JPH0544323B2 - - Google Patents

Info

Publication number
JPH0544323B2
JPH0544323B2 JP13111486A JP13111486A JPH0544323B2 JP H0544323 B2 JPH0544323 B2 JP H0544323B2 JP 13111486 A JP13111486 A JP 13111486A JP 13111486 A JP13111486 A JP 13111486A JP H0544323 B2 JPH0544323 B2 JP H0544323B2
Authority
JP
Japan
Prior art keywords
mold
product
leaf
fiber
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13111486A
Other languages
Japanese (ja)
Other versions
JPS62288006A (en
Inventor
Kenji Arai
Hisatoshi Nagamine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain TM KK
Original Assignee
Toshiba Monofrax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Monofrax Co Ltd filed Critical Toshiba Monofrax Co Ltd
Priority to JP13111486A priority Critical patent/JPS62288006A/en
Publication of JPS62288006A publication Critical patent/JPS62288006A/en
Publication of JPH0544323B2 publication Critical patent/JPH0544323B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はセラミツクフアイバー、ムライトフア
イバー、及びアルミナフアイバー等の耐熱性繊維
より成るリフラクトリーフアイバーを原材料とす
る成形体の製造方法に関し、特に抄上げモールド
とその除去法を改良したリフラクトリーフアイバ
ー成形体の製造方法に関する。 〔従来の技術〕 リフラクトリーフアイバー成形体は、セラミツ
クフアイバー、ムライトフアイバー、及びアルミ
ナフアイバー等の耐熱性繊維を、ほぼ一定の厚み
を持つ単純な形状に成形したもので、通常、真空
成形法によつて製造される。この真空成形法とは
製品の形状と陰陽関係にあり、通水性及び通気性
を考慮して表面が金属網または合成繊維網で覆わ
れ、内部が中空の抄上げモールドを使用して成形
する方法であり、製品となるべきフアイバー成形
体に要請される硬度、強度、柔軟性などの特性を
賦与せしめる為のバインダーや添加剤を加え、水
を分散媒としたセラミツクフアイバースラリー中
に前記抄上げモールドを浸漬し、抄上げモールド
に連結したナツシユポンプを駆動してスラリーを
金属網で覆つた表面に吸引し、金属網の表面にセ
ラミツクフアイバーを堆積させる。フアイバーが
ほぼ所定の厚さになつた時にスラリーから引き上
げ、更に吸引脱水した後、脱型、乾燥する工程に
よつて製造される。 この真空成形法は製品の形状が複雑でない場合
には、極めて手軽に成形品を製造することがで
き、特に小量多品種の製造に適している。 〔発明が解決しようとする問題点〕 上記の従来技術では目的とする製品の形状を具
現すべき抄上げモールドを製作する為、平板状の
金属網を曲面或いは凹凸の多い複雑な形状に加工
し、抄上げモールドの支持体に張り付ける工程を
有するが、これらは極めて困難であり、仮に実行
できたとしてもその抄上げモールドの製作コスト
は著しく高い。 更に、複雑な異形のリフラクトリーフアイバー
成形体では製造すべき製品の形状と陰陽関係にめ
る形状の抄上げモールドの表面に堆積した製品を
脱型する際、形状が複雑すぎたり、引き抜き方向
が適当でなく、製品を損なわずに脱型できない場
合も多い。この場合、抄上げモールドを分割して
脱型を可能にする設計をとらざるを得ない。その
結果、抄上げモールドの製作コストは更に上昇
し、逆に製品の精度は低下する。 また、製品に要求される形状を抄上げモールド
によつて成形できない部分は脱型後に機械的加工
により成形を行うことも多い。 これらはいずれもが小量多品種生産に適すると
いう真空成形法の特徴を著しく阻害するものであ
り、本発明は従来の真空成形法の以上の欠点を解
消せしめんとするものである。 〔問題を解決するための手段〕 第1表に本発明の各工程の概念を示す。複雑な
形状に金属網を加工して、それを表面に張り付け
て抄上げモールドを造ること、及び抄上げモール
ドから製品を脱型するのが困難なことから派生す
る従来技術の問題を解決する為に、本発明では金
属網や合成繊維網を用いずセラミツク粒子を有機
結合剤で結合して成形した多孔質通気性の抄上げ
モールドを用いる。 該抄上げモールドをセラミツクフアイバースラ
リー中に浸漬し、内部を吸引してその表面にセラ
ミツクフアイバーを任意の厚みに抄上げ成形した
あと該抄上げモールドをフアイバーごと乾燥及び
焼成し、該抄上げモールドを加熱により結合剤を
分解するとともにセラミツク粒子に還元し、一方
残存するセラミツクフアイバー成形体は該抄上げ
モールドの形状と陰陽関係の形状を転写して成形
され、製品化される。 即ち、該抄上げモールドは従来法のように金属
網で覆つた抄上げモールドと製品を離脱させると
いう工程を使用しなくても熱崩壊という手段によ
り固形を失い、成形品は精度良く、形状も損なわ
れないで製品化される。 更に詳述すると、先ず抄上げモールドを製作す
るための成形型を、加工しやすく離型が容易な材
料、例えばゴム、プラスチツク等で作り、抄上げ
モールドと陰陽関係にある形状とする。次に多孔
質通気性の抄上げモールド材料を成形型に充填
し、吸引管を付けて固化すると抄上げモールドが
できあがる。これにフランジを取り付けてスラリ
ー中に浸漬し吸引してフアイバーを表面に堆積
し、抄上げモールドと成形品が一体となつたまま
で焼成炉に入れ、加熱すると抄上げモールドは崩
壊し成形品のみが残る。
[Industrial Field of Application] The present invention relates to a method for manufacturing a molded article using refracted leaf fibers made of heat-resistant fibers such as ceramic fibers, mullite fibers, and alumina fibers as a raw material, and in particular improves a papermaking mold and its removal method. The present invention relates to a method for manufacturing a refracted leaf eyebar molded article. [Prior art] A refracted leaf fiber molded product is a product made by molding heat-resistant fibers such as ceramic fiber, mullite fiber, and alumina fiber into a simple shape with a substantially constant thickness, and is usually made by vacuum forming. manufactured by This vacuum forming method has a yin and yang relationship with the shape of the product, and is a method in which the surface is covered with a metal net or synthetic fiber net and the inside is hollow, taking into consideration water permeability and air permeability. A binder and additives are added to impart properties such as hardness, strength, and flexibility required to the fiber molded body to be used as a product. The slurry is immersed in the slurry, and a nut pump connected to the drawing mold is driven to suck the slurry onto the surface covered with a metal mesh, thereby depositing ceramic fibers on the surface of the metal mesh. When the fiber reaches a predetermined thickness, it is pulled out of the slurry, dehydrated by suction, removed from the mold, and dried. This vacuum forming method can produce molded products extremely easily when the shape of the product is not complicated, and is particularly suitable for producing a wide variety of products in small quantities. [Problems to be Solved by the Invention] In the above-mentioned conventional technology, in order to manufacture a mold that embodies the shape of the target product, a flat metal mesh is processed into a curved surface or a complicated shape with many irregularities. , there is a step of attaching it to the support of the papermaking mold, but this is extremely difficult, and even if it could be carried out, the manufacturing cost of the papermaking mold would be extremely high. Furthermore, when removing the product deposited on the surface of the papermaking mold, which has a yin-yang relationship with the shape of the product to be manufactured, it is difficult to remove the product that has been deposited on the surface of the mold. In many cases, it is not possible to remove the mold without damaging the product. In this case, it is necessary to adopt a design that allows the mold to be removed by dividing it into parts. As a result, the manufacturing cost of the punched mold further increases, and conversely, the precision of the product decreases. Further, in many cases, parts that cannot be formed into the shape required for the product by a punching mold are formed by mechanical processing after demolding. All of these significantly impede the characteristic of vacuum forming that is suitable for small-volume, high-mix production, and the present invention aims to eliminate these drawbacks of conventional vacuum forming. [Means for solving the problem] Table 1 shows the concept of each step of the present invention. In order to solve the problems of the conventional technology, which arise from the difficulty of making a mold by processing a metal mesh into a complicated shape and pasting it on the surface, and the difficulty in removing the product from the mold. Furthermore, in the present invention, a porous air-permeable mold is used, which is formed by bonding ceramic particles with an organic binder without using a metal mesh or a synthetic fiber mesh. The formed mold is immersed in a ceramic fiber slurry, the inside is suctioned, and a ceramic fiber is formed on the surface of the slurry to a desired thickness, and then the formed mold is dried and fired together with the fiber, and the formed mold is By heating, the binder is decomposed and reduced to ceramic particles, and the remaining ceramic fiber molded body is molded by transferring the Yin-Yang relationship with the shape of the papermaking mold, and is manufactured into a product. In other words, the molded product loses solidity through thermal collapse without using the process of separating the product from the mold covered with a metal net as in the conventional method, and the molded product has good precision and shape. It is manufactured without any damage. More specifically, first, a mold for producing a papermaking mold is made of a material that is easy to process and easily released, such as rubber or plastic, and is shaped into a shape that has a yin and yang relationship with the papermaking mold. Next, the mold is filled with a porous air-permeable molding material, a suction tube is attached, and the material is solidified to complete the molding. Attach a flange to the slurry, immerse it in the slurry, and deposit the fibers on the surface by suction.The mold and the molded product are then placed in a firing furnace, and when heated, the mold collapses and only the molded product remains. remain.

〔作用〕[Effect]

本発明に用いられるセラミツク粒子は、結合剤
の分解温度及び、焼成工程の焼成温度で焼結しな
い程度の耐火度があればよく、珪砂、アルミナ、
ジルコン、ムライト、ルチル、クロマイト、ジル
コニア等で粒度の整つたものが好ましい。 第1図は用いられるセラミツク粒子の平均粒度
と通気度の関係を示したもので平均粒度が小さく
なると急激に通気度が低下することが分かる。従
つて本発明に用いるセラミツク粒子は第1図から
平均粒度が70メツシユ以上であるべきである。 ここで通気度は一辺1cmとして4側面を囲い相
対する1面1cm2について水柱圧1cmの圧力をもつ
空気を室温大気圧下で1分間通過させた空気量cm3
で表したものである。この通気度は当然本発明の
抄上げモールドの通水度と直接比例関係を有する
重要な因子である。 第1図に示した平均粒度とは、篩分を行ない各
篩上の重量%(G)と第2表に示したそれぞれ各篩の
乗数Mを乗じたあと累計し100で除した数値で与
えられる。即ち平均粒度=〔Σ(G×M)〕/100で
ある。
The ceramic particles used in the present invention only need to have a fire resistance that does not cause sintering at the decomposition temperature of the binder and the firing temperature of the firing process, such as silica sand, alumina, etc.
Zircon, mullite, rutile, chromite, zirconia, etc. with uniform particle size are preferred. FIG. 1 shows the relationship between the average particle size of the ceramic particles used and the air permeability, and it can be seen that as the average particle size becomes smaller, the air permeability decreases rapidly. Accordingly, as shown in FIG. 1, the ceramic particles used in the present invention should have an average particle size of 70 mesh or more. Here, air permeability is defined as the amount of air (cm 3 ) when air with a pressure of 1 cm of water column is passed through for 1 minute at room temperature and atmospheric pressure on each 1 cm 2 opposing surface of the four sides (1 cm on each side).
It is expressed as This air permeability is naturally an important factor that has a direct proportional relationship with the water permeability of the papermaking mold of the present invention. The average particle size shown in Figure 1 is given by the cumulative value obtained by sifting and multiplying the weight percent (G) on each sieve by the multiplier M for each sieve shown in Table 2, and then dividing by 100. It will be done. That is, the average particle size=[Σ(G×M)]/100.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 本発明の実施例で用いるセラミツク粒子は第3
表の如く2種類の珪砂であるが、必ずしもこれに
限定されるものではなく発明の詳細な説明で記載
した性能を有するものであればよい。 第3表のフラタリーサンドは比較的粒度が細か
く、その為通気度も低い。従つて比較的肉薄の抄
上げモールドを造る場合に適している。一方フリ
マントル珪砂は通気度が高いので肉厚で多数の凹
凸を持つた複雑な形状の抄上げモールドを造るの
に適したものである。
Examples of the present invention will be described below. The ceramic particles used in the examples of the present invention are
As shown in the table, there are two types of silica sand, but the invention is not necessarily limited to these, and any type of silica sand may be used as long as it has the performance described in the detailed description of the invention. The flattery sand shown in Table 3 has a relatively fine particle size and therefore has a low air permeability. Therefore, it is suitable for making relatively thin paper molds. On the other hand, since Fremantle silica sand has high air permeability, it is suitable for making thick molds with complicated shapes and many irregularities.

【表】【table】

【表】【table】

【表】【table】

〔効果〕〔effect〕

リフラクトリーフアイバー成形体を抄上げモー
ルドと一体としたまま焼成炉に入れ、抄上げモー
ルドのみを熱崩壊せしめる本発明の製造法は、従
来の製法のように金網、合成繊維網を複雑な形状
に加工したり、張り付けて作つた高価な抄上げモ
ールドを使用せず、しかも製品と抄上げモールド
を工学的手段で離脱させるモールドの抜き工程を
必要としないので複雑な異形のリフラクトリーフ
アイバー成形体を精密な形状と寸法を保有して簡
便に製造することができる。
The manufacturing method of the present invention, in which the refracted leaf eyeber molded body is put into a firing furnace while being integrated with the papermaking mold, and only the papermaking mold is thermally collapsed, is different from conventional manufacturing methods in that it can produce complicated shapes of wire mesh and synthetic fiber mesh. It does not use expensive paper-cutting molds made by processing or pasting, and there is no need for a mold-cutting process in which the product and paper-cutting mold are separated by engineering means, so complex irregularly shaped refracted leaf eyebar molded products can be produced. It has precise shape and dimensions and can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は抄上げモールドに用いる基本砂の平均
粒度と通気度の関係を示したものである。第2図
は本発明製造法に係るリフラクトリーフアイバー
成形体の製品の一例であり、第3図は第2図の製
品を製造する為の抄上げモールドセツトを示し、
第4図は抄上げモールドと、第2図で示した製品
が一体となつた状態を示す図である。第5図、
A,B,C,D,は本発明の各工程の形状概念図
を示す。 1……リフラクトリーフアイバー成形体、1a
……溝、2……抄上げモールド、2a……吸引
管、2b……フランジ。
Figure 1 shows the relationship between the average particle size and air permeability of the base sand used in the papermaking mold. Figure 2 shows an example of a refracted leaf eyeber molded product according to the manufacturing method of the present invention, and Figure 3 shows a mold set for manufacturing the product shown in Figure 2.
FIG. 4 is a diagram showing a state in which the papermaking mold and the product shown in FIG. 2 are integrated. Figure 5,
A, B, C, and D show conceptual diagrams of the shapes of each step of the present invention. 1... Refracted leaf eyebar molded body, 1a
...Groove, 2...Mold, 2a...Suction pipe, 2b...Flange.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツク粒子を有機結合剤で結合した多孔
質通気性の抄上げモールドを用いてフアイバーの
スラリーを真空成形し、該抄上げモールドごと乾
燥及び焼成した後、該抄上げモールドを熱崩壊せ
しめることにより除去して得ることを特徴とする
複雑な異形のリフラクトリーフアイバー成形体の
製造方法。
1. Vacuum forming a fiber slurry using a porous air-permeable mold in which ceramic particles are bonded with an organic binder, drying and firing the entire mold, and then thermally collapsing the mold. A method for producing a complex irregularly shaped refracted leaf eyeber molded article, which is obtained by removing the leaf.
JP13111486A 1986-06-07 1986-06-07 Manufacture of complicate special-form refractory fiber molded form Granted JPS62288006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13111486A JPS62288006A (en) 1986-06-07 1986-06-07 Manufacture of complicate special-form refractory fiber molded form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13111486A JPS62288006A (en) 1986-06-07 1986-06-07 Manufacture of complicate special-form refractory fiber molded form

Publications (2)

Publication Number Publication Date
JPS62288006A JPS62288006A (en) 1987-12-14
JPH0544323B2 true JPH0544323B2 (en) 1993-07-06

Family

ID=15050312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13111486A Granted JPS62288006A (en) 1986-06-07 1986-06-07 Manufacture of complicate special-form refractory fiber molded form

Country Status (1)

Country Link
JP (1) JPS62288006A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5778906B2 (en) * 2010-09-29 2015-09-16 株式会社日本セラテック Ceramic product manufacturing method and ceramic molding mold

Also Published As

Publication number Publication date
JPS62288006A (en) 1987-12-14

Similar Documents

Publication Publication Date Title
US4976903A (en) Shaping molds and shaping of ceramic bodies by using such shaping molds
KR100289459B1 (en) Manufacturing method of breathable and durable mold
DK167254B1 (en) PROCEDURE FOR THE PREPARATION OF FORMED ARTICLES OF A FLUIDIZED CELLULOSE FIBER MATERIAL
JPH0544323B2 (en)
DE3876942D1 (en) METHOD FOR PRODUCING A POROUS SHAPED BODY.
JPH0445205A (en) Manufacture of powder molded body
EP1015696B1 (en) Method of manufacturing a liquid-permeable suction mould for use in making articles of pulp, and mould made by carrying out the method
JPS63221010A (en) Molding die, molding method of article by using said die and pressure casting molding method
JPH01210306A (en) Forming mold of slurry-like material and manufacture thereof
JPS61174918A (en) Production of multilayer ceramic filter
JPS62181105A (en) Manufacture of pottery board and molding die used for said manufacture
JPH0796469B2 (en) Heat resistant inorganic fiber molding
JPH11139887A (en) Production of porous ceramics having through hole
KR100194108B1 (en) Porous Ceramic Filter Manufacturing Method
WO2022220811A1 (en) Porous articles formed of molded fibers
JPS5884711A (en) Manufacture of porcelain product
KR970006496Y1 (en) Preform compression molding for monofilament
WO2022220808A1 (en) Decreasing fiber density in wet parts formed from slurries
JPH06246715A (en) Slip casting method
CN111558691A (en) Shell mould drying process for dewaxing casting
JP5778906B2 (en) Ceramic product manufacturing method and ceramic molding mold
JPS6167703A (en) Production of porous metallic pattern
JPH0376603A (en) Press molding method for ceramics
JPH0957719A (en) Method for casting of molding with spiral groove
JPH04325473A (en) Production of high strength porous alumina sintered body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term