねられ相互間隔をおいて
配設された測定素子と固定棒間の配線基板に相互
間隔をおき平行に配設されて絶縁された電気導線
からなる測定素子は、いずれでも同様に前記作用
が得られ、さや管内の内端部にライナ摺動面と面
一に設けた埋込層とライナ摺動面に面一にした配
線基板の内端部は、同様な作用となる。
A measuring element consisting of a measuring element bundled with a contact agent and spaced apart from each other in a sheath tube and an insulated electrical conductor wire spaced apart from each other and parallel to a wiring board between a fixed rod, Similarly, the above effect can be obtained, and the buried layer provided flush with the liner sliding surface at the inner end of the sheath pipe and the inner end of the wiring board flush with the liner sliding surface have the same effect. Become.

(実施例) 第1図ないし第5図に本考案の第1実施例を示
し、図中1はシリンダ、2は複数のピストンリン
グ4が装着されているピストン、3はシリンダラ
イナ1の上部に配設されて燃焼室7の上部を形成
したシリンダカバー、5は排気弁、6は燃焼弁で
あつて、シリンダ1側面の貫通孔9にライナ摩耗
検出センサ10を嵌着し、該検出センサ10はさ
や管11内に接触剤12で束ねられ相互間隔をお
いて平行に配設された複数の測定素子15を有
し、各測定素子15内端側の各検出接点部19を
ライナ摺動面1aに対し順次に凹ませて異なる距
離に配置するとともに、さや管11の内端部にラ
イナ摺動面1aと面一の埋設層13を設けたシリ
ンダライナの摩耗診断装置になつている。
(Embodiment) A first embodiment of the present invention is shown in FIGS. 1 to 5, in which 1 is a cylinder, 2 is a piston on which a plurality of piston rings 4 are attached, and 3 is an upper part of a cylinder liner 1. A cylinder cover is arranged to form the upper part of the combustion chamber 7, 5 is an exhaust valve, 6 is a combustion valve, and a liner wear detection sensor 10 is fitted into a through hole 9 on the side surface of the cylinder 1. The sheath tube 11 has a plurality of measurement elements 15 bundled with a contact agent 12 and arranged in parallel at intervals, and each detection contact portion 19 on the inner end side of each measurement element 15 is connected to the liner sliding surface. This is a cylinder liner wear diagnostic device in which a buried layer 13 is provided at the inner end of the sheath tube 11 flush with the liner sliding surface 1a and is sequentially recessed and arranged at different distances from the tube 1a.

前記ライナ摩耗センサ10は、第1図のように
シリンダ1側面の貫通孔9内に配設されてコード
18cでアンプ(第5図参照)に接続され、シリ
ンダ1の適所に設けた貫通孔9ごとに配設され
て、その構成は、第2図のようにさや管11内に
接続剤12を介し束ねられて平行に配設され、相
互に間隔をおいた複数の測定素子15を有し、各
測定素子15内端側の各検出接点19部をライナ
摺動面1aに対し順次に凹ませて異なる距離に配
設し、第3図のように各測定素子15の各検出接
点部19は、aがライナ摺動面1aに最も近く、
b,c……の順序で凹ませて遠くした配置とし、
さや管11の内端部にライナ摺動面1aに対し同
一の埋設層13が設けられ、さらに、前記各測定
素子15は、シース16(鉄、ステンレス、銅
等)内に絶縁粉末17(マグネシウム、銅等)を
介して配設された電気導線18a,18b(同一
または異種の金属)を有し、電気導線18a,1
8bの内端部に検出接点19を設け、コード18
cを介してアンプに接続されている。図中17a
は固着剤である。
The liner wear sensor 10 is disposed in a through hole 9 on the side surface of the cylinder 1 as shown in FIG. 1, and connected to an amplifier (see FIG. 5) with a cord 18c. As shown in FIG. 2, the structure includes a plurality of measuring elements 15, which are bundled and arranged in parallel in a sheath tube 11 via a connecting agent 12, and spaced apart from each other. , each detection contact 19 on the inner end side of each measurement element 15 is sequentially recessed with respect to the liner sliding surface 1a and arranged at different distances, and each detection contact 19 of each measurement element 15 is arranged at different distances as shown in FIG. , a is closest to the liner sliding surface 1a,
The arrangement is concave and distant in the order of b, c...
A buried layer 13 identical to the liner sliding surface 1a is provided at the inner end of the sheath tube 11, and each measuring element 15 is provided with an insulating powder 17 (magnesium) in a sheath 16 (iron, stainless steel, copper, etc.). The electric conductors 18a, 18b (made of the same or different metals) are disposed through the conductors 18a, 18b (same or different metals), and the electric conductors 18a, 1
A detection contact 19 is provided at the inner end of the cord 18b.
It is connected to the amplifier via c. 17a in the figure
is a fixing agent.

前記接続剤12は、固着剤でもよく各測定素子
15を相互間隔をおき平行に固定し、前記埋設層
13は、接続剤12と同様に形成され各測定素子
15の各検出接点19部を固定している。
The connecting agent 12 may be a bonding agent and fixes the measuring elements 15 in parallel with each other at intervals, and the buried layer 13 is formed in the same manner as the connecting agent 12 and fixes each detection contact 19 of each measuring element 15. are doing.

さらに、前記各測定素子15の各コード18c
には、第5図のように電源およびアンプ110、
A/D変換器(またはデイジイタルI/Φポー
ト)111、計算機112および表示装置113
のシステムが連設されている。
Furthermore, each code 18c of each measuring element 15
includes a power supply and amplifier 110, as shown in FIG.
A/D converter (or digital I/Φ port) 111, computer 112, and display device 113
systems are installed in series.

本考案の第1実施例は、前記のような構成にな
つており作用について詳述すると、シリンダ1の
ライナ摺動面1aが摩耗すると、埋設層13が同
様に摩耗して各ライナ摩耗検出センサ10の内端
部が摩耗される。
The first embodiment of the present invention has the above-mentioned configuration, and its operation will be explained in detail.When the liner sliding surface 1a of the cylinder 1 wears, the buried layer 13 wears out in the same way, and each liner wear detection sensor The inner end of 10 is worn.

埋設層13の摩耗進行に伴つて各測定素子15
の各検出接点19が順次に断線し、第3図に示す
aが当初に断線して、摩耗が進みaからΔxだけ
凹ませた距離に配設されたbが断線され順次に
c,dと断線が進行する。第6図に示すように各
測定素子15の各検出接点19までの距離をxa
xb,xc……としそれに対応した断線時間をta,tb
tcにとると、例えばxeが最も新しい断線箇所とす
れば、シリンダライナ1の摩耗値はxeであつて、
xpがシリンダライナの寿命とされる摩耗値とする
と、余寿命はtp−te(te−td)(xp−xe)/(xe
−xd)により予測される。
As the buried layer 13 wears down, each measuring element 15
Each of the detection contacts 19 in FIG. Disconnection progresses. As shown in FIG. 6, the distance from each measuring element 15 to each detection contact 19 is x a ,
x b , x c ..., and the corresponding disconnection times t a , t b ,
Taking t c , for example, if x e is the most recent disconnection point, the wear value of cylinder liner 1 is x e ,
If x p is the wear value that is considered to be the life of the cylinder liner, the remaining life is t p −t e (t e −t d ) (x p −x e )/(x e
−x d ).

シリンダ1のライナ摩耗値や余寿命値の把握手
段としては、第5図のようなシステムで実施さ
れ、シリンダ1の貫通孔9内に嵌着したライナ摩
耗検出センサ10の各測定素子15が断線してい
るか否かをアンプ110で0〜5Vの電圧に変え、
断線しておれば0V、断線していない場合は5Vの
信号とし、0〜5Vの前記信号がA/D変換器
(またはデイジタルI/Φポート)111に入力
されてON−OFF信号に変換されて計算器112
に入力され、計算器112は、断線距離と断線時
間を記憶し、前記ON−OFF信号の入力に基づき
ライナ摩耗値や余寿命を計算して、その結果が表
示装置113に表示され、オペレータは、運転中
に前記表示によりシリンダ1のライナ摩耗の進行
状態を時々刻々に把握でき、寿命の予測が可能で
あつて寿命までの時間的余裕が生じ、例えば、航
海に際し次の入港で物の手配や修理の準備がで
き、入渠時に速やかに修理できて事故発生が防止
される。
As a means of grasping the liner wear value and remaining life value of the cylinder 1, a system as shown in FIG. Change the voltage from 0 to 5V with amplifier 110 to determine whether
If the wire is broken, the signal is 0V, and if there is no wire breakage, the signal is 5V.The signal of 0 to 5V is input to the A/D converter (or digital I/Φ port) 111 and converted to an ON-OFF signal. Calculator 112
The calculator 112 stores the disconnection distance and disconnection time, calculates the liner wear value and remaining life based on the input of the ON-OFF signal, and displays the results on the display device 113, allowing the operator to During operation, the progress of liner wear in cylinder 1 can be grasped from moment to moment by the above display, and the life expectancy can be predicted, giving more time until the end of life. Preparation for repairs can be made quickly, and repairs can be made quickly upon docking, preventing accidents from occurring.

(他の実施例) 第7図ないし第9図に本考案の第2実施例を示
し、第1実施例に比べるとライナ摩耗検出センサ
に特徴を有し、断面半円状の固定棒21,21間
に配線基板22を挟着して接続剤で一体に固着
し、配線基板22にはプリント配線またはエツジ
ング配線で、あるいは細い線を平行に相互間隔を
おき配線して複数本の電気導線を設け、該電気導
線によつて複数の測定素子25とし、各測定素子
25の各端折曲部の各検出接点29部をライナ摺
動面1aに対し順次に凹ませて異なる距離に配設
するとともに、配線基板22の内端部23をライ
ナ摺動面1aに対し面一に設けたライナ摩耗検出
センサ20になつており、該ライナ摩耗検出セン
サ20は、第1実施例と同様にシリンダ1の貫通
孔9内に嵌着され、各測定素子25は端子26、
コード18cに介して第5図に示すシステムのア
ンプ110に接続され、シリンダ1のライナ摩耗
に伴つて配線基板22の内端部23が同様に摩耗
されて、各測定素子25の各検出接点29部が順
次に断線されて、第5図に示すシステムにより第
1実施例と同様にライナ摩耗値を時々刻々検知で
き、ライナ寿命の予測ができる。
(Other Embodiments) FIGS. 7 to 9 show a second embodiment of the present invention, which has a feature in the liner wear detection sensor compared to the first embodiment, and a fixing rod 21 having a semicircular cross section, A wiring board 22 is sandwiched between the wiring boards 21 and fixed together with a connecting agent, and a plurality of electrical conductors are connected to the wiring board 22 by printed wiring, etching wiring, or by wiring thin wires in parallel at intervals. A plurality of measuring elements 25 are formed by the electric conductor, and each detection contact 29 at each bent end of each measuring element 25 is sequentially recessed with respect to the liner sliding surface 1a and arranged at different distances. In addition, the liner wear detection sensor 20 has the inner end 23 of the wiring board 22 flush with the liner sliding surface 1a. Each measuring element 25 is fitted into the through hole 9 of the terminal 26,
It is connected to the amplifier 110 of the system shown in FIG. The liner wear values can be detected moment by moment by the system shown in FIG. 5 in the same manner as in the first embodiment, and the liner life can be predicted.

第10図ないし第12図に第2実施例の変形例
を示し、第2実施例に比べると各測定素子25′
の各配線を配線基板22の一面側に設けた構成に
特徴を有し、その他の構成は第2実施例と同様に
なつており同様な作用効果が得られる。
FIGS. 10 to 12 show modified examples of the second embodiment, and compared to the second embodiment, each measuring element 25'
This embodiment is characterized by the configuration in which each wiring is provided on one side of the wiring board 22, and the other configurations are the same as in the second embodiment, and the same effects can be obtained.

(考案の効果) 本考案は、前記のような構成になつており、ラ
イナ摺動面の摩耗とともに埋設層あるいは配線基
板の内端部が同様に摩耗し、各測定素子の各検出
接点部が摩耗進行に伴つて順次に断線されて、該
断線の経過によつてライナ摩耗量が常時に把握さ
れるとともに寿命予測が可能となり、摩耗検知性
能、信頼性が著しく向上され、事故が未然に防止
される。
(Effects of the invention) The present invention has the above-mentioned structure, and as the liner sliding surface wears out, the buried layer or the inner end of the wiring board also wears out, and each detection contact part of each measuring element wears out. Lines are broken one after another as wear progresses, and the amount of liner wear can be constantly monitored based on the progress of these breaks, making it possible to predict lifespan, significantly improving wear detection performance and reliability, and preventing accidents. be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の各実施例におけるライナ摩耗
検出センサの配置を示すエンジンの要部縦断面
図、第2図は本考案の第1実施例を示すセンサ配
置部分の拡大縦断面図、第3図は第2図の−
視図、第4図は第2図の各測定素子の拡大縦断面
図、第5図は各実施例のライナ摩耗状態とライナ
寿命の検知システム機構図、第6図は第1実施例
の断線特性図、第7図は第2実施例を示すライナ
摩耗検出センサの縦断機構図、第8図は第7図の
−視図、第9図は第7図の−視図、第1
0図は第2実施例の変形例を示す縦断機構図、第
11図は第10図のXI−XI視図、第12図は第1
0図のXI−XI視図、第13図は第2実施例と変形
例の断線特性図、第14図はエンジン(内燃機
関)の要部縦断面図である。 1……シリンダ、1a……ライナ摺動面、9…
…貫通孔、10,20……ライナ摩耗検出セン
サ、11……さや管、12……接続剤、13……
埋設層、15,25……測定素子、19,29…
…検出接点、21……固定棒、22……配線基
板、23……(内端部)配線基板。
FIG. 1 is a longitudinal cross-sectional view of a main part of an engine showing the arrangement of liner wear detection sensors in each embodiment of the present invention, and FIG. 2 is an enlarged longitudinal cross-sectional view of the sensor arrangement part showing the first embodiment of the present invention. Figure 3 is the − of Figure 2.
Fig. 4 is an enlarged vertical sectional view of each measuring element in Fig. 2, Fig. 5 is a mechanical diagram of the liner wear state and liner life detection system of each embodiment, and Fig. 6 is a disconnection of the first embodiment. Characteristic diagram, FIG. 7 is a vertical sectional mechanical diagram of the liner wear detection sensor showing the second embodiment, FIG. 8 is a - view of FIG. 7, FIG. 9 is a - view of FIG.
Figure 0 is a longitudinal mechanical diagram showing a modification of the second embodiment, Figure 11 is a view taken along line XI-XI in Figure 10, and Figure 12 is a view of the first
0, FIG. 13 is a disconnection characteristic diagram of the second embodiment and a modified example, and FIG. 14 is a vertical sectional view of the main part of the engine (internal combustion engine). 1... Cylinder, 1a... Liner sliding surface, 9...
...Through hole, 10, 20... Liner wear detection sensor, 11... Sheath pipe, 12... Connection agent, 13...
Buried layer, 15, 25...Measuring element, 19, 29...
...detection contact, 21...fixing rod, 22...wiring board, 23...(inner end) wiring board.

Claims (1)

【実用新案登録請求の範囲】 1 シリンダ側面の貫通孔にライナ摩耗検出セン
サを嵌着し、該検出センサはさや管内に接着剤
で束ねられ相互間隔をおいて配設された複数の
測定素子を有し、該各測定素子内端側の各検出
接点部をライナ摺動面に対し順次に凹ませて異
なる距離に配置するとともに、前記さや管の内
端部にライナ摺動面と面一の埋設層を設けたこ
とを特徴とするシリンダライナの摩耗診断装
置。 2 ライナ摩耗検出センサは固定棒間の配線基板
に相互間隔をおき平行に配設されて絶縁された
電気導線からなる複数の測定素子を有し、該各
測定素子内端部の各検出接点部をライナ摺動面
に対し順次に凹ませて異なる距離に配置すると
ともに、前記配線基板の内端部をライナ摺動面
に対し面一に設けたことを特徴とする請求項1
記載のシリンダライナの摩耗診断装置。
[Claims for Utility Model Registration] 1. A liner wear detection sensor is fitted into a through hole on the side of the cylinder, and the detection sensor includes a plurality of measurement elements bound together with adhesive and spaced apart in a sheath tube. The detection contacts on the inner end side of each measuring element are sequentially recessed and arranged at different distances from the liner sliding surface, and the inner end of the sheath tube is flush with the liner sliding surface. A cylinder liner wear diagnostic device characterized by providing a buried layer. 2. The liner wear detection sensor has a plurality of measuring elements made of insulated electrical conductors arranged parallel to each other at intervals on a wiring board between fixed rods, and each detection contact portion at the inner end of each measuring element. Claim 1, wherein the wiring boards are sequentially recessed and arranged at different distances from the liner sliding surface, and the inner end of the wiring board is provided flush with the liner sliding surface.
The described cylinder liner wear diagnostic device.
JP6057388U 1988-05-10 1988-05-10 Expired - Lifetime JPH0544770Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6057388U JPH0544770Y2 (en) 1988-05-10 1988-05-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6057388U JPH0544770Y2 (en) 1988-05-10 1988-05-10

Publications (2)

Publication Number Publication Date
JPH01163849U JPH01163849U (en) 1989-11-15
JPH0544770Y2 true JPH0544770Y2 (en) 1993-11-15

Family

ID=31286280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6057388U Expired - Lifetime JPH0544770Y2 (en) 1988-05-10 1988-05-10

Country Status (1)

Country Link
JP (1) JPH0544770Y2 (en)

Also Published As

Publication number Publication date
JPH01163849U (en) 1989-11-15

Similar Documents

Publication Publication Date Title
US6771074B2 (en) Probe assembly for a fluid condition monitor and method of making same
AU2003205940A1 (en) Probe assembly for a fluid condition monitor and method of making
JP2002541472A (en) Devices and systems for monitoring the temperature of inaccessible or moving parts
KR101106058B1 (en) Scuffing detection
US7111505B2 (en) Multi-layer steel cylinder head gasket with integrated pressure sensor
US6739183B1 (en) Multiple-layer cylinder head gasket with integral pressure sensor apparatus for measuring pressures within engine cylinders
JPH0544770Y2 (en)
US7363905B2 (en) Procedure to operate a combustion engine in the event of damage and a device to perform the procedure
EP1255107A2 (en) Oil level and condition sensor
US4162929A (en) Engine manifold temperature sensing device
JP3540020B2 (en) Apparatus for measuring pressure in cylinder of piston reciprocating engine and diesel engine having the apparatus
JP2008128190A (en) Piston device
JP4261776B2 (en) Reciprocating piston device, in particular sliding bearing monitoring method and device for internal combustion engine
JPS639811A (en) Measuring instrument for wear quantity of cylinder liner
KR20000057029A (en) Method and arrangement for the determination of the state of a counter-running partner in the cylinder of an internal combustion engine
KR20130094204A (en) Arrangement for detecting axial movement of a shaft
KR101214432B1 (en) scuffing detection
JPH0681623A (en) Cylinder lubricating system
JPH06159508A (en) Abnormal abrasion detection device for piston ring
CN210265514U (en) Large-scale bearing bush of integrated pressure sensor
Iijima et al. An experimental study on phenomena of piston ring collapse
JPH0631406Y2 (en) Piston ring abnormal wear diagnostic device
Iida et al. Contact-point method for measuring sliding face temperature and its applications
JP2631405B2 (en) Equipment for engine cooling water and lubricating oil
JPH0742521A (en) Cylinder oiling device