JPH054430B2 - - Google Patents

Info

Publication number
JPH054430B2
JPH054430B2 JP61113446A JP11344686A JPH054430B2 JP H054430 B2 JPH054430 B2 JP H054430B2 JP 61113446 A JP61113446 A JP 61113446A JP 11344686 A JP11344686 A JP 11344686A JP H054430 B2 JPH054430 B2 JP H054430B2
Authority
JP
Japan
Prior art keywords
mud
water
gelled
muddy water
excavated soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61113446A
Other languages
Japanese (ja)
Other versions
JPS62270680A (en
Inventor
Yoshiaki Yamaguchi
Takeshi Kawachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP61113446A priority Critical patent/JPS62270680A/en
Publication of JPS62270680A publication Critical patent/JPS62270680A/en
Publication of JPH054430B2 publication Critical patent/JPH054430B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/0642Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining the shield having means for additional processing at the front end
    • E21D9/0678Adding additives, e.g. chemical compositions, to the slurry or the cuttings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、泥水シールド工法に関する。[Detailed description of the invention] <Industrial application field> The present invention relates to a muddy water shield construction method.

〈発明の背景とその問題点〉 硬岩以外の地山を対象としたトンネル構築法の
1つとして泥水シールド工法があるが、この工法
は密閉形シールド掘進機を用い、この掘進機前面
の密閉された加圧室内に泥水を圧出し、この泥水
の圧力を切羽に対抗させることにより切羽の安定
化を図るとともに、泥水と加圧室に取り入れられ
た掘削土との混合により流動化させた状態でこれ
らの混合物を前記掘進機の後方に排出する工法で
ある。
<Background of the invention and its problems> The muddy water shield method is one of the methods for constructing tunnels in geological formations other than hard rock. The muddy water is forced out into the pressurized chamber, and the pressure of this muddy water is applied against the face to stabilize the face, and the muddy water is mixed with the excavated soil taken into the pressurized chamber to create a fluidized state. This is a construction method in which the mixture is discharged to the rear of the excavator.

この工法に用いられる泥水は、主にベントナイ
トなどの粘土を水に懸濁させ、分散剤,増粘剤な
どを添加した組成のものが用いられる。
The muddy water used in this construction method mainly consists of clay such as bentonite suspended in water, with the addition of dispersants, thickeners, etc.

しかしながら、この種の工法においても、地下
水位が高く地盤の透水係数が大である場合には、
加圧泥水の逸泥により切羽の安定や止水性を確保
することが難しくなり、シールド掘進が不可能と
なる。
However, even with this type of construction method, if the groundwater level is high and the ground has a large permeability coefficient,
Due to the leakage of pressurized mud water, it becomes difficult to ensure the stability and water-tightness of the face, making shield excavation impossible.

この対策としては供給泥水の粘度を高くすれば
よい、この場合には泥水および回収泥水の流体輸
送に支障が生じ、また回収泥水と掘削土との混合
物の分離が難しいものとなる。
A countermeasure against this problem is to increase the viscosity of the supplied mud. In this case, fluid transportation of the mud and the recovered mud is hindered, and separation of the mixture of the recovered mud and the excavated soil becomes difficult.

ところで、本出願人は先に水に溶解した粘性物
質からなるゲル状物質と、硼砂,ホウ酸などの添
加剤とからなるゲル化泥水を開発した。
By the way, the present applicant has previously developed a gelled muddy water made of a gel-like substance made of a viscous substance dissolved in water and additives such as borax and boric acid.

このゲル化泥水は水素イオン濃度(PH)の調整
によつて、粘度がアルカリ側で数万センチポイズ
から酸性側で10〜50センチポイズと極めて広い範
囲で変化する。
By adjusting the hydrogen ion concentration (PH), the viscosity of this gelled mud varies over a wide range, from tens of thousands of centipoises on the alkaline side to 10 to 50 centipoises on the acidic side.

従つて、例えば砂礫層などの逸泥が大きな地盤
を掘削するときには、アルカリ側、すなわちゲル
化剤の混合により高粘度ゲル化した状態で加圧室
内に供給することにより、逸泥量を最小に抑える
ことができる。またこの高粘度ゲル化したゲル化
泥水は、混合後酸性化剤、すなわち解ゲル化剤を
混合し、低粘度化させることにより、掘削した土
砂との分離を図ることができ、しかも分離後の上
澄みを再使用できる利点がある。
Therefore, when excavating ground with a large amount of lost sludge, such as a gravel layer, the amount of lost sludge can be minimized by supplying the alkaline side, that is, the high viscosity gelled state by mixing with a gelling agent, into the pressurizing chamber. It can be suppressed. In addition, this highly viscous gelled mud water can be separated from the excavated earth and sand by mixing an acidifying agent, that is, a degelling agent, to lower the viscosity after mixing. There is an advantage that the supernatant can be reused.

この発明は、以上のゲル化泥水の有する特性を
有効利用することにより、泥水シールド工法にお
ける切羽の安定化と輸送に適した流動性の確保を
図り、また泥水そのものの消費量の削減を図るこ
とを目的とする。
This invention aims to stabilize the face in the muddy water shield method and ensure fluidity suitable for transportation by effectively utilizing the above-mentioned properties of gelled muddy water, and also aims to reduce the consumption of muddy water itself. With the goal.

〈問題点を解決するための手段〉 前記の目的を達成するため、この発明の泥水シ
ールド工法は、泥水をシールド掘進機の加圧室内
に圧送して該泥水の圧力により切羽の安定を図る
とともに、加圧室内に取り入れられた掘削土を流
動化させた状態で該掘削土および泥水の混合物を
前記掘進機の後方に排出するようにした泥水シー
ルド工法において、前記泥水としてゲル状物質を
含むゲル化泥水を用い、該ゲル化泥水を加圧室に
供給する直前にゲル化剤を添加混合するととも
に、加圧室から排出された掘削土と前記ゲル化泥
水とからなる混合物に解ゲル化剤を添加すること
を特徴とするものである。
<Means for solving the problem> In order to achieve the above-mentioned object, the muddy water shield method of the present invention works by force-feeding muddy water into the pressurizing chamber of the shield excavation machine and stabilizing the face using the pressure of the muddy water. In a mud water shield construction method, in which excavated soil taken into a pressurizing chamber is fluidized and a mixture of the excavated soil and mud water is discharged to the rear of the excavator, the mud water is a gel containing a gel-like substance. Using gelled mud, a gelling agent is added and mixed immediately before the gelled mud is supplied to the pressurizing chamber, and a degelling agent is added to the mixture consisting of the excavated soil discharged from the pressurizing chamber and the gelled mud. It is characterized by the addition of.

〈実施例〉 以下、この発明の実施例を図面を用いて詳細に
説明する。
<Example> Hereinafter, an example of the present invention will be described in detail using the drawings.

図はこの発明工法を適用したゲル化泥水の供
給・回収システムを示す説明図である。
The figure is an explanatory diagram showing a gelled mud water supply/recovery system to which this invention method is applied.

図において、1は密閉形シールド掘進機であ
り、この掘進機1の前部には隔壁2によつて仕切
られた加圧室3が形成されていて、その前面にカ
ツターデイスク4が設けられている。
In the figure, reference numeral 1 denotes a closed type shield tunneling machine, and the front part of this tunneling machine 1 is formed with a pressurized chamber 3 partitioned by a partition wall 2, and a cutter disk 4 is provided in front of the pressurized chamber 3. ing.

そして、前記隔壁2の上部にはゲル化泥水圧送
用の送泥管6が、また下部には回収用排泥管7が
貫通して設けられている。前記圧送用の送泥管6
にはバルブ6aを介して泥水供給ライン8が接続
されている。この泥水供給ライン8はシールド抗
9の後部にある発進用立抗上あるいはこの立抗に
接して設けられた作泥プラント10に接続されて
いる。
A mud feeding pipe 6 for force-feeding gelled mud is provided in the upper part of the partition wall 2, and a collecting mud draining pipe 7 is provided in the lower part thereof. The mud feeding pipe 6 for pressure feeding
A mud water supply line 8 is connected to the tank via a valve 6a. This mud water supply line 8 is connected to a mud production plant 10 provided on or in contact with a starting shaft at the rear of the shield shaft 9.

作泥プラント10内にはそれぞれ貯溜槽11,
回収槽12,分離槽14が配置されている 貯溜槽11上には撹拌槽15が配置されてい
る。この撹拌槽15内で前述の粘性物質,水およ
び防腐剤を均一に混合して作成したゲル状物質を
前記貯溜槽11内に投入し、ここに貯蔵するよう
になつている。
In the mud production plant 10, there are storage tanks 11,
A stirring tank 15 is arranged above the storage tank 11 in which the recovery tank 12 and the separation tank 14 are arranged. A gel-like substance prepared by uniformly mixing the above-mentioned viscous substance, water, and preservative in this stirring tank 15 is put into the storage tank 11 and stored therein.

前記泥水供給ライン8はこの貯溜槽11の吐出
端に接続され、そのライン8中に設けた圧送ポン
プP1により前記送泥管6側に送られる。
The mud water supply line 8 is connected to the discharge end of this storage tank 11, and is sent to the mud feeding pipe 6 side by a pressure pump P1 provided in the line 8.

送泥管6に対する接続直前の位置において、供
給ライン8にはゲル化剤供給ライン16が接続さ
れている。この供給ライン16の上部ャには漏斗
状の液槽18およびバルブ20が設けられてい
る。
A gelling agent supply line 16 is connected to the supply line 8 at a position immediately before connection to the mud feeding pipe 6 . A funnel-shaped liquid tank 18 and a valve 20 are provided in the upper part of the supply line 16.

バルブ20を開けることにより液槽18内に貯
えられていたゲル化剤は泥水供給ライン8内に加
えられ、この内部を輸送されるゲル化物質を含む
ゲル化泥水と合流する。
By opening the valve 20, the gelling agent stored in the liquid tank 18 is added to the muddy water supply line 8, and joins with the gelling muddy water containing the gelling substance transported therein.

含流したゲル化物質すなわちゲル化泥水は、最
先端位置に設けたラインミキサー21内を通過す
ることにより十分混合され、高粘度化された状態
のゲル化泥水として送泥管6側を通じて、加圧室
3内に吐出することになる。
The gelled substance, that is, the gelled mud that has flowed in, is sufficiently mixed by passing through the line mixer 21 provided at the most advanced position, and is then added as gelled mud in a highly viscous state through the mud feeding pipe 6 side. It will be discharged into the pressure chamber 3.

加圧室3内ではカツターデイスク4を介して取
り入れられた掘削土と混合され、所定の圧力状態
を保つて切羽を保持する。
In the pressurizing chamber 3, it is mixed with excavated soil taken in through the cutter disk 4, and a predetermined pressure state is maintained to hold the face.

一方、前記回収用排泥管7の吐出端は、バルブ
7aを介して回収用のラインミキサー22の供給
端に対向位置している。ラインミキサー22の上
には解ゲル化剤の液槽23がバルブ24を介して
接続されている。そして、ラインミキサー22の
吐出端は回収ライン26を通じて前記分離槽14
に通じている。
On the other hand, the discharge end of the recovery sludge drainage pipe 7 is located opposite to the supply end of the recovery line mixer 22 via a valve 7a. A liquid tank 23 for a degelling agent is connected above the line mixer 22 via a valve 24 . The discharge end of the line mixer 22 is connected to the separation tank 14 through the recovery line 26.
It is familiar to

回収ライン26内にはポンプP2が介在されて
おり、掘削土と高粘度化されたゲル化泥水との排
出混合物は、このポンプP2によりラインミキサ
ー22を経て前記分離槽14内に回収される。
A pump P 2 is interposed in the recovery line 26 , and the discharged mixture of excavated soil and highly viscous gelled mud is recovered into the separation tank 14 through the line mixer 22 by this pump P 2 . Ru.

そして、液槽23内に貯蔵されている解ゲル化
剤をラインミキサー22内に加えることにより、
混合物中のゲル状物質成分は解ゲル化し、ゲル化
泥水は、流体輸送に適した粘度に低粘度化した状
態で掘削土とともに回収ライン26を通じて分離
槽14側に排出される。
Then, by adding the degelling agent stored in the liquid tank 23 into the line mixer 22,
The gel-like substance component in the mixture is degelled, and the gelled mud water is discharged to the separation tank 14 side through the recovery line 26 together with the excavated soil in a state where the viscosity has been reduced to a level suitable for fluid transport.

分離槽14内では主に比重差による分離が行な
われ、比重の軽い低粘度化されたゲル状物質を含
むゲル化泥水はポンプP1を介して前記回収槽1
2内に回収される。
Separation is mainly carried out in the separation tank 14 based on the difference in specific gravity, and gelled muddy water containing gel-like substances with low specific gravity and low viscosity is sent to the recovery tank 1 via the pump P1.
It will be collected within 2 days.

また、その残渣分である掘削土は分離槽14の
底面よりホツパーなどを通じて外部に排出される
ことになる。ゲル状物質は無害であるため、排出
した掘削土は特に処理する必要がなく、埋立など
に転用できる。
Further, the excavated soil that is the residue is discharged from the bottom of the separation tank 14 to the outside through a hopper or the like. Since the gel-like substance is harmless, the excavated soil does not require any special treatment and can be used as a landfill.

さらに、回収槽12の吐出端には合両ライン2
8が設けられ、前記泥水供給ライン8に合流して
いる。
Furthermore, a combination line 2 is provided at the discharge end of the recovery tank 12.
8 is provided and merges with the muddy water supply line 8.

この合流ライン28内に設けたポンプP4によ
つて回収したゲル状物質を含むゲル化泥水は、再
び前記泥水供給ライン8を通じて加圧室3内へと
循環供給されることになる。
The gelled muddy water containing the gelled substance recovered by the pump P 4 provided in the merging line 28 is circulated and supplied into the pressurizing chamber 3 through the muddy water supply line 8 again.

以上のシステムに用いられるゲル状物質を構成
する前記粘性物質は、グアガムまたはローストビ
ンガムなどの植物性粘物質を単独あるいは併用し
たものであつて、いずれも水に溶解するとゲル状
の液体となる。このゲル状物質はアルカリ化剤に
よつてさらに高粘度化し、粘度が数万センチポイ
ズまで高められる。ゲル化剤は具体的には水酸化
ナトリウム,消石灰,炭酸ナトリウムなどのアル
カリ性物質である。回収後に加えられる解ゲル化
剤は、酸性物質であり、例えば硫酸ばん土,塩化
アルミニウム,希硫酸,希塩酸などが用いられ
る。
The viscous substance constituting the gel-like substance used in the above system is a vegetable viscous substance such as guar gum or roasted gum, either alone or in combination, and when dissolved in water, it becomes a gel-like liquid. The viscosity of this gel-like substance is further increased by the alkalizing agent, and the viscosity is increased to tens of thousands of centipoise. Gelling agents are specifically alkaline substances such as sodium hydroxide, slaked lime, and sodium carbonate. The degelling agent added after recovery is an acidic substance, such as sulfuric acid chloride, aluminum chloride, dilute sulfuric acid, dilute hydrochloric acid, and the like.

従つて、前記貯溜槽11および回収槽12内に
貯蔵されているゲル化物質あるいはゲル化泥水は
中性ないし弱酸性側となり、解ゲル化した状態で
貯溜されている。これにより、前記作泥プラント
10とシールド掘進機1までの距離が遠く、泥水
供給ライン8の長さが長い場合であつても十分に
送泥を行なうことができる。そして、シールド掘
進機1に対する供給直前において前述のゲル化剤
に加え混合するので、ここで高粘度化した状態で
比較的短距離の送泥室6を通じて加圧室3内に吐
出することになる。送泥管6内での輸送が困難な
場合には、送泥室6に圧力空気を圧送すればスム
ーズな送泥を行うことができる。
Therefore, the gelled substance or gelled muddy water stored in the storage tank 11 and the recovery tank 12 is neutral to weakly acidic, and is stored in a degelled state. Thereby, even if the distance between the mud making plant 10 and the shield excavator 1 is long and the length of the mud water supply line 8 is long, sufficient mud can be fed. Since it is added to and mixed with the above-mentioned gelling agent immediately before being supplied to the shield excavator 1, it is discharged into the pressurizing chamber 3 through the relatively short distance mud feeding chamber 6 in a highly viscous state. . If transportation within the mud feeding pipe 6 is difficult, smooth mud feeding can be achieved by force-feeding pressurized air to the mud feeding chamber 6.

高粘度化したゲル化泥水は、加圧室3内で所定
の圧力を伴つて切羽に対向し、またカツターデイ
スク4により取り込まれた削土と混合する。
The highly viscous gelled mud is opposed to the face with a predetermined pressure within the pressurizing chamber 3, and is mixed with the excavated soil taken in by the cutter disk 4.

前記加圧室3内には図示しない圧力センサが設
けられ、この圧力センサの検出出力に応じて各バ
ルブ6a,7a,20,24の開閉制御、および
各ポンプP1〜P4の駆動制御がなされる。
A pressure sensor (not shown) is provided in the pressurizing chamber 3, and the opening/closing control of each valve 6a, 7a, 20, 24 and the drive control of each pump P1 to P4 are controlled according to the detection output of this pressure sensor. It will be done.

すなわち、加圧室3内の検出圧力が得ようとす
る土水圧よりも低い場合、バルブ6a,20は
開、バルブ7a,24は閉状態であり、ポンプ
P1またはP4は駆動し、高粘度化したゲル化泥水
を送り続ける。
That is, when the detected pressure in the pressurizing chamber 3 is lower than the soil water pressure to be obtained, the valves 6a and 20 are open, the valves 7a and 24 are closed, and the pump is closed.
P 1 or P 4 is driven and continues to send highly viscous gelled mud.

また、加圧室3内の土水圧が設定値より高くな
ると、バルブ6a,20は閉じ、ポンプP1,P4
は停止し、その代りにバルブ7a,24が開き、
ポンプP2が駆動し、加圧室3内のゲル化泥水と
削土の混合物を排泥管7を通じて加圧室3の後部
に送る。
Further, when the soil water pressure in the pressurizing chamber 3 becomes higher than the set value, the valves 6a and 20 are closed, and the pumps P 1 and P 4 are closed.
stops, and instead valves 7a and 24 open,
Pump P 2 is driven, and the mixture of gelled mud and excavated soil in pressurization chamber 3 is sent to the rear of pressurization chamber 3 through mud drain pipe 7 .

そして、ラインミキサー22内で解ゲル化剤と
混合することにより、混合物中の高粘度化したゲ
ル化泥水は解ゲル化し、低粘度化する。しかしな
がら、この状態においても掘削土に対するバイン
ダとして機能は変らないので、回収ライン26を
通じて作泥プラント10側へ流体輸送できる。
Then, by mixing with a degelling agent in the line mixer 22, the highly viscous gelled mud in the mixture is degelled and reduced in viscosity. However, even in this state, the function as a binder for excavated soil does not change, so the fluid can be transported to the mud production plant 10 side through the recovery line 26.

なお、ゲル化泥水の粘度を制御するには、泥水
供給ライン8の先端に粘度センサを設け、この粘
度センサの検出出力に応じて液槽18に付設され
たバルブの開度をフイードバツク制御すれば、地
盤の地質に応じて精度のよい粘度管理を行なうこ
とができる。
In addition, in order to control the viscosity of the gelled mud, a viscosity sensor is provided at the tip of the muddy water supply line 8, and the opening degree of the valve attached to the liquid tank 18 is feedback-controlled in accordance with the detection output of this viscosity sensor. , it is possible to perform accurate viscosity control according to the geology of the ground.

また、回収側においても同様にフイードバツク
制御により輸送に適した粘度に下げることができ
る。
Furthermore, on the recovery side, the viscosity can be lowered to a value suitable for transportation by feedback control.

さらに、加圧室3から排出された混合物は排出
直後に低粘度化するのでなく、作泥プラント10
に近い位置で低粘度化するようにしてもよい。つ
まり、ラインミキサー22および液槽は回収ライ
ン26の任意の位置に設けてもよい。
Furthermore, the mixture discharged from the pressurizing chamber 3 does not have a low viscosity immediately after discharge, but the mixture discharged from the mud production plant 10
The viscosity may be lowered at a position close to . That is, the line mixer 22 and the liquid tank may be provided at any position in the recovery line 26.

〈発明の効果〉 以上各実施例により詳細に説明したように、こ
の発明の泥水シールド工法にあつては、従来のベ
ントナイトを主成分とする粘土を用いた泥水シー
ルド工法に比して、加圧室内での粘度が大(逸泥
量が少なく)で、しかも輸送に適した粘度で供
給・回収できる。
<Effects of the Invention> As explained in detail in each of the embodiments above, the muddy water shield method of the present invention has a lower pressurized water shielding method than the conventional muddy water shielding method using clay mainly composed of bentonite. It has a high viscosity indoors (low amount of sludge lost) and can be supplied and collected at a viscosity suitable for transportation.

さらに、この発明にあつては、従来に比べて回
収した削土および泥水の混合物の分離が可能であ
り、しかも分離後のゲル化泥水を反復して供給ラ
イン中に投入できるため消費量が少なく、経費が
節減できる。
Furthermore, with this invention, it is possible to separate the mixture of recovered excavated soil and mud water compared to the conventional method, and furthermore, the gelled mud water after separation can be repeatedly fed into the supply line, resulting in less consumption. , costs can be saved.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明に係る泥水シールド工法に適用さ
れるゲル化泥水の供給・回収システムを示す説明
図である。 1……シールド掘進機、3……加圧室、4……
カツターデイスク、6,7……送泥管、8……泥
水供給ライン、9……シールド抗、10……作泥
プラント、11……貯溜槽、16……ゲル化剤供
給ライン、18,23……液槽、21,22……
ラインミキサー、26……回収ライン。
The figure is an explanatory diagram showing a gelled mud water supply/recovery system applied to the mud water shield method according to the present invention. 1... Shield tunneling machine, 3... Pressurized chamber, 4...
Cutter disk, 6, 7... Sludge feed pipe, 8... Mud water supply line, 9... Shield pit, 10... Sludge production plant, 11... Storage tank, 16... Gelling agent supply line, 18, 23...Liquid tank, 21, 22...
Line mixer, 26... Collection line.

Claims (1)

【特許請求の範囲】[Claims] 1 泥水をシールド掘進機の加圧室内に圧送して
該泥水の圧力により切羽の安定を図るとともに、
加圧室内に取り入れられた掘削土を流動化させた
状態で該掘削土および泥水の混合物を前記掘進機
の後方に排出するようにした泥水シールド工法に
おいて、前記泥水としてゲル状物質を含むゲル化
泥水を用い、該ゲル化泥水を加圧室に供給する直
前にゲル化剤を添加混合するとともに、加圧室か
ら排出された掘削土と前記ゲル化泥水とからなる
混合物に解ゲル化剤を添加することを特徴とする
泥水シールド工法。
1. The muddy water is forced into the pressurized chamber of the shield tunneling machine, and the pressure of the muddy water stabilizes the face.
In a mud water shield construction method in which excavated soil taken into a pressurizing chamber is fluidized and a mixture of the excavated soil and mud water is discharged to the rear of the excavator, the mud water contains a gelatinous substance. Using muddy water, a gelling agent is added and mixed immediately before supplying the gelled muddy water to the pressurizing chamber, and a degelling agent is added to the mixture consisting of the excavated soil discharged from the pressurizing chamber and the gelled muddy water. A mud water shield method characterized by the addition of mud water.
JP61113446A 1986-05-20 1986-05-20 Slurry shield tunneling Granted JPS62270680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61113446A JPS62270680A (en) 1986-05-20 1986-05-20 Slurry shield tunneling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61113446A JPS62270680A (en) 1986-05-20 1986-05-20 Slurry shield tunneling

Publications (2)

Publication Number Publication Date
JPS62270680A JPS62270680A (en) 1987-11-25
JPH054430B2 true JPH054430B2 (en) 1993-01-20

Family

ID=14612435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61113446A Granted JPS62270680A (en) 1986-05-20 1986-05-20 Slurry shield tunneling

Country Status (1)

Country Link
JP (1) JPS62270680A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179971A (en) * 2008-01-29 2009-08-13 Ohbayashi Corp Excavated soil disposal method and processing water
JP4939474B2 (en) * 2008-03-31 2012-05-23 前田建設工業株式会社 Preventing face collapse in muddy water shield
CN105041327B (en) * 2015-08-27 2017-12-19 北京建工土木工程有限公司 Bored tunnel is counter to dig shield method of reseptance

Also Published As

Publication number Publication date
JPS62270680A (en) 1987-11-25

Similar Documents

Publication Publication Date Title
CN102536253B (en) Construction method of earth cabin back filling and cabin entering operation during earth pressure shielding
US20020123433A1 (en) Composition and method for dual function soil grouting excavating or boring fluid
WO1998034994A1 (en) Composition and method for a dual-function soil-grouting excavating or boring fluid
CN109681236A (en) Big cross section water-rich sand layer shield driving synchronous grouting method
CA1300491C (en) Method of sealing permeable earth surface or sub-surface materials having alkaline conditions by induced precipitation of carbonates
CN108867673A (en) A kind of underwater prevention method in the foundation pit based on the curtain that draws water
CN110983075B (en) Hole sealing method for liquid injection hole of sealing field of ionic rare earth in-situ leaching field
US3842607A (en) Arctic islands
JPH054430B2 (en)
CN103352703A (en) Mud draining construction method of thick muddy water of shield tunneling machine
RU2132467C1 (en) Method for isolation of underground toxic waste storage in salt-bearing rock mass
Hochart et al. Innovative slurry solutions for demanding TBM drives through soil with high permeability in a dense urban area
Oggeri et al. SOIL CONDITIONING AND GROUND MONITORING FOR SHIELD TUNNELLING.
JPH0466275B2 (en)
JPH0548332B2 (en)
CN209636824U (en) A kind of device prevented and dredge water-bearing layer gushing water
Herrenknecht et al. Earth pressure balanced shield technology
JP2554319B2 (en) Mud drilling method
JPS62194323A (en) Slime discharging for mud-water excavation work
JPH071000B2 (en) Groundwater infiltration control method
JPH07991B2 (en) Shielding method using super absorbent resin
JPS59213897A (en) Shield drilling apparatus
RU2037012C1 (en) Method of discharging water in the process of draining rock massif
JPH0517932A (en) Water permeable construction method for hole wall surface dug by using stabilizing liquid
SU1129372A1 (en) Method of plugging the base of a hydraulic structure

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term