JPH0544682Y2 - - Google Patents

Info

Publication number
JPH0544682Y2
JPH0544682Y2 JP9099588U JP9099588U JPH0544682Y2 JP H0544682 Y2 JPH0544682 Y2 JP H0544682Y2 JP 9099588 U JP9099588 U JP 9099588U JP 9099588 U JP9099588 U JP 9099588U JP H0544682 Y2 JPH0544682 Y2 JP H0544682Y2
Authority
JP
Japan
Prior art keywords
gas
container
raw material
heat exchange
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9099588U
Other languages
Japanese (ja)
Other versions
JPH0213958U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9099588U priority Critical patent/JPH0544682Y2/ja
Publication of JPH0213958U publication Critical patent/JPH0213958U/ja
Application granted granted Critical
Publication of JPH0544682Y2 publication Critical patent/JPH0544682Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は微小氷粒製造装置に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for producing microscopic ice particles.

[従来の技術] 従来の微粒子状凍結物製造装置として、例えば
特公昭58−17392号に開示されている。この装置
は、断熱材で覆われた上端部が円錐形状をなす凍
結室の上部に被凍結原料を噴射する原料噴霧ノズ
ルを配設すると共に、原料噴霧ノズルを囲繞する
ように冷媒排出管を接続し、原料噴霧ノズルの下
方近傍に環状の冷媒供給ノズルを凍結室内壁面に
沿わせて配設し、凍結室底部にスクレーパを配置
すると共に凍結粒取出口を設けている。
[Prior Art] A conventional apparatus for producing frozen particulate matter is disclosed, for example, in Japanese Patent Publication No. 17392/1983. This device has a raw material spray nozzle that sprays the raw material to be frozen at the top of a freezing chamber whose upper end is covered with a heat insulating material and has a conical shape, and a refrigerant discharge pipe is connected to surround the raw material spray nozzle. An annular refrigerant supply nozzle is disposed near the bottom of the raw material spray nozzle along the wall surface of the freezing chamber, a scraper is disposed at the bottom of the freezing chamber, and a frozen particle outlet is provided.

そして、冷媒供給ノズルから容器内方に向けて
液体窒素等の冷媒を噴出すると共に原料噴霧ノズ
ルから液状原料を下向きに噴霧すると、原料の噴
霧微粒子が自然落下途中で噴出冷媒及びその蒸発
ガスと自由自在に熱交換され凍結する。
Then, when a refrigerant such as liquid nitrogen is ejected from the refrigerant supply nozzle toward the inside of the container and the liquid raw material is sprayed downward from the raw material spray nozzle, the sprayed fine particles of the raw material are free to form the spouted refrigerant and its evaporated gas while falling naturally. Freely exchanges heat and freezes.

この凍結粒は凍結室底部に堆積し、スクレーパ
により凍結粒取出口から室外に回収される。一方
冷媒ガスは冷媒排出管から室外に排出される。
The frozen particles are deposited at the bottom of the freezing chamber and are collected outside the room through the frozen particle outlet by a scraper. On the other hand, the refrigerant gas is discharged outside from the refrigerant discharge pipe.

[考案が解決しようとする課題] ところが、このような従来の装置では被凍結原
料が原料噴霧ノズルから噴霧された段階で凍結室
の保冷と凍結室の上端の円錐形状の壁面に微小氷
粒が付着して取外しが困難になるのを防ぐ意味
で、凍結室内に冷媒ガスによる渦流を発生させる
必要があり、液化冷媒ガスの供給が不可欠であつ
た。
[Problems to be solved by the invention] However, with such conventional equipment, when the raw material to be frozen is sprayed from the raw material spray nozzle, it is difficult to keep the freezing chamber cold and to prevent microscopic ice particles from forming on the conical wall at the upper end of the freezing chamber. In order to prevent adhesion and difficulty in removal, it was necessary to generate a vortex flow of refrigerant gas within the freezing chamber, and it was essential to supply liquefied refrigerant gas.

又、大容量の液化ガスが必要であり、この為容
量が大きな液化ガスタンクが必要であり、この液
化ガスタンクより冷媒ガスを取り出し凍結室の温
度を一定に保つためには自動バルブとこれを制御
する温度調節器および電源等が必要で、装置その
ものが大きくなり、又大容量の液化ガスタンクが
必要であり、研究室、開発室、テスト室等のバイ
オ関連の研究で使用される事が大きく、運搬、持
込等に制約があり、不便であつた。
In addition, a large capacity of liquefied gas is required, and therefore a large capacity liquefied gas tank is required.In order to extract the refrigerant gas from this liquefied gas tank and keep the temperature of the freezing chamber constant, an automatic valve and this control are required. A temperature controller, power supply, etc. are required, making the device itself large and requiring a large-capacity liquefied gas tank.It is mainly used in bio-related research in laboratories, development laboratories, test laboratories, etc., and is difficult to transport. However, there were restrictions on what people could bring in, which was inconvenient.

[課題を解決するための手段] 本考案は上記課題を解決するために、下端に排
出孔を有する円錐状の凍結室の上側に円筒部を設
けた凍結容器と、外周壁に低温ガスを通過させる
多数のガス通過孔を設け、前記円筒部の内側に間
隔をおいて支持盤で固定した蓋を有する外筐の内
部に、液化ガスを収納する中央に低温ガスを通過
させる空間を有する外筐より高さの低い環状の液
化ガス容器を設け、液化ガス容器内に、不活性ガ
スを導入する導入部と液化ガスで熱交換され低温
化した不活性ガスを凍結容器内に排出する排出管
を有する螺旋環状の熱交換管を設けた熱交換装置
と、加圧器内で加圧された被凍結原料を凍結容器
内に噴出させる前記空間内に先端を望ませた原料
噴射ノズルとから成る微小氷粒製造装置を提供せ
んとするものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention includes a freezing container having a cylindrical portion on the upper side of a conical freezing chamber having a discharge hole at the lower end, and a cold gas passing through the outer peripheral wall. an outer casing having a space in the center for storing liquefied gas and for allowing low-temperature gas to pass therethrough; A lower-height annular liquefied gas container is installed, and inside the liquefied gas container there is an inlet for introducing inert gas and an exhaust pipe for discharging the inert gas, which has been cooled by heat exchange with the liquefied gas, into the freezing container. Micro ice consists of a heat exchange device equipped with a spiral annular heat exchange tube, and a raw material injection nozzle whose tip is in the space for spouting the raw material to be frozen pressurized in a pressurizer into a freezing container. The purpose is to provide a grain manufacturing device.

[作用] 本考案の微小氷粒製造装置は上記のように構成
されているもので、不活性ガスは熱交換管内で液
化ガスにより冷却され、低温化した不活性ガスと
なつて凍結容器内に放出され、液化ガスは不活性
ガスで気化され、低温ガスとなつてガス通過孔か
ら凍結容器内に放出される。
[Function] The device for producing micro ice particles of the present invention is constructed as described above, and the inert gas is cooled by the liquefied gas in the heat exchange tube, becoming a low-temperature inert gas and entering the freezing container. The liquefied gas is vaporized with an inert gas and released as a cold gas through the gas passage hole into the freezing container.

一方、被凍結原料は原料噴霧ノズルによつて噴
霧状となつて凍結容器内を流下する。この流下に
際し、低温化した不活性ガス及び低温ガスと並流
しながら接触し、急速に氷粒化する。
On the other hand, the raw material to be frozen is atomized by the raw material spray nozzle and flows down inside the freezing container. As it flows down, it contacts the cooled inert gas and low-temperature gas in parallel flow, and rapidly turns into ice particles.

[実施例] 以下、本考案を図面に示す実施例に基づいて具
体的に説明する。
[Example] Hereinafter, the present invention will be specifically described based on an example shown in the drawings.

第1図は本考案に係る微小氷粒製造装置の1実
施例を示す縦断面図、第2図は一部の拡大断面図
である。
FIG. 1 is a longitudinal cross-sectional view showing one embodiment of the micro ice particle production apparatus according to the present invention, and FIG. 2 is a partially enlarged cross-sectional view.

図中1は円筒状の断熱処置を施した凍結容器
で、上部に熱交換装置2を設け、外部に微小氷粒
破砕装置3を配設している。
In the figure, reference numeral 1 denotes a cylindrical freezing container which has been subjected to heat insulation treatment, and has a heat exchange device 2 installed at the top and a micro ice particle crushing device 3 installed outside.

円筒状の凍結容器1は、下端に排出孔35を有
する円錐形状の凍結室4を形成し、その上側に円
筒部5を設けている。そして、上端の円筒部5に
前記熱交換装置2を取付けている。
The cylindrical freezing container 1 forms a conical freezing chamber 4 having a discharge hole 35 at the lower end, and a cylindrical portion 5 is provided above the conical freezing chamber 4 . The heat exchange device 2 is attached to the cylindrical portion 5 at the upper end.

熱交換装置2は、中央に空間6を有する外筐7
を設け、この外筐7の中央側に、外筐7よりも高
さを低くした、上側を開放している環状の液化ガ
ス容器8を設けている。外筐7の外周壁には多数
のガス通過孔9を設け、液化ガス容器8の空間6
に位置した個所は多数のガス通過孔10を有する
水平多孔板11で連結されている。
The heat exchange device 2 includes an outer casing 7 having a space 6 in the center.
An annular liquefied gas container 8 whose height is lower than that of the outer casing 7 and whose upper side is open is provided at the center of the outer casing 7. A large number of gas passage holes 9 are provided on the outer circumferential wall of the outer casing 7, and the space 6 of the liquefied gas container 8 is
The locations located at 1 and 2 are connected by a horizontal perforated plate 11 having a large number of gas passage holes 10.

そして、外筐7の高さ方向における中央外周に
支持盤12を設け、この支持盤12の下面にパツ
キング13を取付け、このパツキング13を凍結
容器1の上端に乗架して凍結容器1を密閉するよ
うになつている。14は外筐7を密閉する蓋であ
る。
A support plate 12 is provided at the center outer periphery of the outer casing 7 in the height direction, a packing 13 is attached to the lower surface of the support plate 12, and the packing 13 is mounted on the upper end of the freezing container 1 to seal the freezing container 1. I'm starting to do that. 14 is a lid that seals the outer casing 7.

15は螺旋形状をした熱交換管で液化ガスを収
納した液化ガス容器8の底に位置し、液化ガス容
器8の上方に設けた導入部16から不活性ガスを
導入し、液化ガス容器8内で熱交換により低温化
させ、低温化した不活性ガス17を液化ガス容器
8の下側に突出させた排出管18から凍結室4内
に排出させるようになつている。その際、液化ガ
ス容器8内の液化ガス19は不活性ガスの通過に
伴い加熱され、気泡となつて上昇し、上部で気化
され、冷温ガス20となつて矢印で示すように外
筐7のガス通過孔9及び水平多孔板11のガス通
過孔10から凍結室4内に流下し、凍結室4内を
冷気相雰囲気に保持し、低温ガス温度を少なくと
も−100℃を越えないようにしている。
15 is a spiral-shaped heat exchange tube located at the bottom of the liquefied gas container 8 containing liquefied gas, and introduces inert gas from the introduction part 16 provided above the liquefied gas container 8 to The temperature of the inert gas 17 is lowered by heat exchange, and the lower temperature of the inert gas 17 is discharged into the freezing chamber 4 from a discharge pipe 18 protruding from the lower side of the liquefied gas container 8. At this time, the liquefied gas 19 in the liquefied gas container 8 is heated as the inert gas passes through it, becomes bubbles, rises, is vaporized at the upper part, and becomes cold gas 20, which is heated as shown by the arrow in the outer casing 7. It flows into the freezing chamber 4 through the gas passage holes 9 and the gas passage holes 10 of the horizontal perforated plate 11, maintaining the inside of the freezing chamber 4 in a cold gas phase atmosphere, and preventing the low-temperature gas temperature from exceeding at least -100°C. .

21は原料噴霧ノズルで前記水平多孔板11の
中央に設けた筒体22の内部に位置し、被微小氷
粒又は被凍結粒液体又は菌体等からなる被凍結原
料23を微粒子状に噴霧し、前記の低温化した不
活性ガス17及び低温ガス20と並流しながら接
触流下させ、被凍結原料23を低温不活性ガス及
び冷温ガスとの接触で熱交換により微小氷粒24
にする。微小氷粒破砕装置3は微小氷粒噴射ガン
25と衝突板26とで構成されており、微小氷粒
噴射ガン25の一方を凍結容器1の排出孔35に
設けたL字形をした排出導管27と連結し、他方
を加速用不活性ガス導管28と連結し、この加速
用不活性ガス導管28を電磁弁29を介して不活
性ガスボンベ30と接続し、不活性ガスの導入に
より微小氷粒24を微小氷粒噴射ガン25で噴射
し、衝突板26に吹付け、更に微小化するように
なつている。
Reference numeral 21 denotes a raw material spray nozzle, which is located inside a cylindrical body 22 provided at the center of the horizontal perforated plate 11, and sprays a raw material 23 to be frozen consisting of microscopic ice particles, frozen particles liquid, bacterial cells, etc. in the form of fine particles. , the raw material 23 to be frozen is brought into contact with the low-temperature inert gas 17 and the low-temperature gas 20 in parallel flow, and the raw material 23 to be frozen is brought into contact with the low-temperature inert gas and the low-temperature gas to form minute ice particles 24 through heat exchange.
Make it. The micro ice particle crushing device 3 is composed of a micro ice particle injection gun 25 and a collision plate 26 , and one side of the micro ice particle injection gun 25 is connected to an L-shaped discharge conduit 27 provided in the discharge hole 35 of the freezing container 1 . The other end is connected to an accelerating inert gas conduit 28, and this accelerating inert gas conduit 28 is connected to an inert gas cylinder 30 via a solenoid valve 29, and by introducing the inert gas, micro ice particles 24 is injected by a micro ice particle spray gun 25 and sprayed onto a collision plate 26 to further reduce the ice particles.

31は加圧器で、被微小氷粒又は被凍結粒液
体、菌体等から成る被凍結原料23を、蓋を取去
つて必要に応じて供給されるようになつており、
手動操作3方向切換弁32を介して、前記電磁弁
29から不活性ガスボンベ30に接続され、不活
性ガスボンベ30から供給される不活性ガスで加
圧器31内の被凍結原料23を加圧し、原料導管
33から前記原料噴霧ノズル21に供給するよう
になつている。尚、手動操作3方向切換弁32を
操作して大気を開放することにより加圧器31内
の圧力を零にするようになつている。
Reference numeral 31 denotes a pressurizer, to which a material to be frozen 23 consisting of microscopic ice grains, liquid to be frozen, microbial cells, etc. is supplied as needed with the lid removed;
The electromagnetic valve 29 is connected to an inert gas cylinder 30 via a manually operated three-way switching valve 32, and the raw material 23 to be frozen in the pressurizer 31 is pressurized with the inert gas supplied from the inert gas cylinder 30. The raw material is supplied from the conduit 33 to the raw material spray nozzle 21 . Note that the pressure inside the pressurizer 31 is brought to zero by operating the manually operated three-way switching valve 32 to release the atmosphere.

34は不活性ガス導管で一方を加速用不活性ガ
ス導管28に連結し、他方を熱交換管15の導入
部16に連結している。
34 is an inert gas conduit, one end of which is connected to the accelerating inert gas conduit 28, and the other end connected to the introduction section 16 of the heat exchange tube 15.

上記のように構成された本考案の微小氷粒製造
装置においては、被凍結原料23を加圧器31の
不活性ガスの圧力による加圧で原料噴霧ノズル2
1から噴射して凍結容器1に流下させる。
In the micro ice particle production apparatus of the present invention configured as described above, the raw material to be frozen 23 is pressurized by the pressure of the inert gas of the pressurizer 31, and the raw material spray nozzle 2 is
1 and let it flow down into the freezing container 1.

一方、導入部16から導入した不活性ガスは、
熱交換管15内で液化ガス容器8に収納されてい
る液化ガス19と熱交換され、低温化された不活
性ガス17となつて排出管18から凍結容器1内
に放出される。又、液化ガス19は熱交換管15
内の不活性ガスで加熱され、気泡となつて上昇
し、気化され、低温ガス20となつて外筐7のガ
ス通過孔9及び水平多孔板11のガス通過孔10
から凍結容器1内に放出される。この低温化した
不活性ガス17及び低温ガス20が夫々凍結容器
1内を流下する際に夫々被凍結原料23と接触
し、並流しながら長時間に亘つて熱交換を行つて
被凍結原料23を冷却して微小氷粒24を形成す
る。
On the other hand, the inert gas introduced from the introduction part 16 is
It exchanges heat with the liquefied gas 19 stored in the liquefied gas container 8 in the heat exchange pipe 15, becomes a low-temperature inert gas 17, and is discharged into the freezing container 1 from the discharge pipe 18. In addition, the liquefied gas 19 is passed through the heat exchange pipe 15.
It is heated by the inert gas inside, becomes bubbles, rises, is vaporized, and becomes low-temperature gas 20 that passes through the gas passage holes 9 of the outer casing 7 and the gas passage holes 10 of the horizontal perforated plate 11.
is released into the freezing container 1. When the inert gas 17 and the low-temperature gas 20 respectively flow down inside the freezing container 1, they come into contact with the raw material 23 to be frozen, and exchange heat for a long time while flowing in parallel, thereby freezing the raw material 23 to be frozen. It is cooled to form minute ice particles 24.

前記微小氷粒24は円錐状の凍結室4内に停溜
するが、低温化した不活性ガスを排出管18から
凍結室4の円錐状の内壁に斜め下方に向けて噴射
することにより、内壁に沿つて渦流をなし、下降
流をつくり内壁に微小氷粒の付着を防止し、微小
氷粒24と不活性ガス17及び低温ガス20を排
出孔35から排出させる。この排出孔35は排出
導管27を介して微小氷粒噴射ガン25が設けら
れており、不活性ガスの導入により微小氷粒24
を噴射し、衝突板26に吹付け、その衝撃により
更に微細化する。
The micro ice particles 24 accumulate in the conical freezing chamber 4, but by injecting low-temperature inert gas obliquely downward from the exhaust pipe 18 onto the conical inner wall of the freezing chamber 4, the inner wall is removed. A vortex flow is formed along the flow, a downward flow is created, and the adhesion of minute ice particles to the inner wall is prevented, and the minute ice particles 24, inert gas 17, and low temperature gas 20 are discharged from the discharge hole 35. This discharge hole 35 is provided with a micro ice particle injection gun 25 via a discharge conduit 27, and by introducing an inert gas, the micro ice particles 24 are
is sprayed onto the collision plate 26, and the impact further atomizes the particles.

[考案の効果] 以上具体的に説明したように、本考案の微小氷
粒製造装置は、常温の不活性ガスを熱交換により
低温させ、冷媒の液化ガスの蒸発を促進すると共
に低温化された不活性ガスを凍結室の円錐形内壁
に沿つて渦流をなし、氷結粒の付着を防止するこ
とができる。
[Effects of the invention] As specifically explained above, the micro ice particle production device of the invention lowers the temperature of the inert gas at room temperature by heat exchange, promotes the evaporation of the liquefied gas of the refrigerant, and lowers the temperature. The inert gas is swirled along the conical inner wall of the freezing chamber to prevent the adhesion of frozen particles.

又、少量の液化ガスで不活性ガスを低温化させ
ることができるので、運搬、持込等で制約される
大きな液化ガスボンベを使用することなく、可搬
容器で冷媒を供給することができ、きわめて簡便
に使用出来る装置である。
In addition, since it is possible to lower the temperature of inert gas with a small amount of liquefied gas, it is possible to supply refrigerant in a portable container without using large liquefied gas cylinders, which are restricted by transportation and carry-in. This is an easy-to-use device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す微小氷粒装置
の断面図、第2図は熱交換装置の拡大断面図であ
る。 1……凍結容器、2……熱交換装置、3……微
小氷粒破砕装置、4……凍結室、5……円筒部、
6……空間、7……外筐、8……液化ガス容器、
9……ガス通過孔、10……ガス通過孔、11…
…水平多孔板、12……支持盤、13……パツキ
ング、14……蓋、15……熱交換管、16……
導入部、17……低温化した液化ガス、18……
排出管、19……液化ガス、20……低温ガス、
21……原料噴霧ノズル、22……筒体、23…
…被凍結原料、24……微小氷粒、25……微小
氷粒噴射ガン、26……衝突板、27……排出導
管、28……加速用不活性ガス導管、29……電
磁弁、30……不活性ガスボンベ、31……加圧
器、32……手動操作3方向切換弁、33……原
料導管、34……不活性ガス、35……排出孔。
FIG. 1 is a sectional view of a micro ice particle device showing an embodiment of the present invention, and FIG. 2 is an enlarged sectional view of a heat exchange device. 1... Freezing container, 2... Heat exchange device, 3... Micro ice particle crushing device, 4... Freezing chamber, 5... Cylindrical part,
6... Space, 7... Outer casing, 8... Liquefied gas container,
9...Gas passage hole, 10...Gas passage hole, 11...
...Horizontal perforated plate, 12... Support plate, 13... Packing, 14... Lid, 15... Heat exchange tube, 16...
Introduction section, 17...low temperature liquefied gas, 18...
Discharge pipe, 19...Liquefied gas, 20...Low temperature gas,
21... Raw material spray nozzle, 22... Cylindrical body, 23...
...Material to be frozen, 24...Minute ice grains, 25...Minute ice particle injection gun, 26...Collision plate, 27...Discharge conduit, 28...Inert gas conduit for acceleration, 29...Solenoid valve, 30 ... Inert gas cylinder, 31 ... Pressurizer, 32 ... Manually operated three-way switching valve, 33 ... Raw material conduit, 34 ... Inert gas, 35 ... Discharge hole.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 下端に排出孔を有する円錐状の凍結室の上側に
円筒部を設けた凍結容器と、外周壁に低温ガスを
通過させる多数のガス通過孔を設け、前記円筒部
の内側に間隔をおいて支持盤で固定した蓋を有す
る外筐の内部に、液化ガスを収納する中央に低温
ガスを通過させる空間を有する外筐より高さの低
い環状の液化ガス容器を設け、液化ガス容器内
に、不活性ガスを導入する導入部と液化ガスで熱
交換され低温化した不活性ガスを凍結容器内に排
出する排出管を有する螺旋環状の熱交換管を設け
た熱交換装置と、加圧器内で加圧された被凍結原
料を凍結容器内に噴出させる前記空間内に先端を
望ませた原料噴射ノズルとから成る微小氷粒製造
装置。
A freezing container is provided with a cylindrical part on the upper side of a conical freezing chamber having a discharge hole at the lower end, and a large number of gas passage holes for passing low temperature gas are provided in the outer peripheral wall, and the freezing container is supported at intervals inside the cylindrical part. An annular liquefied gas container having a height lower than the outer casing and having a space in the center for storing liquefied gas and allowing low-temperature gas to pass through is provided inside the outer casing having a lid fixed with a panel. A heat exchange device includes a spiral annular heat exchange tube that has an inlet for introducing active gas and an exhaust tube for discharging the inert gas, which has undergone heat exchange with the liquefied gas and is lowered in temperature, into a freezing container, and is heated in a pressurizer. A micro ice particle production device comprising a raw material injection nozzle whose tip is directed into the space for jetting compressed raw material to be frozen into a freezing container.
JP9099588U 1988-07-11 1988-07-11 Expired - Lifetime JPH0544682Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9099588U JPH0544682Y2 (en) 1988-07-11 1988-07-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9099588U JPH0544682Y2 (en) 1988-07-11 1988-07-11

Publications (2)

Publication Number Publication Date
JPH0213958U JPH0213958U (en) 1990-01-29
JPH0544682Y2 true JPH0544682Y2 (en) 1993-11-12

Family

ID=31315496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9099588U Expired - Lifetime JPH0544682Y2 (en) 1988-07-11 1988-07-11

Country Status (1)

Country Link
JP (1) JPH0544682Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089582Y2 (en) * 1990-08-31 1996-03-21 大陽酸素株式会社 Frozen grain production equipment
JP2618104B2 (en) * 1991-03-25 1997-06-11 三菱電機株式会社 Apparatus and method for producing ultrafine frozen particles
JP6699928B2 (en) * 2016-03-16 2020-05-27 ケミカルグラウト株式会社 Freezing method

Also Published As

Publication number Publication date
JPH0213958U (en) 1990-01-29

Similar Documents

Publication Publication Date Title
US4748817A (en) Method and apparatus for producing microfine frozen particles
JPH04295573A (en) Manufacturing device and manufacturing method of ultrafine frozen particle
JPWO2004080892A1 (en) Method and apparatus for producing slush nitrogen
JP2005118688A (en) Classifier
JPH0544682Y2 (en)
JPH089582Y2 (en) Frozen grain production equipment
US6405541B1 (en) Method and device for the production of slush from liquefied gas
US11154869B2 (en) Device for pulverization and explosion suppression of low carbon gas hydrate
EP0423975B1 (en) Cooling liquids
CN1181025A (en) Gas generator
CN219934432U (en) Spray freeze drying structure
US4619113A (en) Process and installation for cooling a powder by means of a refrigerating fluid
JP2003517411A5 (en)
CN105664513A (en) Spray freezing sublimation drying machine
CN111298462A (en) Inert particle spouted bed spray freeze-drying device and method
GB2046421A (en) Spraying system for delivering a liquid cryogenic coolant into an insulated freezing chamber
CN107318823A (en) Phosphine gas generating means used in tobacco desinsection
CN111189317A (en) High-temperature solid bulk material flow changing and air distribution cooling device
CN101670325A (en) Liquid storing tank with fixed liquid discharge and atomizer with the liquid storing tank
JPH06199511A (en) Production device for snow like dry ice
JPH02137902A (en) Cooling method and device for concrete mixing water
CA1127388A (en) Apparatus for nitriding metal under pressure
CN115318168B (en) Low-temperature slurry preparation and concentration adjustment device and method thereof
JPH0753704Y2 (en) Frozen grain production equipment
CN201815125U (en) Novel loxygen discharge evaporator