JPH054416B2 - - Google Patents

Info

Publication number
JPH054416B2
JPH054416B2 JP61216478A JP21647886A JPH054416B2 JP H054416 B2 JPH054416 B2 JP H054416B2 JP 61216478 A JP61216478 A JP 61216478A JP 21647886 A JP21647886 A JP 21647886A JP H054416 B2 JPH054416 B2 JP H054416B2
Authority
JP
Japan
Prior art keywords
pellets
masterbatch
polyolefin
parts
extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61216478A
Other languages
Japanese (ja)
Other versions
JPS6372734A (en
Inventor
Yukio Morita
Takuma Takai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP21647886A priority Critical patent/JPS6372734A/en
Publication of JPS6372734A publication Critical patent/JPS6372734A/en
Publication of JPH054416B2 publication Critical patent/JPH054416B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、発泡剤を含有するマスターバツチに
関し、ポリオレフイン発泡体の押出成形品、特に
発泡絶縁ケーブルの製造に適したマスターバツチ
に関する。 〔従来の技術〕 合成樹脂発泡体の押出成形方法は広く各種分野
に於いて使用されており、たとえば、発泡絶縁ケ
ーブルや高周波ケーブルの製造にも応用されてい
る。 通常の押出による合成樹脂発泡体の製造におい
ては、発泡剤を合成樹脂100重量部あたり数重量
部以下程度の少量配合した発泡性組成物が用いら
れている。かかる少量の発泡剤を大量の合成樹脂
に均一に混合することは混合所要時間の点で、あ
るいは消費電力の点からも不利であるので、本発
明者らは先に特開昭55−62935号公報において合
成樹脂に発泡剤を高濃度に混合した組成物、即ち
マスターバツチを用いる方法を提案した。このマ
スターバツチは、発泡剤を含有していない生合成
樹脂と所定割合にて押出機のホツバーに供給する
のみでよく、押出機の混練作用により生合成樹脂
と混練されるので押出発泡の対象となる合成樹脂
の全量を発泡剤混合の対象とする必要がない長所
がある。 しかしながら、本発明者らの引き続く研究によ
れば、品質の良好な発泡成形品、特に発泡ポリオ
レフイン絶縁電線を安定して製造するには発泡剤
入りマスターバツチの寸法並びに形状が極めて重
要であることが判明した。即ちマスターバツチペ
レツトが大き過ぎると押出機内での生合成樹脂ペ
レツトとの混合が不充分となつて均一に発泡した
成形品が得難く、特に絶縁ケーブルを製造すると
発泡絶縁層の静電容量や外径が大きく変動する。
逆にマスターバツチペレツトが小さ過ぎると寸法
の揃つたペレツトが得難く、寸法の不揃いのため
にホツパー内での各ペレツトの落下速度、即ち供
給速度に不均一が生じる問題がある。供給速度に
不均一が生じると、当然発泡度の一定した製品が
得られない。発泡合成樹脂成形品を大量生産する
場合、マスターバツチは通常空気輸送により押出
機の近くまで運ばれるが、マスターバツチペレツ
トがマスターバツチ組成物のシートを細断して得
た角ペレツトであると空気輸送中におけるペレツ
ト同士あるいはペレツト輸送管壁との衝突により
ペレツトの角がとれてマスターバツチの粉末が生
じやすい。粉末を含むペレツトは上記した寸法の
不揃いペレツトと同様の問題を孕んでいる。粉末
の生じ難さからいえば球形のペレツトが最も好ま
しいには違いないが、球形ペレツトを低コストで
大量生産することは極めて困難である。 〔発明が解決しようとする問題点〕 本発明が解決しようとする問題点は上記従来の
マスターバツチの難点を解消することであり、更
に詳しくは空気輸送によつても粉末発生の程度が
少なく、安価に寸法を揃えて製造することが容易
であり、しかも生合成樹脂ペレツトとの押出機内
での均一混合が容易なマスターバツチを開発する
ことである。 〔問題点を解決するための手段〕 上記問題点は、発泡剤を含有するポリオレフイ
ンのマスターバツチに関しては、特定の寸法並び
に形状を有するものを使用することにより解決さ
れる。即ち本発明は、ポリオレフインと該ポリオ
レフイン100重量部あたり10〜100重量部の発泡剤
とから成る組成物の押出物を切断したものであつ
て、最大外径が1.0〜2.5mm、長さが1.0〜3.0mmで
あることを特徴とするマスターバツチに係るもの
である。 〔発明の構成並びに作用〕 市販のポリオレフインペレツト(以下本ペレツ
トを生ポリオレフインペレツトと称する)は、メ
ーカにより多少異なるが、平均径が2〜5mm程度
のものであり、本発明マスターバツチの寸法であ
れば生ポリオレフインペレツトと混合して押出機
ホツパーに投入しても、ホツパー内での落下中に
両者間に問題となるような分離が生じない。また
マスターバツチの寸法が従来品のそれと比較して
小さいので通常の押出機が具備する混練作用によ
り生ポリオレフインペレツトと極めて良好に均一
混練されて押出される。従つて本発明のマスター
バツチペレツトを用いることにより、静電容量や
外径の変動の少ない高品質の発泡絶縁電線を製造
することが出来る。 更に本発明のマスターバツチは、ポリオレフイ
ンと発泡剤とから成る組成物をストランド状に押
出し次いで切断したものであるので製造が容易で
あり、また切断面には多少の角があるが、全体と
して押出物に特有の丸みを有する。従つて従来の
角形ペレツトと比較して削除され易い角が少ない
ので空気輸送に付しても粉末を発生し難く、粉末
の発生が有るとしてもその量は少量であつて実際
上問題とならない。 本発明のマスターバツチを構成する発泡剤とし
ては、広く各種のものが使用され、たとえばアゾ
ジカルボンアミド、4.4′−オキシビス(ベンゼン
スルホニルヒドラジド)、アゾビスイソブチロニ
トリル、ジニトロソペンタメチレンテトラミン、
パラトルエンスルホニルヒドラジツド、重曹等を
具体例として例示出来、好ましいものとして、ア
ゾジカルポンアミド又は4.4′−オキシビス(ベン
ゼンスルホニルヒドラジド)あるいはそれらの混
合物を挙げることが出来る。 本発明のマスターバツチに用いられるベースポ
リオレフインとしてもこの種分野に於いて従来か
ら使用されて来たものがいずれも使用され、たと
えば各種ポリオレフイン、オレフインと他のモノ
マーとの各種共重合体が使用される。好ましい具
体例としては極低密度〜高密度の各種ポリエチレ
ン、ポリプロピレン、ポリブテン−1、ポリ4−
メチルペンテン−1等のオレフインのホモポリマ
ー類又は実質的にホモポリマーと称されいるも
の、あるいはオレフインと酢酸ビニル、エチルア
クリレート等のコポリマー類、たとえばエチレン
−プロピレン共重合体、ポリ−4−メチルペンテ
ン−1共重合体、エチレン−酢酸ビニル共重合
体、エチレン−エチルアクリレート共重合体等で
ある。就中、特に極低密度〜高密度の各種ポリエ
チレンが好ましい。 マスターバツチ中のポリオレフインとしては、
通常は、製造所望のポリオレフイン発泡体の構成
材となるポリオレフインと同じものが用いられる
が、必要に応じて異種のポリオレフインを用いて
もよい。 マスターバツチ中の発泡剤の配合割合は、ポリ
オレフイン100重量部に対し、10〜100重量部であ
る。10重量部より少ないと、マスターバツチとし
ての本来の機能が乏しくなり、一方100重量部よ
り多いとポリオレフインと発泡剤との混練性が悪
くなり、また得られた混練組成物は脆いためにそ
の押出物は細断時粉末が発生し易い、あるいは空
気輸送中に破損や粉末化し易い等の問題がある。
従つて発泡剤の配合割合は、好ましくは15〜50重
量部である。 本発明のマスターバツチは、最大外径1.0〜2.5
mm、長さ1.0〜3.0mmの押出・切断ペレツトである
ことを必須とする。角ペレツトは、前記した通り
粉末を発生し易い問題があるが、たとえ押出・切
断ペレツトであつても、最大外径が2.5mmより大
きく且つ長さが3.0mmより長いものは、ペレツト
寸法が過大のために押出機内での生ポリオレフイ
ンペレツトとの均一混合性が悪く、高品質の発泡
成形品を製造することが難しい。一方、最大外径
が1.0mmより小さく且つ長さが1.0mmより短いもの
は、ペレツト寸法が過少のために市販の生ポリオ
レフインペレツトとのホツパー内での落下速度に
差があり、ペレツト分離が生じる問題があるほ
か、一般にマスターバツチ組成物は押出加工性が
良好でないためにかかる過少寸法のペレツトは製
造が困難である問題もある。即ち過少寸法のペレ
ツトを製造するには、マスターバツチ組成物を
1.0mm未満の外径にて押出する必要があるが、組
成物の押出加工性が悪いために連続的に押出する
ことが出来ず屡々切断するからである。従つて本
発明のマスターバツチの好ましい寸法は、最大外
径1.5〜2.5mm、長さ1.5〜2.5mmであり、特に最大
外径1.5〜2.0mm、長さ1.9〜2.5mmである。 本発明のマスターバツチには、必要に応じて通
常の各種の添加剤、たとえば顔料、難燃剤、老化
防止剤、充填剤等を配合することが出来る。 顔料をマスターバツチ中に配合する場合、その
量はポリオレフイン100重量部あたり5〜200重量
部、好ましくは10〜100重量部程度である。ある
いは顔料100重量部あたり発泡剤は40〜400重量
部、好ましくは70〜200重量部程度であり、ポリ
オレフインの量は顔料と発泡剤の合計量100重量
部あたり40〜300重量部程度である。 本発明のマスターバツチは、上記した組成物を
断面円形、楕円形等のストランド状に押出し、水
中あるいは空気中で切断することにより容易に製
造すにことが出来る。ポリオレフイン組成物の押
出物は、その表面に多少の角があつても押出後短
時間でその角に丸みを帯びるので、極端に鋭利な
角を有する断面形状でない限り種々の断面角形状
たとえば四角形や三角形等、に押出され、次いで
切断されたものであつてもよい。しかしながら断
面円形のストランド状に押出し切断したものが特
に好ましい。 本発明のマスターバツチを用いて押出し成形す
るに際しては、通常の押出機を用いて、マスター
バツチと生ポリオレフインペレツトとを所定の配
合割合(たとえばマスターバツチと生ポリオレフ
インペレツトとの混合物中に含有される発泡剤の
量がポリオレフイン100重量部あたり0.25〜5重
量部、好ましくは0.5〜3.0重量部程度となる割
合)で配合して通常手段に従つて押出し発泡する
ことが出来る。なお本発明に於いては、この押出
発泡の際に次の様な手段を用いることが好まし
い。即ちマスターバツチを秤量するための秤量手
段として、従来一般に使用されて来た容量秤量器
に代えて重量秤量器を使用する。これによりマス
ターバツチペレツトの見掛け比重の変動に基づく
生ポリオレフインペレツトとの配合比の変動を有
効に防止出来、長期間安定して押出しが可能とな
る。また押出機に供給するために使用するホツパ
ーとして従来のホツパーに比し容量の小さいもの
を使用し、またその形状としても押出機の口径に
近いサイズの円筒状のものが好ましい。このよう
なホツパーを使用することにより、押出機に至る
間におけるマスターバツチと生ポリオレフインペ
レツトとの落下速度差を一層少なくすることがで
きる。 〔実施例〕 以下に実施例をあげて本発明を説明する。但し
部とあるは重量部を示すものとする。 実施例1〜8、比較例1〜3 密度0.95のポリエチレン100部と、アゾジカル
ボンアミド25部を130℃に保持した2本ロールに
て20分間充分混合し、次いで140℃にて細紐状に
押出し水中で切断して第1表に示す実施例並びに
比較例の円柱形マスターバツチペレツトを製造し
た。 各マスターバツチペレツトと密度0.96の生ポリ
エチレンペレツト(平均粒径:3.5mm)とをマス
ターバツチペレツト1部に対し生ポリエチレンペ
レツト20部の量比で重量秤量してバレル温度200
℃、L/D24の押出機のホツパーにホツパー内滞
留時間約5分となる速度で供給し、外径0.65mmの
導体上に押出して発泡させ、発泡度25%、厚さ
0.15mmの発泡絶縁電線を製造した。但しこの際使
用したホツパーの下部排出口のサイズは押出機の
口径とほぼ同一である。 各実施例、比較例につき下記の評価を行い、そ
の結果を第1表に示した。 マスターバツチペレツト製造の容易性:上記し
たマスターバツチペレツトの製造の際、細紐状押
出物連続押出及び水中での切断が極めて容易であ
つたものを優、極めて容易とはいい難いがまずま
す無難な連続押出及び切断が行えたものを良、細
紐状押出物が時々切断し連続押出できなかつたも
のを可、細紐状押出物が頻繁に切断したものを不
可とした。 押出機ホツパー内でのペレツトの分離性:マス
ターバツチペレツトと生ポリエチレンペレツトと
がホツパー内で分離すると発泡剤の供給量が変動
し、押出物の発泡度が従つて発泡絶縁層の静電容
量が時間的に変動する。そこで静電容量の時間的
変動が少ないもの程ペレツト分離性が少ないこと
から、180分間における発泡絶縁層の静電容量の
変動が1%未満のものを秀、1%以上2%未満の
ものを優、2%以上3%未満のものを良、3%以
上5%未満のものを可、5%以上のものを不可と
した。 押出機内でのペレツトの均一混練性:マスター
バツチペレツトと生ポリエチレンペレツトとの押
出機内での混練が均一に進むと発泡絶縁層の静電
容量及び外径が安定し、逆に混練が不充分である
とそれらの特性が絶えず変動する。そこで10分間
における発泡絶縁層の静電容量の変動が1%未満
であり外径の変動が0.005mm未満のものを秀、静
電容量の変動が1%以上1.5%未満であり外径の
変動が0.005mm以上0.01mm未満のものを優 静電
容量の変動が1.5%以上2%未満であり外径の変
動が0.01mm以上0.015mm未満のものを良、静電容
量の変動が2%以上2.5%未満であり外径の変動
が0.015mm以上0.02mm未満のものを可、静電容量
の変動が2.5%以上であり外径の変動が0.02mm以
上のものを不可とした。 以下の表中マスターバツチペレツトをMBPと
して示す。
[Industrial Field of Application] The present invention relates to a masterbatch containing a blowing agent, and in particular to a masterbatch suitable for producing extrusion molded products of polyolefin foam, particularly foam insulated cables. [Prior Art] Extrusion molding methods for synthetic resin foams are widely used in various fields, and are also applied, for example, to the manufacture of foam insulated cables and high frequency cables. In the production of synthetic resin foams by conventional extrusion, a foamable composition containing a blowing agent in a small amount of several parts by weight or less per 100 parts by weight of synthetic resin is used. Uniformly mixing such a small amount of blowing agent into a large amount of synthetic resin is disadvantageous in terms of mixing time and power consumption, so the inventors of the present invention have previously proposed the method disclosed in Japanese Patent Application Laid-Open No. 55-62935. In the publication, we proposed a method using a composition containing a synthetic resin and a blowing agent at a high concentration, that is, a masterbatch. This master batch only needs to be fed to the extruder hottuber at a predetermined ratio with the biosynthetic resin that does not contain a foaming agent, and is kneaded with the biosynthetic resin by the kneading action of the extruder, making it the target of extrusion foaming. It has the advantage that it is not necessary to mix the entire amount of the synthetic resin with the blowing agent. However, according to the inventors' continued research, it was found that the dimensions and shape of the masterbatch containing the foaming agent are extremely important in order to stably produce high-quality foamed molded products, especially foamed polyolefin insulated wires. did. In other words, if the master batch pellets are too large, they will not mix sufficiently with the biosynthetic resin pellets in the extruder, making it difficult to obtain a uniformly foamed molded product.Especially when manufacturing insulated cables, the capacitance of the foamed insulation layer will increase. and the outer diameter fluctuates greatly.
On the other hand, if the master batch pellets are too small, it is difficult to obtain pellets with uniform dimensions, and due to the irregular dimensions, there is a problem that the falling speed of each pellet in the hopper, that is, the feeding speed becomes non-uniform. If the feeding rate is uneven, it is natural that a product with a constant degree of foaming cannot be obtained. When mass producing foamed synthetic resin molded products, the masterbatch is usually transported close to the extruder by pneumatic transportation, but if the masterbatch pellets are square pellets obtained by shredding a sheet of the masterbatch composition, the air During transportation, pellets collide with each other or with the wall of the pellet transport pipe, which tends to cause the pellets to come off and form masterbatch powder. Pellet containing powder suffers from the same problems as irregularly sized pellets discussed above. Although spherical pellets are most preferable in terms of difficulty in forming powder, it is extremely difficult to mass-produce spherical pellets at low cost. [Problems to be Solved by the Invention] The problems to be solved by the present invention are to solve the above-mentioned difficulties of the conventional masterbatch. The object of the present invention is to develop a masterbatch that can be easily manufactured with uniform dimensions and that can be uniformly mixed with biosynthetic resin pellets in an extruder. [Means for Solving the Problems] The above problems can be solved by using a polyolefin masterbatch containing a blowing agent that has specific dimensions and shapes. That is, the present invention is a cut extrudate of a composition comprising a polyolefin and a blowing agent of 10 to 100 parts by weight per 100 parts by weight of the polyolefin, and has a maximum outer diameter of 1.0 to 2.5 mm and a length of 1.0 mm. This relates to a masterbatch characterized by a diameter of ~3.0 mm. [Structure and operation of the invention] Commercially available polyolefine pellets (hereinafter referred to as raw polyolefine pellets) have an average diameter of about 2 to 5 mm, although they vary somewhat depending on the manufacturer. If so, even if it is mixed with the raw polyolefin impellets and charged into the extruder hopper, no problematic separation will occur between the two while falling in the hopper. In addition, since the size of the masterbatch is smaller than that of conventional products, it is extruded after being extremely uniformly kneaded with the raw polyolefin pellets by the kneading action provided by a normal extruder. Therefore, by using the master batch pellets of the present invention, it is possible to produce high quality foam insulated wires with little variation in capacitance and outer diameter. Furthermore, the masterbatch of the present invention is easy to manufacture because it is made by extruding a composition consisting of polyolefin and a blowing agent into strands and then cutting them, and although the cut surfaces have some edges, the overall shape of the extrudate is It has a characteristic roundness. Therefore, compared to conventional square pellets, there are fewer corners that are easily removed, so powder is less likely to be generated even when the pellets are transported by air, and even if powder is generated, the amount is small and does not pose a problem in practice. A wide variety of blowing agents are used as the blowing agent constituting the masterbatch of the present invention, such as azodicarbonamide, 4,4'-oxybis(benzenesulfonyl hydrazide), azobisisobutyronitrile, dinitrosopentamethylenetetramine,
Specific examples include paratoluenesulfonyl hydrazide and sodium bicarbonate, and preferred examples include azodicarponamide, 4,4'-oxybis(benzenesulfonylhydrazide), and mixtures thereof. As the base polyolefin used in the masterbatch of the present invention, any of those conventionally used in this field can be used, such as various polyolefins and various copolymers of olefin and other monomers. . Preferred specific examples include various polyethylenes of extremely low density to high density, polypropylene, polybutene-1, poly-4-
Homopolymers or substantially homopolymers of olefins such as methylpentene-1, or copolymers of olefins and vinyl acetate, ethyl acrylate, etc., such as ethylene-propylene copolymers, poly-4-methylpentene -1 copolymer, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, and the like. Among these, various polyethylenes having extremely low density to high density are particularly preferred. As polyolefin in masterbatch,
Usually, the same polyolefin as the constituent material of the desired polyolefin foam is used, but a different type of polyolefin may be used if necessary. The blending ratio of the blowing agent in the masterbatch is 10 to 100 parts by weight per 100 parts by weight of the polyolefin. If it is less than 10 parts by weight, the original function as a masterbatch will be poor, while if it is more than 100 parts by weight, the kneading properties of the polyolefin and the blowing agent will be poor, and the resulting kneaded composition will be brittle, so that its extrudates There are problems in that powder is easily generated when shredding, or it is easy to break or become powder during air transportation.
Therefore, the blending ratio of the blowing agent is preferably 15 to 50 parts by weight. The master batch of the present invention has a maximum outer diameter of 1.0 to 2.5
mm, extruded and cut pellets with a length of 1.0 to 3.0 mm are essential. Square pellets have the problem of easily generating powder as mentioned above, but even if they are extruded or cut pellets, pellets with a maximum outer diameter larger than 2.5 mm and a length longer than 3.0 mm may have excessive pellet dimensions. Therefore, it is difficult to mix uniformly with raw polyolefin impellets in an extruder, making it difficult to produce high-quality foam molded products. On the other hand, pellets with a maximum outer diameter smaller than 1.0 mm and a length shorter than 1.0 mm have a difference in falling speed in the hopper compared to commercially available raw polyolefin pellets due to the small pellet size, and pellet separation is difficult. In addition to the problems that arise, such undersized pellets are difficult to manufacture because masterbatch compositions generally do not have good extrudability. That is, to produce undersized pellets, the masterbatch composition is
Although it is necessary to extrude at an outer diameter of less than 1.0 mm, the extrusion processability of the composition is poor, so continuous extrusion is not possible and the composition is often cut. Therefore, the preferred dimensions of the masterbatch of the invention are a maximum outer diameter of 1.5 to 2.5 mm and a length of 1.5 to 2.5 mm, particularly a maximum outer diameter of 1.5 to 2.0 mm and a length of 1.9 to 2.5 mm. The masterbatch of the present invention may contain various conventional additives such as pigments, flame retardants, anti-aging agents, fillers, etc., if necessary. When the pigment is blended into the masterbatch, the amount thereof is about 5 to 200 parts by weight, preferably about 10 to 100 parts by weight, per 100 parts by weight of the polyolefin. Alternatively, the amount of the blowing agent is about 40 to 400 parts by weight, preferably about 70 to 200 parts by weight, per 100 parts by weight of the pigment, and the amount of polyolefin is about 40 to 300 parts by weight, per 100 parts by weight of the total amount of the pigment and the blowing agent. The masterbatch of the present invention can be easily manufactured by extruding the above-described composition into strands having a circular or oval cross section and cutting the strands in water or in air. Even if an extruded product of a polyolefin composition has some corners on its surface, the corners will become rounded within a short time after extrusion. It may be extruded into triangles or the like and then cut. However, those extruded and cut into strands with a circular cross section are particularly preferred. When extrusion molding is performed using the masterbatch of the present invention, the masterbatch and raw polyolefin impellets are mixed at a predetermined mixing ratio (for example, the foamed polyolefin contained in the mixture of the masterbatch and raw polyolefin impellets is The composition can be extruded and foamed by a conventional method by blending the agent in an amount of about 0.25 to 5 parts by weight, preferably about 0.5 to 3.0 parts by weight, per 100 parts by weight of the polyolefin. In the present invention, it is preferable to use the following means during this extrusion foaming. That is, as a weighing means for weighing the masterbatch, a gravimetric scale is used in place of the volumetric scale that has been commonly used in the past. This effectively prevents fluctuations in the blending ratio with the raw polyolefin pellets due to fluctuations in the apparent specific gravity of the masterbatch pellets, allowing stable extrusion over a long period of time. In addition, the hopper used to feed the extruder should preferably have a smaller capacity than conventional hoppers, and should preferably have a cylindrical shape close to the diameter of the extruder. By using such a hopper, it is possible to further reduce the difference in falling speed between the masterbatch and the raw polyolefin impellets on the way to the extruder. [Example] The present invention will be described below with reference to Examples. However, parts indicate parts by weight. Examples 1 to 8, Comparative Examples 1 to 3 100 parts of polyethylene with a density of 0.95 and 25 parts of azodicarbonamide were thoroughly mixed for 20 minutes using two rolls kept at 130°C, and then heated to 140°C to form a thin string. Extrusion Cylindrical masterbatch pellets of Examples and Comparative Examples shown in Table 1 were produced by cutting in water. Each masterbatch pellet and raw polyethylene pellets with a density of 0.96 (average particle size: 3.5mm) were weighed at a ratio of 20 parts of raw polyethylene pellets to 1 part of masterbatch pellets, and the pellets were heated to a barrel temperature of 200.
℃, L/D 24 extruder hopper at a rate such that the residence time in the hopper is approximately 5 minutes, and extruded onto a conductor with an outer diameter of 0.65 mm to foam, with a foaming degree of 25% and a thickness of
A 0.15mm foam insulated wire was manufactured. However, the size of the lower outlet of the hopper used at this time was almost the same as the diameter of the extruder. The following evaluation was performed for each Example and Comparative Example, and the results are shown in Table 1. Ease of manufacturing masterbatch pellets: When manufacturing the masterbatch pellets described above, continuous extrusion of thin string-like extrudates and cutting in water were extremely easy. Those that were able to be continuously extruded and cut fairly well were evaluated as good, those where the thin string-like extrudates sometimes broke and continuous extrusion could not be performed were evaluated as acceptable, and those where the thin string-like extrudates frequently broke were judged as unacceptable. Separability of pellets in the extruder hopper: Separation of masterbatch pellets and raw polyethylene pellets in the hopper changes the amount of blowing agent supplied, and the degree of foaming of the extrudate therefore increases. Capacity changes over time. Therefore, the smaller the variation in capacitance over time is, the lower the pellet separation property is, so the foam insulating layer with a capacitance variation of less than 1% over 180 minutes is excellent, and those with a capacitance variation of 1% or more and less than 2% are excellent. Excellent, 2% or more and less than 3% is good, 3% or more and less than 5% is acceptable, and 5% or more is bad. Uniform kneading of pellets in the extruder: When the masterbatch pellets and raw polyethylene pellets are kneaded uniformly in the extruder, the capacitance and outer diameter of the foamed insulating layer become stable, and conversely, the kneading becomes more stable. Inadequacy causes their properties to constantly fluctuate. Therefore, the foam insulating layer should have a capacitance variation of less than 1% and an outer diameter variation of less than 0.005 mm for 10 minutes, and a capacitance variation of 1% or more and less than 1.5% and an outer diameter variation of less than 0.005 mm. Good if the capacitance fluctuation is 1.5% or more and less than 2%, and outer diameter fluctuation is 0.01mm or more and less than 0.015mm, and capacitance fluctuation is 2% or more. Those with a capacitance variation of 2.5% or more and an outer diameter variation of 0.015 mm or more and less than 0.02 mm were considered acceptable, and those with a capacitance variation of 2.5% or more and an outer diameter variation of 0.02 mm or more were unacceptable. In the table below, master batch pellets are indicated as MBP.

【表】 比較例 4 密度0.95のポリエチレン100部と、アゾジカル
ボンアミド25部を130℃に保持した2本ロールに
て20分間充分混合し、次いで3.0mmにてシート出
し、このシートを室温においてペレタイズして
3.0mm角の略正方形のマスターバツチペレツトを
製造した。 このペレツトを用いて実施例1等と同様にして
発泡厚0.15mmの発泡絶縁電線を製造した。本比較
例の押出機ホツパー内でのペレツトの分離性は秀
であり、押出機内でのペレツトの均一混練性は不
可であつた。 実施例 9 密度0.92のポリエチレン100部と4.4′−オキシビ
ス(ベンゼンスルホニルヒドラジド)30部を用い
て実施例1と同様の方法により外径1.8mm、長さ
2.2mmの円柱状マスターバツチペレツトを得た。 このペレツトと密度0.92の生ポリエチレンペレ
ツト(平均粒径:4.5mm)とをマスターバツチペ
レツト1部に対し生ポリエチレンペレツト20部の
量比で重量計量してバレル温度160℃、L/D24
の押出機のホツパーにホツパー内滞留時間約5分
となる速度で供給し、外径0.65mmの導体上に押出
して発泡させ、発泡度25%、厚さ0.15mmの発泡絶
縁電線を製造した。 本実施例のマスターバツチペレツト製造の容易
性は優、押出機ホツパー内でのペレツトの分離性
は秀であり、また押出機内でのペレツトの均一混
練性も秀であつた。 比較例 5 実施例9で使用のマスターバツチ組成物を用い
て実施例9と同様の方法により外径3.5mm、長さ
3.0mmの円柱状マスターバツチペレツトを得て、
実施例9と同様にして発泡厚0.15mmの発泡絶縁電
線を製造した。 本比較例のマスターバツチペレツト製造の容易
性は優、押出機ホツパー内でのペレツトの分離性
は秀であり、また押出機内でのペレツトの均一混
練性は不可であつた。 実施例 10 実施例4のマスターバツチペレツト1部に対し
て密度0.96の生ポリエチレンペレツト(平均粒
径:2〜5mmの混合物)16部の量比で重量計量し
バレル温度205℃、L/D24の押出機のホツパー
に供給し、0.5φmmの導体上に押出して発泡させ、
同時に着色したポリエチレンを別の押出機で上記
発泡層の上に被覆させて、発泡層−着色充実層
(発泡層0.15mm、充実層0.03mm)を有する2層発
泡電線を製造した。 得られた電線にはピンホールはなく、電線製造
時のキヤパシテイー変動、外径変動がなく、外観
は良好で、各種電気特性は優れたものである。
[Table] Comparative Example 4 100 parts of polyethylene with a density of 0.95 and 25 parts of azodicarbonamide were thoroughly mixed for 20 minutes using two rolls kept at 130°C, then sheeted out at 3.0 mm, and this sheet was pelletized at room temperature. do
Approximately square masterbatch pellets of 3.0 mm square were manufactured. Using this pellet, a foamed insulated wire having a foam thickness of 0.15 mm was manufactured in the same manner as in Example 1. The separation of the pellets in the extruder hopper of this comparative example was excellent, and the pellets could not be uniformly kneaded in the extruder. Example 9 A product with an outer diameter of 1.8 mm and a length of
A 2.2 mm cylindrical master batch pellet was obtained. These pellets and raw polyethylene pellets with a density of 0.92 (average particle size: 4.5 mm) were weighed at a ratio of 20 parts of raw polyethylene pellets to 1 part of masterbatch pellets, and the barrel temperature was 160°C. D24
The mixture was fed into the hopper of an extruder at a rate such that the residence time in the hopper was about 5 minutes, and the foam was extruded onto a conductor with an outer diameter of 0.65 mm to produce a foamed insulated wire with a foaming degree of 25% and a thickness of 0.15 mm. The ease of producing the masterbatch pellets of this example was excellent, the separability of the pellets in the extruder hopper was excellent, and the uniform kneading of the pellets in the extruder was also excellent. Comparative Example 5 Using the masterbatch composition used in Example 9, the outer diameter was 3.5 mm and the length was prepared in the same manner as in Example 9.
Obtain 3.0 mm cylindrical master batch pellets,
A foam insulated wire with a foam thickness of 0.15 mm was produced in the same manner as in Example 9. The masterbatch pellets of this comparative example were easy to manufacture, the pellets had excellent separability in the extruder hopper, and the pellets were not uniformly kneaded in the extruder. Example 10 A ratio of 16 parts of raw polyethylene pellets (average particle size: 2 to 5 mm) having a density of 0.96 to 1 part of the masterbatch pellets of Example 4 was measured by weight, and the barrel temperature was 205°C. /Feed it to the hopper of the D24 extruder, extrude it onto a 0.5φmm conductor, and foam it.
At the same time, colored polyethylene was coated on the foam layer using another extruder to produce a two-layer foam electric wire having a foam layer-colored solid layer (foam layer 0.15 mm, solid layer 0.03 mm). The obtained wire has no pinholes, no fluctuations in capacity or outside diameter during wire manufacturing, has a good appearance, and has excellent electrical properties.

Claims (1)

【特許請求の範囲】 1 ポリオレフインと該ポリオレフイン100重量
部あたり10〜100重量部の発泡剤とから成る組成
物の押出物を切断した円柱状ペレツトであつて、
最大外径が1.0〜2.5mm、長さが1.0〜3.0mmである
ことを特徴とするマスターバツチ。 2 ポリオレフインがポリエチレンであり、かつ
外径1.5〜2.0mm、長さ1.9〜2.5mmの円柱状ペレツ
トである特許請求の範囲第1項記載のマスターバ
ツチ。
[Scope of Claims] 1. Cylindrical pellets obtained by cutting an extrudate of a composition comprising a polyolefin and 10 to 100 parts by weight of a blowing agent per 100 parts by weight of the polyolefin,
A master batch characterized by a maximum outer diameter of 1.0 to 2.5 mm and a length of 1.0 to 3.0 mm. 2. The masterbatch according to claim 1, wherein the polyolefin is polyethylene and is a cylindrical pellet having an outer diameter of 1.5 to 2.0 mm and a length of 1.9 to 2.5 mm.
JP21647886A 1986-09-12 1986-09-12 Masterbatch Granted JPS6372734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21647886A JPS6372734A (en) 1986-09-12 1986-09-12 Masterbatch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21647886A JPS6372734A (en) 1986-09-12 1986-09-12 Masterbatch

Publications (2)

Publication Number Publication Date
JPS6372734A JPS6372734A (en) 1988-04-02
JPH054416B2 true JPH054416B2 (en) 1993-01-20

Family

ID=16689069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21647886A Granted JPS6372734A (en) 1986-09-12 1986-09-12 Masterbatch

Country Status (1)

Country Link
JP (1) JPS6372734A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224911U (en) * 1988-08-02 1990-02-19
EP1508585A4 (en) * 2003-04-30 2005-03-23 Dainippon Ink & Chemicals Masterbatch pellet mixture
JP2015025038A (en) * 2013-07-25 2015-02-05 富士ケミカル株式会社 Antimicrobial agent content thermoplastic resin composition and manufacturing method of antimicrobial agent content thermoplastic resin article therewith

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1293120A (en) * 1970-04-17 1972-10-18 Phillips Petroleum Co Blowing agent concentrate
JPS56152108A (en) * 1980-04-24 1981-11-25 Dainichi Nippon Cables Ltd Method of manufacturing foamable polyolefin insulated wire
US4530880A (en) * 1983-01-27 1985-07-23 Sekisui Kaseihin Kogyo Kabushiki Kaisha Granular organohalide flame retardant additive
JPS6270429A (en) * 1985-09-25 1987-03-31 Dainichi Color & Chem Mfg Co Ltd Masterbatch for expansion molding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1293120A (en) * 1970-04-17 1972-10-18 Phillips Petroleum Co Blowing agent concentrate
JPS56152108A (en) * 1980-04-24 1981-11-25 Dainichi Nippon Cables Ltd Method of manufacturing foamable polyolefin insulated wire
US4530880A (en) * 1983-01-27 1985-07-23 Sekisui Kaseihin Kogyo Kabushiki Kaisha Granular organohalide flame retardant additive
JPS6270429A (en) * 1985-09-25 1987-03-31 Dainichi Color & Chem Mfg Co Ltd Masterbatch for expansion molding

Also Published As

Publication number Publication date
JPS6372734A (en) 1988-04-02

Similar Documents

Publication Publication Date Title
CA2300776C (en) Rotational molding
EP0016348B1 (en) Method of making polyethylene blend foams having improved compressive strength and foams prepared by said method
CN106883490B (en) Micro-foaming master batch, preparation method thereof and refrigerator foaming plate
US3919164A (en) Process for extruding thermoplastic resin composition containing a high inorganic filler content
US2945827A (en) Polyethylene coated with wax and polystyrene or polytetrafluoroethylene and preparation of cellular article therefrom
JPS5840326A (en) Foamable polyolefin resin composition
JPH054416B2 (en)
JP4023911B2 (en) Cylindrical polyolefin resin foam particles having through holes and a method for producing a polyolefin resin foam molded body having continuous voids
JPH062340B2 (en) Master-batch
CN85109427A (en) Electrically conductive polyethylene
JPH0442763B2 (en)
US3558752A (en) Foamed resins production
JP2002012691A (en) Method for extrusion molding of foamed vinyl chloride resin tubular material
JPH0114933B2 (en)
JPS6131440A (en) Preparation of electrically conductive foam
JPS61188424A (en) Production of thermoplastic resin containing liquid additive
JP3482519B2 (en) Mixtures for the production of expanded cellular polymer products and methods of making using the mixtures
JP2929076B2 (en) Master Badge
JPH05339412A (en) Foamable thermoplastic resin composition and production of foamed insulated wire
JPH0220654B2 (en)
JPH02155613A (en) Primary foamed particle and foamed molded body using the same
JP3158625B2 (en) Method for producing colored synthetic resin molding material
JPH0551475A (en) Expandable thermoplastic resin composition and production of foam insulated electric wire
JPH11290182A (en) Padding for pillow
SU876672A1 (en) Method of producing porous plastic material