JPH0544023B2 - - Google Patents

Info

Publication number
JPH0544023B2
JPH0544023B2 JP63180273A JP18027388A JPH0544023B2 JP H0544023 B2 JPH0544023 B2 JP H0544023B2 JP 63180273 A JP63180273 A JP 63180273A JP 18027388 A JP18027388 A JP 18027388A JP H0544023 B2 JPH0544023 B2 JP H0544023B2
Authority
JP
Japan
Prior art keywords
group
compound
layer
charge
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63180273A
Other languages
Japanese (ja)
Other versions
JPH0232358A (en
Inventor
Koichi Suzuki
Norihiro Kikuchi
Takao Takiguchi
Masakazu Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63180273A priority Critical patent/JPH0232358A/en
Publication of JPH0232358A publication Critical patent/JPH0232358A/en
Publication of JPH0544023B2 publication Critical patent/JPH0544023B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/062Acyclic or carbocyclic compounds containing non-metal elements other than hydrogen, halogen, oxygen or nitrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06147Amines arylamine alkenylarylamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0635Heterocyclic compounds containing one hetero ring being six-membered
    • G03G5/0637Heterocyclic compounds containing one hetero ring being six-membered containing one hetero atom

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、電子写真感光䜓に関し、詳しくは改
善された電子写真特性を䞎える䜎分子の有機光導
電䜓を含有する電子写真感光䜓に関する。 埓来の技術 埓来、電子写真感光䜓で甚いる光導電材料ずし
お、ポリビニルカルバゟヌルをはじめずする各皮
の有機光導電性ポリマヌが提案されおきたが、こ
れらのポリマヌは、無機系光導電材料に比べ成膜
性、軜量性などの点で優れおいるにもかかわらず
今日たでその実甚化が困難であ぀たのは、未だ十
分な成膜性が埗られおおらず、たた感床、耐久性
および環境倉化による安定性の点で無機系光導電
材料に比べ劣぀おいるためであ぀た。 たた米囜特蚱第4150987号明现曞などに開瀺の
ヒドラゟン化合物、米囜特蚱第3837851号明现曞
などに蚘茉のトリアリヌルピラゟリン化合物、特
開昭51−94828号公報、特開昭51−94829号公報な
どに蚘茉の−スチリルアントラセン化合物など
の䜎分子の有機光導電䜓が提案されおいる。この
ような䜎分子の有機光導電䜓は、䜿甚するバむン
ダヌを適圓に遞択するこずによ぀お有機光導電性
ポリマヌの分野で問題ずな぀おいた成膜性の欠点
を解消できるようにな぀たが、感床の点で十分な
ものずは蚀えない。 このようなこずから、近幎、感光局を電荷発生
局ず電荷茞送局に機胜分離させた積局構造䜓が提
案された。この積局構造䜓を感光局ずした電子写
真感光䜓は、可芖光に察する感床、電荷保持力、
衚面匷床などの点で改善できるようにな぀た。 このような電子写真感光䜓は、䟋えば特開昭58
−198043号公報、特開昭54−110837号公報、特開
昭55−161247号公報などに開瀺されおいるアゟ化
合物ずスチリル化合物を積局したものなどがあ
る。 しかし、埓来の䜎分子の有機光導電䜓を電荷茞
送局に甚いた電子写真感光䜓では、感床、特性が
必ずしも十分でなく、たた繰り返し垯電および露
光を行な぀た際には明郚電䜍ず暗郚電䜍の倉動が
倧きく改善すべき点がある。 発明が解決しようずする課題 本発明の目的は、前述の欠点たたは䞍利を解消
した電子写真感光䜓を提䟛するこず、新芏な有機
光導電䜓を提䟛するこず、電荷発生局ず電荷茞送
局に機胜分離した積局感光局における新芏な電荷
茞送物質を提䟛するこずにある。 課題を解決する手段、䜜甚 本発明は、導電性支持䜓䞊に感光局を積局した
電子写真感光䜓においお、感光局が䞋蚘䞀般匏
で瀺す化合物を含有するこずを特城ずする
電子写真感光䜓から構成される。 匏䞭、R1およびR2は眮換基を有しおもよいア
ルキル基、アリヌル基たたはアラルキル基を瀺
し、同䞀であ぀おも異な぀おいおもよい。 R3は氎玠原子、眮換基を有しおもよいアルキ
ル基、アリヌル基、アラルキル基たたは−SR7基
R7はアルキル基、アリヌル基たたはアラルキル
基を瀺す。 R4R5およびR6は氎玠原子、眮換基を有しお
もよいアルキル基、アリヌル基、アラルキル基、
ハロゲン原子たたは−SR7基を瀺し、同䞀であ぀
おも異な぀おいおもよい。 䜆し、R1R2が眮換基を有する堎合の眮換基
たたはR3R4R5R6のうち少なくずも぀は
−SR7基であり、たた−SR7基が぀以䞊の堎
合、R7は同䞀でなくおよい。 ぱチレン基、ビニレン基、酞玠原子、アミ
ノ基−R8たたは硫黄原子を瀺し、R8は
アルキル基、アリヌル基たたはアラルキル基を瀺
す。 具䜓的には、R1R2においお、アルキル基ず
しおはメチル、゚チル、プロピル、ブチルなどの
基、アリヌル基ずしおはプニル、ナフチルなど
の基、アラルキル基ずしおはベンゞル、ナフチル
メチルなどの基が挙げられ、さらに、䞊蚘基の眮
換基ずしおは、フツ玠原子、塩玠原子、ペり玠原
子、臭玠原子などのハロゲン原子、メチル、゚チ
ル、プロピル、ブチルなどのアルキル基、メトキ
シ、゚トキシ、プノキシなどのアルコキシ基な
ど、たたR7に぀いおは、メチル、゚チル、プロ
ピル、ブチル、プニル、ナフチル、ベンゞル、
ナフチルメチルなどの基が挙げられる。 R3R4R5R6の堎合に぀いおも、具䜓的に
はR1ず同様な基が挙げられる。 たた、R8の堎合、具䜓的にはR7ず同様な基が
挙げられる。 以䞋に䞀般匏で瀺す化合物に぀いお代衚
䟋を列挙する。 化合物䟋(1) 化合物䟋(2) 化合物䟋(3) 化合物䟋(4) 化合物䟋(5) 化合物䟋(6) 化合物䟋(7) 化合物䟋(8) 化合物䟋(9) 化合物䟋(10) 化合物䟋(11) 化合物䟋(12) 化合物䟋(13) 化合物䟋(14) 化合物䟋(15) 化合物䟋(16) 化合物䟋(17) 化合物䟋(18) 化合物䟋(19) 化合物䟋(20) 化合物䟋(21) 化合物䟋(22) 化合物䟋(23) 化合物䟋(24) 化合物䟋(25) 化合物䟋(26) 化合物䟋(27) 化合物䟋(28) 化合物䟋(29) 化合物䟋(30) 化合物䟋(31) 化合物䟋(32) 化合物䟋(33) 化合物䟋(34) 化合物䟋(35)はない 化合物䟋(36) 化合物䟋(37) 化合物䟋(38) 化合物䟋(39) 化合物䟋(40) 化合物䟋(41) 化合物䟋(42)はない 化合物䟋(43) 化合物䟋(44) 化合物䟋(45) 化合物䟋(46) 化合物䟋(47) 合成䟋化合物䟋(18)の合成 䞊匏ベンゞルクロラむドからWittigè©Šè–¬
にし、ニトロ化した埌、ゞベンゟス
ベレノンず反応させ、ニトロ䜓ずし、さら
に還元しおアミノ䜓を埗た。 これず−メチルメルカプトアニリンでり
ルマン反応を行ない、目的化合物を埗た。 収率 17.1 融点 129.2℃ 元玠分析 C36H29NS2 Mw539.76 枬定倀(%) 理論倀(%)  80.17 80.11  5.51 5.42  2.52 2.60  11.80 11.88 なお、合成䟋以倖の化合物に぀いおも、䞀般に
同様な手法で合成される。 本発明の奜たしい具䜓䟋では、感光局を電荷発
生局ず電荷茞送局に機胜分離した電子写真感光䜓
の電荷茞送物質に前蚘䞀般匏で瀺す化合物
を甚いる。 本発明における電荷茞送局は前蚘䞀般匏
で瀺す化合物ず結着剀ずを適圓な溶剀に溶解させ
た溶液を塗垃し、也燥させるこずにより圢成させ
るこずが奜たしい。 ここに甚いるれる結着剀ずしおは、䟋えばポリ
アリレヌト、ポリスルホン、ポリアミド、アクリ
ル暹脂、アクリロニトリル暹脂、メタクリル暹
脂、塩化ビニル暹脂、酢酞ビニル暹脂、プノヌ
ル暹脂、゚ポキシ暹脂、ポリ゚ステル、アルキド
暹脂、ポリカヌボネヌト、ポリりレタンあるいは
共重合䜓、䟋えばスチレン−ビタゞ゚ンコポリマ
ヌ、スチレン−アクリロニトリルコポリマヌ、ス
チレン−マレむン酞コポリマヌなどを挙げるこず
ができる。たたこのような絶瞁性ポリマヌの他
に、ポリビニルカルバゟヌル、ポリビニルアント
ラセンやポリビニルピレンなどの有機光導電性ポ
リマヌも䜿甚できる。 この結着剀ず前蚘特定の電荷茞送物質ずの配合
割合は、結着剀100重量郚圓り電荷茞送物質を10
〜500重量郚ずするこずが奜たしい。 電荷茞送局は、䞋述の電荷発生局ず電気的に接
続されおおり、電界の存圚䞋で電荷発生局から泚
入された電荷キダリアを受けずるずずもに、これ
らの電荷キダリアを衚面たで茞送できる機胜を有
しおいる。この際、この電荷茞送局は電荷発生局
の䞊に積局されおいおもよく、たたその䞋に積局
されおいおもよい。しかし、電荷茞送局は、電荷
発生局の䞊に積局されおいるこずが望たしい。 この電荷茞送局は、電荷キダリアを茞送できる
限界があるので、必芁以䞊に膜厚を厚くするこず
ができない。䞀般的には〜40ÎŒmであるが、奜
たしい範囲は10〜30ÎŒmである。 このような電荷茞送局を圢成する際に甚いる有
機溶剀は、䜿甚する結着剀の皮類によ぀お異な
り、たたは電荷発生局や䞋述の䞋匕局を溶解しな
いものから遞択するこずが奜たしい。 具䜓的な有機溶剀ずしおは、メタノヌル、゚タ
ノヌル、む゜プロパノヌルなどのアルコヌル類、
アセトン、メチル゚チルケトン、シクロヘキサノ
ンなどのケトン類、−ゞメチルホルムアミ
ド、−ゞメチルアセトアミドなどのアミド
類、ゞメチルスルホキシドなどのスルホキシド
類、テトラヒドロフラン、ゞオキサン、゚チレン
グリコヌルモノメチル゚ヌテルなどの゚ヌテル
類、酢酞メチル、酢酞゚チルなどの゚ステル類、
塩化メチレン、ゞクロル゚チレン、四塩化炭玠、
トリクロル゚チレンなどの脂肪族ハロゲン化炭化
氎玠あるいはベンれン、トル゚ン、キシレン、モ
ノクロルベンれン、ゞクロルベンれンなどの芳銙
族類などを甚いるこずができる。 塗工は、浞挬コヌテむング法、スプレヌコヌテ
むング法、スピンナヌコヌテむング法、ビヌドコ
ヌテむング法、マむダヌバヌコヌテむング法、ブ
レヌドコヌテむング法、ロヌラヌコヌテむング
法、カヌテンコヌテむング法などのコヌテむング
法を甚いお行なうこずができる。也燥は、宀枩に
おける指觊也燥ののち、加熱也燥する方法が奜た
しい。加熱也燥は、䞀般的には30〜200℃の枩床
で分〜時間の範囲で静止たたは送颚䞋で行な
うこずが奜たしい。 本発明における電荷茞送局には皮々の添加剀を
含有させお甚いるこずもできる。䟋えば、ゞプ
ニル、−タヌプニル、ゞブチルフタレヌトな
どの可塑剀、シリコヌンオむル、グラフト型シリ
コヌンポリマヌ、各皮フルオロカヌボン類などの
衚面最滑剀、ゞシアノビニル化合物、カルバゟヌ
ル誘導䜓などの電䜍安定剀、β−カロチン、Ni
錯䜓、−ゞアザビシクロオ
クタンなどの酞化防止剀などを挙げるこずができ
る。 本発明における電荷発生局は、セレン、セレン
−テルル、アモルフアスシリコヌンなどの無機の
電荷発生物質、ピリリりム系染料、チアピリリり
ム系染料、アズレニりム系染料、チアシアニン系
染料、キノシアニン系染料などのカチオン染料、
スクバリリりム塩系染料、フタロシアニン系顔
料、アントアントロン系顔料、ゞベンズピレンキ
ノン系顔料、ピラントロン系顔料などの倚環キノ
ン顔料、むンゞゎ系顔料、キナクリドン系顔料、
アゟ顔料などの有機の電荷発生物質から遞ばれた
材料を単独ないしは組合せお甚い、蒞着局あるい
は塗垃局ずしお甚いるこずができる。 䞊蚘電荷発生物質のうち、特にアゟ顔料は倚岐
にわた぀おいるが、特に効果の高いアゟ顔料の代
衚的構造䟋を次に説明する。 アゟ顔料の䞀般匏ずしお䞋蚘のように䞭心骚栌
を、カプラヌ郚分をCpずしお瀺し、ここで
はたたはずし、具䜓䟋を挙げる。 −−Cp の具䜓䟋ずしおは、 − 氎玠原子、塩玠原子、メトキシ基 − 氎玠原子、シアノ基 − 氎玠原子、シアノ基 − 酞玠原子、硫黄原子 氎玠原子 メチル基、塩玠原子 − 酞玠原子、硫黄原子 R1R2 氎玠原子、メチル基、塩玠原子 − R1R2氎玠原子、メチル基、塩玠 原子など、R3氎玠原子、メチル基、
[Industrial Field of Application] The present invention relates to electrophotographic photoreceptors, and more particularly to electrophotographic photoreceptors containing a low molecular weight organic photoconductor that provides improved electrophotographic properties. [Prior Art] Various organic photoconductive polymers, including polyvinylcarbazole, have been proposed as photoconductive materials for use in electrophotographic photoreceptors, but these polymers have a disadvantage in comparison to inorganic photoconductive materials. Although it has excellent film formability and light weight, it has been difficult to put it into practical use until now because sufficient film formability has not yet been obtained, and sensitivity, durability, and environmental This is because they are inferior to inorganic photoconductive materials in terms of stability due to changes. Also, hydrazone compounds disclosed in US Pat. No. 4,150,987, triarylpyrazoline compounds described in US Pat. No. 3,837,851, JP-A-51-94828, JP-A-51-94829, etc. Low-molecular organic photoconductors have been proposed, such as the 9-styrylanthracene compound described in . These low-molecular-weight organic photoconductors have been able to overcome the film-forming drawbacks that had been a problem in the field of organic photoconductive polymers by appropriately selecting the binder used. , cannot be said to be sufficient in terms of sensitivity. For this reason, in recent years, a laminated structure in which the photosensitive layer is functionally separated into a charge generation layer and a charge transport layer has been proposed. An electrophotographic photoreceptor with this laminated structure as a photosensitive layer has high sensitivity to visible light, charge retention ability,
It has become possible to improve aspects such as surface strength. Such an electrophotographic photoreceptor is known, for example, from Japanese Patent Application Laid-Open No. 1983
Examples include laminations of an azo compound and a styryl compound, which are disclosed in Japanese Patent Application Laid-open No. 198043, Japanese Patent Application Laid-Open No. 1980-110837, and Japanese Patent Application Laid-open No. 161247-1984. However, electrophotographic photoreceptors using conventional low-molecular organic photoconductors in the charge transport layer do not necessarily have sufficient sensitivity and characteristics, and when repeatedly charged and exposed, bright area potential and dark area potential change. There is a large potential fluctuation that needs to be improved. [Problems to be Solved by the Invention] An object of the present invention is to provide an electrophotographic photoreceptor that eliminates the above-mentioned drawbacks or disadvantages, to provide a novel organic photoconductor, and to provide a charge generation layer and a charge transport layer. The object of the present invention is to provide a novel charge transport material in a laminated photosensitive layer with functionally separated functions. [Means for Solving the Problems, Effects] The present invention provides an electrophotographic photoreceptor in which a photosensitive layer is laminated on a conductive support, wherein the photosensitive layer contains a compound represented by the following general formula (). It consists of a photographic photoreceptor. In the formula, R 1 and R 2 represent an alkyl group, an aryl group, or an aralkyl group that may have a substituent, and may be the same or different. R 3 is a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, or a -SR 7 group that may have a substituent (R 7 represents an alkyl group, an aryl group, or an aralkyl group. R 4 , R 5 and R 6 is a hydrogen atom, an alkyl group that may have a substituent, an aryl group, an aralkyl group,
It represents a halogen atom or a -SR7 group, and may be the same or different. However, when R 1 and R 2 have a substituent, at least one of R 3 , R 4 , R 5 , and R 6 is a -SR 7 group, and two or more -SR 7 groups In this case, R 7 need not be the same. X represents an ethylene group, a vinylene group, an oxygen atom, an amino group (= NR8 ) or a sulfur atom, and R8 represents an alkyl group, an aryl group or an aralkyl group. Specifically, in R 1 and R 2 , alkyl groups include methyl, ethyl, propyl, butyl, etc., aryl groups include phenyl, naphthyl, etc., and aralkyl groups include benzyl, naphthylmethyl, etc. Furthermore, substituents for the above groups include halogen atoms such as fluorine atom, chlorine atom, iodine atom, and bromine atom, alkyl groups such as methyl, ethyl, propyl, and butyl, and alkoxy groups such as methoxy, ethoxy, and phenoxy. groups, and for R 7 , methyl, ethyl, propyl, butyl, phenyl, naphthyl, benzyl,
Examples include groups such as naphthylmethyl. Also in the case of R 3 , R 4 , R 5 , and R 6 , the same groups as R 1 can be specifically mentioned. Further, in the case of R 8 , specific examples include the same groups as R 7 . Representative examples of the compounds represented by the general formula () are listed below. Compound example (1) Compound example (2) Compound example (3) Compound example (4) Compound example (5) Compound example (6) Compound example (7) Compound example (8) Compound example (9) Compound examples (10) Compound examples (11) Compound examples (12) Compound examples (13) Compound examples (14) Compound examples (15) Compound examples (16) Compound examples (17) Compound examples (18) Compound examples (19) Compound examples (20) Compound examples (21) Compound example (22) Compound example (23) Compound examples (24) Compound examples (25) Compound examples (26) Compound examples (27) Compound examples (28) Compound examples (29) Compound examples (30) Compound examples (31) Compound examples (32) Compound examples (33) Compound examples (34) (There is no compound example (35)) Compound example (36) Compound examples (37) Compound examples (38) Compound examples (39) Compound examples (40) Compound examples (41) (There is no compound example (42)) Compound example (43) Compound examples (44) Compound examples (45) Compound examples (46) Compound examples (47) Synthesis example (synthesis of compound example (18)) The above formula benzyl chloride () was converted into a Wittig reagent (), which was nitrated (), reacted with dibenzosuberenone to obtain the nitro form (), and further reduced to obtain the amino form (). Ullmann reaction was performed with this and 4-(methylmercapto)aniline to obtain the target compound (). Yield 17.1% Melting point 129.2℃ Elemental analysis C 36 H 29 NS 2 Mw: 539.76 Measured value (%) Theoretical value (%) C 80.17 80.11 H 5.51 5.42 N 2.52 2.60 S 11.80 11.88 For compounds other than the synthesis examples, Generally synthesized using similar techniques. In a preferred embodiment of the present invention, a compound represented by the above general formula () is used as a charge transporting substance in an electrophotographic photoreceptor in which the photosensitive layer is functionally separated into a charge generation layer and a charge transport layer. The charge transport layer in the present invention has the general formula ()
It is preferable to form the film by applying a solution in which the compound represented by and a binder are dissolved in a suitable solvent and drying the solution. Examples of the binder used here include polyarylate, polysulfone, polyamide, acrylic resin, acrylonitrile resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, phenol resin, epoxy resin, polyester, alkyd resin, polycarbonate, polyurethane, or Mention may be made of copolymers such as styrene-bitadiene copolymers, styrene-acrylonitrile copolymers, styrene-maleic acid copolymers, and the like. In addition to such insulating polymers, organic photoconductive polymers such as polyvinylcarbazole, polyvinylanthracene, and polyvinylpyrene can also be used. The blending ratio of this binder and the specific charge transport substance is 10 parts by weight of the charge transport substance per 100 parts by weight of the binder.
The amount is preferably 500 parts by weight. The charge transport layer is electrically connected to the charge generation layer described below, and has the function of receiving charge carriers injected from the charge generation layer in the presence of an electric field and transporting these charge carriers to the surface. are doing. At this time, this charge transport layer may be laminated on or under the charge generation layer. However, it is desirable that the charge transport layer is laminated on the charge generation layer. Since this charge transport layer has a limit in its ability to transport charge carriers, it cannot be made thicker than necessary. Generally, it is 5 to 40 ÎŒm, but the preferred range is 10 to 30 ÎŒm. The organic solvent used to form such a charge transport layer varies depending on the type of binder used, and is preferably selected from those that do not dissolve the charge generation layer or the subbing layer described below. Specific organic solvents include alcohols such as methanol, ethanol, and isopropanol;
Ketones such as acetone, methyl ethyl ketone, and cyclohexanone, amides such as N,N-dimethylformamide and N,N-dimethylacetamide, sulfoxides such as dimethyl sulfoxide, ethers such as tetrahydrofuran, dioxane, and ethylene glycol monomethyl ether, and methyl acetate. , esters such as ethyl acetate,
methylene chloride, dichloroethylene, carbon tetrachloride,
Aliphatic halogenated hydrocarbons such as trichloroethylene, aromatics such as benzene, toluene, xylene, monochlorobenzene, dichlorobenzene, etc. can be used. Coating can be carried out using coating methods such as dip coating, spray coating, spinner coating, bead coating, Meyer bar coating, blade coating, roller coating, and curtain coating. For drying, it is preferable to dry to the touch at room temperature and then heat dry. Heat drying is generally preferably carried out at a temperature of 30 to 200° C. for 5 minutes to 2 hours, either stationary or under ventilation. The charge transport layer in the present invention may contain various additives. For example, plasticizers such as diphenyl, m-terphenyl, dibutyl phthalate, silicone oil, grafted silicone polymers, surface lubricants such as various fluorocarbons, potential stabilizers such as dicyanovinyl compounds, carbazole derivatives, β-carotene, Ni
Complexes, antioxidants such as 1,4-diazabicyclo[2,2,2]octane, and the like can be mentioned. The charge generation layer in the present invention includes inorganic charge generation substances such as selenium, selenium-tellurium, and amorphous silicone; cationic dyes such as pyrylium dyes, thiapyrylium dyes, azulenium dyes, thiacyanine dyes, and quinocyanine dyes;
Polycyclic quinone pigments such as squbarium salt dyes, phthalocyanine pigments, anthorone pigments, dibenzpyrenequinone pigments, and pyranthrone pigments, indigo pigments, quinacridone pigments,
Materials selected from organic charge-generating substances such as azo pigments can be used alone or in combination as a vapor deposited layer or a coating layer. Among the above-mentioned charge-generating substances, there are a wide variety of azo pigments in particular, and typical structural examples of particularly effective azo pigments will be described below. The general formula of an azo pigment is shown below as A for the central skeleton and Cp for the coupler part, where n
is set to 1 or 2, and specific examples are given. A(-N=N-Cp)n A specific example of A is A-1 (R: hydrogen atom, chlorine atom, methoxy group) A-2 (R: hydrogen atom, cyano group) A-3 (R: hydrogen atom, cyano group) A-4 (X: oxygen atom, sulfur atom R: hydrogen atom, methyl group, chlorine atom) A-5 (X: oxygen atom, sulfur atom R 1 , R 2 : hydrogen atom, methyl group, chlorine atom) A-6 (R 1 , R 2 : Hydrogen atom, methyl group, chlorine atom, etc., R 3 : Hydrogen atom, methyl group,

【匏】 − − 酞玠原子、硫黄原子 − 酞玠原子、硫黄原子 −10 酞玠原子、硫黄原子 −11 氎玠原子、メチル基 −12 CH2、酞玠原子、硫黄原子、SO2 −13 −14 酞玠原子、硫黄原子 −15 −16 酞玠原子、硫黄原子 −17 −18 −19 −20 −21 氎玠原子、メチル基 たたCpの具䜓䟋ずしおは、 Cp− 氎玠原子、ハロゲン原子、アルコキシ
基、アルキル基、ニトロ基などたたは
 Cp− メチル基、゚チル基、プロピル基など Cp− アルキル基、
[Formula]) A-7 A-8 (X: oxygen atom, sulfur atom) A-9 (X: oxygen atom, sulfur atom) A-10 (X: oxygen atom, sulfur atom) A-11 (R: hydrogen atom, methyl group) A-12 (X:= CH2 , oxygen atom, sulfur atom,= SO2 ) A-13 A-14 (X: oxygen atom, sulfur atom) A-15 A-16 (X: oxygen atom, sulfur atom) A-17 A-18 A-19 A-20 A-21 (R: hydrogen atom, methyl group) Also, as a specific example of Cp, Cp-1 (R: hydrogen atom, halogen atom, alkoxy group, alkyl group, nitro group, etc. n: 1 or 2) Cp-2 (R: methyl group, ethyl group, propyl group, etc.) Cp-3 [R: alkyl group,

【匏】R′氎玠 原子、ハロゲン原子、アルコキシ基、アルキ
ル基、ニトロ基など Cp−
[Formula] (R': hydrogen atom, halogen atom, alkoxy group, alkyl group, nitro group, etc.)] Cp-4

【匏】氎玠原子、ハ ロゲン原子、アルコキシ基、アルキル基、ニ
トロ基など Cp−
[Formula] (R: hydrogen atom, halogen atom, alkoxy group, alkyl group, nitro group, etc.) Cp-5

【匏】たたは[expression] or

【匏】 アルキル基、アリヌル基など Cp−【formula】 (R: alkyl group, aryl group, etc.) Cp-6

【匏】たたは[expression] or

【匏】 Cp− R1R2氎玠原子、ハロゲン原子、アルコ
キシ基、アルキル基、ニトロ基などた
たは などが挙げられる。 これら䞭心骚栌およびカプラヌCpは適宜組
合せにより電荷発生物質ずなる顔料を圢成する。 電荷発生局は、前述の電荷発生物質を適圓な結
着剀に分散させ、これを支持䜓の䞊に塗工するこ
ずによ぀お圢成でき、たた、真空蒞着装眮により
蒞着膜を圢成するこずによ぀お圢成できる。 䞊蚘結着剀ずしおは広範な絶瞁性暹脂から遞択
でき、たた、ポリ−−ビニルカルバゟヌル、ポ
リビニルアントラセンやピリビニルピレンなどの
有機光導電性ポリマヌから遞択できる。 奜たしくはポリビニルブチラヌル、ポリアリレ
ヌトビスプノヌルずフタル酞の重瞮合䜓な
ど、ポリカヌボネヌト、ポリ゚ステル、プノ
キシ暹脂、ポリ酢酞ビニル、アクリル暹脂、ポリ
アクリルアミド、ポリアミド、ポリビニルピリゞ
ン、セルロヌス系暹脂、りレタン暹脂、゚ポキシ
暹脂、カれむン、ポリビニルアルコヌル、ポリビ
ニルピロリドンなどが挙げられる。 電荷発生局䞭に含有する暹脂は、80重量以
䞋、奜たしくは40重量以䞋が適しおいる。 塗工の際に甚いる有機溶剀ずしおは、メタノヌ
ル、゚タノヌル、む゜プロパノヌルなどのアルコ
ヌル類、アセトン、メチル゚チルケトン、シクロ
ヘキサノンなどのケトン類、−ゞメチルホ
ルムアミド、−ゞメチルアセトアミドなど
のアミド類、ゞメチルスルホキシドなどのスルホ
キシド類、テトラヒドロフラン、ゞオキサン、゚
チレングリコヌルモノメチル゚ヌテルなどの゚ヌ
テル類、酢酞メチル、酢酞゚チルなどの゚ステル
類、クロロホルム、塩化メチレン、ゞクロル゚チ
レン、四塩化炭玠、トリクロル゚チレンなどの脂
肪族ハロゲン化炭化氎玠類あるいはベンれン、ト
ル゚ン、キシレン、モノクロルベンれン、ゞクロ
ルベンれンなどの芳銙族類などを甚いるこずがで
きる。 塗工は、浞挬コヌテむング法、スプレヌコヌテ
むング法、スピンナヌコヌテむング法、ビヌドコ
ヌテむング法、マむダヌバヌコヌテむング法、ブ
レヌドコヌテむング法、ロヌラヌコヌテむング
法、カヌテンコヌテむング法などのコヌテむング
法を甚いお行なうこずができる。也燥は、宀枩に
おける指觊也燥ののち、加熱也燥する方法が奜た
しい。加熱也燥は、䞀般的には30〜200℃の枩床
で分〜時間の範囲で静止たたは送颚䞋で行な
うこずが奜たしい。 電荷発生局は、十分な吞光床を埗るために、で
きる限り倚くの前蚘有機光導電䜓を含有し、か
぀、発生した電荷キダリアの寿呜内にキダリアを
電荷茞送局ぞ泚入するために薄膜局、䟋えば5ÎŒm
以䞋、奜たしくは0.01〜1ÎŒmの膜厚をも぀薄膜局
ずするこずが望たしい。 このこずは、入射光量の倧郚分が電荷発生局で
吞収されお、倚くの電荷キダリアを生成するこ
ず、さらに発生した電荷キダリアを再結合や捕獲
トラツプにより倱掻するこずなく電荷茞送局
に泚入する必芁があるこずに起因しおいる。 このような電荷発生局ず電荷茞送局の積局構造
からなる感光局は、導電局を有する支持䜓の䞊に
蚭けられる。導電局を有する支持䜓ずしおは、支
持䜓自䜓が導電性をも぀もの、䟋えばアルミニり
ム、アルミニりム合金、銅、亜鉛、ステンレス、
バナゞりム、モリブデン、クロム、チタン、ニツ
ケル、むンゞナりム、金や癜金などを甚いるこず
ができ、その他にアルミニりム、アルミニりム合
金、酞化むンゞりム、酞化スズ、酞化むンゞりム
−酞化スズ合金などを真空蒞着法によ぀お被膜圢
成された局を有するプラスチツク䟋えばポリ゚
チレン、ポリプロピレン、ポリ塩化ビニル、ポリ
゚チレンテレフタレヌト、アクリル暹脂、ポリフ
ツ化゚チレンなど、導電性粒子䟋えばアルミ
ニりム粉末、酞化チタン、酞化スズ、酞化亜鉛、
カヌボンブラツク、銀粒子などを適圓なバむン
ダヌずずもにプラスチツクたたは前蚘導電性支持
䜓の䞊に被芆した支持䜓、導電性粒子をプラスチ
ツクや玙に含浞した支持䜓や導電性ポリマヌを有
するプラスチツクなどを甚いるこずができる。 導電局ず感光局の䞭間にバリダヌ機胜ず接着機
胜をも぀䞋匕局を蚭けるこずもできる。 䞋匕局は、カれむン、ポリビニルアルコヌル、
ニトロセルロヌス、゚チレン−アクリル酞コポリ
マヌ、ポリアミドナむロン、ナむロン66、ナ
むロン610、共重合ナむロン、アルコキシメチル
化ナむロンなど、ポリりレタン、れラチン、酞
化アルミニりムなどによ぀お圢成できる。 䞋匕局の膜厚は0.1〜5ÎŒm、奜たしくは0.5〜
3ÎŒmが適圓である。 導電性支持䜓、電荷発生局、電荷茞送局の順に
積局した感光䜓を䜿甚する堎合においお、本発明
における電荷茞送化合物は正孔茞送性であるの
で、電荷茞送局衚面を負に垯電する必芁があり、
垯電埌露光するず露光郚では電荷発生局においお
生成した正孔が電荷茞送局に泚入され、その埌衚
面に達しお負電荷を䞭和し、衚面電䜍の枛衰が生
じ、未露光郚ずの間に静電コントラストが生じ
る。 珟像時には、正荷電性トナヌを甚いる必芁があ
る。 本発明の別の具䜓䟋では、前述のゞスアゟ顔料
あるいは米囜特蚱第3554745号明现曞、同第
3567438号明现曞、同3586500号明现曞などに開瀺
のピリリりム染料、チアピリリりム染料、セレナ
ピリリりム染料、ベンゟピリリりム染料、ベンゟ
チアピリリりム染料、ナフトピリリりム染料、ナ
フトチアピリリりム染料などの光導電性を有する
顔料や染料を増感剀ずしおも甚いるこずができ
る。 たた、別の具䜓䟋では、米囜特蚱第3684502号
明现曞などに開瀺のピリリりム染料ずアルキリデ
ンゞアリヌレン郚分を有する電気絶瞁重合䜓ずの
共晶錯䜓を増感剀ずしお甚いるこずもできる。こ
の共晶錯䜓は、䟋えば−−ビス−クロ
ロ゚チルアミノプニル−−ゞプニ
ルチアピリリりムパヌクロレヌトずポリ
4′−む゜プロピリデンゞプニレンカヌボネヌ
トをハロゲン化炭化氎玠系溶剀、䟋えばゞクロ
ルメタン、クロロホルム、四塩化炭玠、−
ゞクロル゚タン、−ゞクロル゚タン、
−トリクロル゚タン、クロルベンれン、ブ
ロモベンれン、−ゞクロルベンれンなどに
溶解した埌、これに非極性溶剀、䟋えばヘキサ
ン、オクタン、デカン、−トリメチル
ベンれン、リグロむンなどを加えるこずによ぀お
粒子状共晶錯䜓ずしお埗られる。 この具䜓䟋における電子写真感光䜓には、スチ
レン−ブタゞ゚ンコポリマヌ、シリコヌン暹脂、
ビニル暹脂、塩化ビニリデン−アクリロニトリル
コポリマヌ、スチレン−アクリロニトリルコポリ
マヌ、ビニルアセテヌト−塩化ビニルコポリマ
ヌ、ポリビニルブチラヌル、ポリメチルメタクリ
レヌト、ポリ−−ブチルメタクリレヌト、ポリ
゚ステル類、セルロヌス゚ステル類などを結着剀
ずしお含有するこずができる。 本発明の電子写真感光䜓は、電子写真耇写機に
利甚するのみならず、レヌザヌビヌムプリンタ
ヌ、CRTプリンタヌ、電子写真匏補版システム
などの電子写真応甚分野にも広く甚いるこずがで
きる。 本発明の電子写真感光䜓は、高感床であり、た
た繰り返し垯電および露光を行な぀た時の明郚電
䜍ず暗郚電䜍の倉動が小さい利点を有しおいる。 実斜䟋 実斜䟋  䞋蚘構造匏で瀺すゞスアゟ顔料をブチラヌ
ル暹脂ブチラヌル化床63モルをスクロ
ヘキサノン100mlに溶解した液ず共にサンドミル
で24時間分散し、塗工液を調補した。 この塗工液をアルミシヌト䞊に也燥膜厚が
0.2ÎŒmずなるようにマむダバヌで塗垃し、電荷発
生局を圢成した。 次に、電荷茞送物質ずしお化合物䟋(7)を10ず
ポリカヌボネヌト平均分子量䞇を10をク
ロロベンれン70に溶解し、この液を先の電荷発
生局の䞊にマむダヌバヌで塗垃し、也燥膜厚が
20ÎŒmの電荷茞送局を圢成し、電子写真感光䜓を
䜜成した。 こうしお䜜成した電子写真感光䜓を川口電機(æ ª)
補静電耇写玙詊隓装眮Model−SP−428を甚いお
スタチツク方匏デヌ5KVでコロナ垯電し、暗所
で秒間保持した埌、照床20ルツクスで露光し、
垯電特性を調べた。 垯電特性ずしおは、衚面電䜍V0ず秒間
暗枛衰させた時の電䜍V1を1/2に枛衰するに
必芁な露光量E1を枬定した。 さらに、繰り返し䜿甚した時の明郚電䜍ず暗郚
電䜍の倉動を枬定するために、本実斜䟋で䜜成し
た電子写真感光䜓をキダノン(æ ª)補PPC耇写気NP
−3525の感光ドラム甚シリンダヌに貌り付けお、
同機で5000枚耇写を行ない、初期ず5000枚耇写埌
の明郚電䜍VLおよび暗郚電䜍VDの倉動
を枬定した。 なお、初期のVDずVLは各々−700V、−200Vず
なるように蚭定した。
[Formula] Cp−7 (R 1 , R 2 : hydrogen atom, halogen atom, alkoxy group, alkyl group, nitro group, etc. n: 1 or 2), and the like. The central skeleton A and the coupler Cp form a pigment serving as a charge-generating substance by appropriate combination. The charge-generating layer can be formed by dispersing the charge-generating substance described above in a suitable binder and coating it on a support, or by forming a vapor-deposited film using a vacuum evaporation device. It can be formed by twisting it. The binder can be selected from a wide range of insulating resins and organic photoconductive polymers such as poly-N-vinylcarbazole, polyvinylanthracene and pyrivinylpyrene. Preferably polyvinyl butyral, polyarylate (such as a polycondensate of bisphenol A and phthalic acid), polycarbonate, polyester, phenoxy resin, polyvinyl acetate, acrylic resin, polyacrylamide, polyamide, polyvinylpyridine, cellulose resin, urethane resin, Examples include epoxy resin, casein, polyvinyl alcohol, polyvinylpyrrolidone, and the like. The resin contained in the charge generation layer is suitably 80% by weight or less, preferably 40% by weight or less. Organic solvents used during coating include alcohols such as methanol, ethanol and isopropanol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, amides such as N,N-dimethylformamide and N,N-dimethylacetamide, dimethyl Sulfoxides such as sulfoxide, ethers such as tetrahydrofuran, dioxane, and ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, and aliphatic halogenated compounds such as chloroform, methylene chloride, dichloroethylene, carbon tetrachloride, and trichloroethylene. Hydrocarbons or aromatics such as benzene, toluene, xylene, monochlorobenzene, dichlorobenzene, etc. can be used. Coating can be carried out using coating methods such as dip coating, spray coating, spinner coating, bead coating, Meyer bar coating, blade coating, roller coating, and curtain coating. For drying, it is preferable to dry to the touch at room temperature and then heat dry. Heat drying is generally preferably carried out at a temperature of 30 to 200° C. for 5 minutes to 2 hours, either stationary or under ventilation. The charge generation layer contains as much of the organic photoconductor as possible in order to obtain sufficient absorbance and contains a thin film layer, e.g. 5ÎŒm
Hereinafter, it is preferable to use a thin film layer having a thickness of preferably 0.01 to 1 ÎŒm. This means that most of the incident light is absorbed by the charge generation layer, generating many charge carriers, and that the generated charge carriers are not deactivated by recombination or trapping, but are transferred to the charge transport layer. This is due to the need for injection. A photosensitive layer having such a laminated structure of a charge generation layer and a charge transport layer is provided on a support having a conductive layer. As the support having a conductive layer, the support itself is conductive, such as aluminum, aluminum alloy, copper, zinc, stainless steel,
Vanadium, molybdenum, chromium, titanium, nickel, indium, gold, platinum, etc. can be used, and in addition, aluminum, aluminum alloy, indium oxide, tin oxide, indium oxide-tin oxide alloy, etc. can be coated by vacuum evaporation method. Plastics with formed layers (e.g. polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, acrylic resin, polyfluorinated ethylene, etc.), conductive particles (e.g. aluminum powder, titanium oxide, tin oxide, zinc oxide,
A support obtained by coating plastic or the above-mentioned conductive support with carbon black, silver particles, etc.) together with a suitable binder, a support obtained by impregnating plastic or paper with conductive particles, a plastic containing a conductive polymer, etc. may be used. I can do it. A subbing layer having barrier and adhesive functions can also be provided between the conductive layer and the photosensitive layer. The subbing layer is casein, polyvinyl alcohol,
It can be formed from nitrocellulose, ethylene-acrylic acid copolymer, polyamide (nylon 6, nylon 66, nylon 610, copolymerized nylon, alkoxymethylated nylon, etc.), polyurethane, gelatin, aluminum oxide, and the like. The thickness of the undercoat layer is 0.1 to 5 ÎŒm, preferably 0.5 to 5 ÎŒm.
3 ÎŒm is appropriate. When using a photoreceptor in which a conductive support, a charge generation layer, and a charge transport layer are laminated in this order, the charge transport compound in the present invention has hole transport properties, so it is necessary to negatively charge the surface of the charge transport layer. can be,
When exposed to light after being charged, holes generated in the charge generation layer are injected into the charge transport layer in the exposed area, and then reach the surface to neutralize the negative charge, resulting in attenuation of the surface potential and static electricity between the exposed area and the unexposed area. Electrocontrast occurs. During development, it is necessary to use positively charged toner. In another embodiment of the present invention, the aforementioned disazo pigments or the disazo pigments described in U.S. Pat.
The photoconductivity of pyrylium dyes, thiapyrylium dyes, selenapyrylium dyes, benzopyrylium dyes, benzothiapyryllium dyes, naphtopyrylium dyes, naphthothiapyrylium dyes, etc. disclosed in 3567438, 3586500, etc. Pigments and dyes can also be used as sensitizers. In another specific example, a eutectic complex of a pyrylium dye and an electrically insulating polymer having an alkylidene diarylene moiety as disclosed in US Pat. No. 3,684,502 and the like can be used as a sensitizer. This eutectic complex is composed of, for example, 4-[4-bis(2-chloroethyl)aminophenyl]-2,6-diphenylthiapyrylium perchlorate and poly(4,
4'-isopropylidene diphenylene carbonate) in a halogenated hydrocarbon solvent such as dichloromethane, chloroform, carbon tetrachloride, 1,1-
dichloroethane, 1,2-dichloroethane, 1,
After dissolving in 1,2-trichloroethane, chlorobenzene, bromobenzene, 1,2-dichlorobenzene, etc., add a non-polar solvent such as hexane, octane, decane, 2,2,4-trimethylbenzene, ligroin, etc. can be obtained as a particulate eutectic complex by adding . The electrophotographic photoreceptor in this specific example includes styrene-butadiene copolymer, silicone resin,
Contains vinyl resin, vinylidene chloride-acrylonitrile copolymer, styrene-acrylonitrile copolymer, vinyl acetate-vinyl chloride copolymer, polyvinyl butyral, polymethyl methacrylate, poly-N-butyl methacrylate, polyesters, cellulose esters, etc. as a binder. I can do it. The electrophotographic photoreceptor of the present invention can be used not only in electrophotographic copying machines but also in a wide range of electrophotographic applications such as laser beam printers, CRT printers, and electrophotographic plate making systems. The electrophotographic photoreceptor of the present invention has the advantage of high sensitivity and small fluctuations in bright area potential and dark area potential when repeatedly charged and exposed. [Examples] Example 1 A coating solution was prepared by dispersing 5 g of a disazo pigment represented by the following structural formula together with a solution obtained by dissolving 2 g of butyral resin (degree of butyralization: 63 mol %) in 100 ml of scrohexanone in a sand mill for 24 hours. Apply this coating solution on an aluminum sheet until the dry film thickness is
A charge generation layer was formed by coating with a Meyer bar to a thickness of 0.2 ÎŒm. Next, 10 g of Compound Example (7) as a charge transport material and 10 g of polycarbonate (average molecular weight 20,000) were dissolved in 70 g of chlorobenzene, and this solution was applied onto the charge generation layer using a Mayer bar, and the dried film was coated. Thickness
A charge transport layer of 20 ÎŒm was formed to produce an electrophotographic photoreceptor. The electrophotographic photoreceptor thus created was sold to Kawaguchi Electric Co., Ltd.
Using an electrostatic copying paper tester Model-SP-428, the paper was corona charged at 5KV using a static method, held in a dark place for 1 second, and then exposed to light at an illuminance of 20 lux.
The charging characteristics were investigated. As for charging characteristics, the surface potential (V 0 ) and the exposure amount (E1/2) required to attenuate the potential (V 1 ) by 1/2 when dark decayed for 1 second were measured. Furthermore, in order to measure the fluctuations in bright area potential and dark area potential during repeated use, the electrophotographic photoreceptor prepared in this example was
Attach it to the -3525 photosensitive drum cylinder,
5,000 copies were made using the same machine, and changes in the light area potential (V L ) and dark area potential (V D ) at the initial stage and after 5,000 copies were measured. Note that the initial V D and V L were set to −700 V and −200 V, respectively.

【衚】 実斜䟋 〜14 この各実斜䟋においおは、実斜䟋で甚いた電
荷茞送化合物䟋(7)に代え、化合物䟋(1)(4)
141821272931
33
38404447を甚い、か぀、電荷発
生物質ずしお䞋蚘構造匏の顔料を甚い、他の条件
は実斜䟋ず同様にしお電子写真感光䜓を䜜成し
た。 各感光䜓の電子写真特性を実斜䟋ず同様の方
法によ぀お枬定した。結果を埌蚘する。 比范䟋 〜 比范のため、䞋蚘構造の化合物を電荷茞送物質
ずしお甚い、他は実斜䟋ず同様な方法によ぀お
電子写真感光䜓を䜜成し、同様に電子写真特性を
枬定した。結果を埌蚘する。 比范化合物䟋(1) 特開昭58−198043号公報 比范化合物䟋(2) 特開昭54−110837号公報 比范化合物䟋(3) 特開昭55−161247号公報
[Table] Examples 2 to 14 In each of these Examples, in place of the charge transport compound example (7) used in Example 1, compound examples (1), (4),
(14), (18), (21), (27), (29), (31), (
33),
An electrophotographic photoreceptor was prepared using (38), (40), (44), and (47) and a pigment having the structural formula below as a charge generating substance, with the other conditions being the same as in Example 1. . The electrophotographic properties of each photoreceptor were measured in the same manner as in Example 1. The results will be described later. Comparative Examples 1 to 3 For comparison, electrophotographic photoreceptors were prepared in the same manner as in Example 2 except that a compound having the following structure was used as a charge transport material, and the electrophotographic properties were measured in the same manner. The results will be described later. Comparative compound example (1) (Japanese Patent Application Laid-open No. 198043/1983) Comparative compound example (2) (Japanese Patent Application Laid-open No. 110837/1983) Comparative compound example (3) (Japanese Unexamined Patent Publication No. 161247/1983)

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 䞊蚘の結果から、本発明の電子写真感光䜓は、
䞀般匏で瀺す化合物を甚いたこずにより、
比范䟋の電子写真感光䜓に比べお感床が向䞊しお
おり、たた繰り返し䜿甚による電䜍倉動が著しく
少なく、安定性においお特に優れおいる。 実斜䟋 15 アルミニりムシリンダヌ䞊にカれむンのアンモ
ニア氎溶液カれむン11.2、28アンモニア氎
、氎22.2mlをブレヌドコヌテむング法で塗
垃し、也燥膜厚1ÎŒmの䞋匕局を圢成した。 次に、䞋蚘構造匏で瀺す電荷発生物質10、 ブチラヌル暹脂ブチラヌル化床63モルを
ずシクロヘキサノン200をボヌルミル分散機
で48時間分散を行な぀た。この分散液を先に圢成
した䞋匕局の䞊にブレヌドコヌテむング法により
塗垃し、也燥膜厚0.15ÎŒmの電荷発生局を圢成し
た。 次に、化合物䟋16を10、ポリメチルメタ
クリレヌト平均分子量䞇10をクロロベン
れン70に溶解し、先に圢成した電荷発生局の䞊
にブレヌドコヌテむング法により塗垃し、也燥膜
厚19ÎŒmの電荷茞送局を圢成した。 こうしお䜜成した電子写真感光䜓に−5KVの
コロナ攟電を行な぀た。この時の衚面電䜍を枬定
した初期電䜍V0。さらに、この感光䜓を秒
間暗所で攟眮した埌の衚面電䜍を枬定した。 感床は、暗枛衰した埌の電䜍V1を1/2に枛衰す
るに必芁な露光量E1、マむクロゞナヌ
ルcm2を枬定するこずで評䟡した。 この際、光源ずしおガリりムアルミニりム
ヒ玠の䞉元系半導䜓レヌザヌ出力5mw、発
振波長780nmを甚いた。結果を瀺す。 V0−695V V1−685V E11.3マむクロゞナヌルcm2 次に、同䞊の半導䜓レヌザヌを備えた反転珟像
方匏の電子写真方匏プリンタヌであるレヌザヌビ
ヌムプリンタヌキダノン(æ ª)補、LBP−CXに
䞊蚘感光䜓をLBP−CXの感光䜓に眮き代えおセ
ツトし、実際の画像圢成テストを行な぀た。 条件は、䞀次垯電埌の衚面電䜍−700V、像
露光埌の衚面電䜍−150V露光量2.0マむクロ
ゞナヌルcm2、転写電䜍700V、珟像剀極
性、負極性、プロセススピヌド50nmsec、珟
像条件珟像バむアス−450V、像露光スキダ
ン方匏むメヌゞスキダン、䞀次垯電前露光
50luxsecの赀色党面露光、画像圢成はレヌザヌ
ビヌムを文字信号および画像信号に埓぀おラむン
スキダンしお行な぀たが、文字、画像共に良奜な
プリントが埗られた。さらに、連続3000枚の画出
しを行な぀たずころ、初期から3000枚たで安定し
た良奜なプリントが埗られた。 実斜䟋 16 −−ゞメチルアミノプニル−−
ゞプニルチアピリリりムパヌクロレヌトず
化合物䟋11ををポリ゚ステルポリ゚ス
テルアドヒヌシブ49000、デナポン瀟補のトル
゚ン50重量郚−ゞオキサン50重量郚溶液
100mlに混合し、ボヌルミルで時間分散した。
この分散液を也燥埌の膜厚が15ÎŒmずなるように
マむダヌバヌでアルミニりムシヌト䞊に塗垃し
た。 こうしお䜜成した電子写真感光䜓の電子写真特
性を実斜䟋ず同様の方法で枬定した。結果を瀺
す。 V0−700V V1−695V E11.5luxsec 初期 VD−695V VL−85V 千枚耐久埌 VD−690V VL−95V 実斜䟋 17 −−ゞメチルアミノプニル−−
ゞプニルチアピリリりムパヌクロレヌトず
ポリ4′−む゜プロピリデンゞプニレンカ
ヌボネヌトをゞクロルメタン200mlに十分
に溶解した埌、トル゚ン100mlを加え、共晶錯䜓
を沈殿させた。この沈殿物を濟別した埌、ゞクロ
ルメタンを加えお再溶解し、次いでこの溶液に
−ヘキサン100mlを加えお共晶錯䜓の沈殿物を埗
た。 この共晶錯䜓をポリビニルブチラヌル
を含有するメタノヌル溶液95mlに加え、時間ボ
ヌルミル分散機で分散した。この分散液をカれむ
ン局を有するアルミ板の䞊に也燥埌の膜厚が
0.4ÎŒmずなるようにマむダヌバヌで塗垃しお電荷
発生局を圢成した。 次いで、電荷発生局の䞊に化合物䟋36を甚
いる他は実斜䟋ず党く同様にしお電荷茞送局の
被芆局を圢成した。 こうしお䜜成した電子写真感光䜓の電子写真特
性を実斜䟋ず同様の方法により枬定した。結果
を瀺す。 V0−700V V1−680V E12.3luxsec 初期 VD−695V VL−105V 千枚耐久埌 VD−680V VL−120V 実斜䟋 18 アルミ板䞊にカれむンのアンモニア氎溶液前
出をマむダヌバヌで塗垃し、也燥膜厚が1ÎŒmの
䞋匕局を圢成した。この䞊に実斜䟋の電荷茞送
局および電荷発生局を順次積局し、局構成を盞違
する他は実斜䟋ず党く同様にしお電子写真感光
䜓を䜜成し、実斜䟋ず同様に垯電特性を枬定し
た。䜆し、垯電極性をずした。結果を瀺す。 V0695V V1690V E11.3luxsec 実斜䟋 19 アルミ板䞊に可溶性ナむロン−66−610−
12四元ナむロン共重合䜓のメタノヌル溶液
を塗垃し、也燥膜厚が0.5ÎŒmの䞋匕局を圢成し
た。 次に、䞋蚘構造匏の顔料をテトラヒドロフ
ラン95ml䞭にサンドミル分散機で20時間分散し
た。 次いで化合物䟋20をずビスプノヌル
型ポリカヌボネヌト粘床平均分子量䞇10
をクロロベンれン30mlに溶かした液を先に調補
した分散液に加え、サンドミルでさらに時間分
散した。この分散液を先に圢成した䞋匕局䞊に也
燥埌の膜厚が20ÎŒmずなるようにマむダヌバヌで
塗垃し、也燥した。 こうしお䜜成した電子写真感光䜓の電子写真特
性を実斜䟋ず同様の方法で枬定した。結果を瀺
す。 V0−685V V1−665V E12.3luxsec 発明の効果 本発明の特定のスルフむド化合物を含有する電
子写真感光䜓は、高感床であり、たた繰り返し垯
電露光による連続画像圢成に際しお明郚電䜍ず暗
郚電䜍の倉動が小さいため、特に耐久性に優れた
電子写真感光䜓である。
[Table] From the above results, the electrophotographic photoreceptor of the present invention has
By using the compound represented by the general formula (),
Compared to the electrophotographic photoreceptor of the comparative example, the sensitivity is improved, and potential fluctuations due to repeated use are significantly small, and stability is particularly excellent. Example 15 An ammonia aqueous solution of casein (11.2 g of casein, 1 g of 28% ammonia water, 22.2 ml of water) was coated on an aluminum cylinder by a blade coating method to form a subbing layer with a dry film thickness of 1 ÎŒm. Next, 10 g of a charge generating substance shown by the following structural formula, Butyral resin (butyralization degree 63 mol%) 5
g and 200 g of cyclohexanone were dispersed for 48 hours using a ball mill disperser. This dispersion was applied onto the previously formed subbing layer by a blade coating method to form a charge generation layer with a dry film thickness of 0.15 ÎŒm. Next, 10 g of Compound Example (16) and 10 g of polymethyl methacrylate (average molecular weight 50,000) were dissolved in 70 g of chlorobenzene, and the solution was coated on the previously formed charge generation layer by a blade coating method to give a dry film thickness of 19 ÎŒm. A charge transport layer was formed. A corona discharge of -5 KV was applied to the electrophotographic photoreceptor thus prepared. The surface potential at this time was measured (initial potential V 0 ). Furthermore, the surface potential of this photoreceptor was measured after it was left in a dark place for 1 second. Sensitivity was evaluated by measuring the amount of exposure (E1/2, microjoule/cm 2 ) required to attenuate the potential V 1 after dark decay to 1/2. At this time, gallium/aluminum/
An arsenic ternary semiconductor laser (output: 5 mw, oscillation wavelength 780 nm) was used. Show the results. V 0 : -695V V 1 : -685V E1/2: 1.3 microjoules/cm 2 Next, we used a laser beam printer (manufactured by Canon Inc.), which is a reversal development type electrophotographic printer equipped with the same semiconductor laser as above. , LBP-CX) was set in place of the photoreceptor of LBP-CX, and an actual image forming test was conducted. The conditions are: surface potential after primary charging: -700V, surface potential after image exposure: -150V (exposure amount: 2.0 microjoules/cm 2 ), transfer potential: +700V, developer polarity, negative polarity, process speed: 50nm. /sec, development conditions (development bias): -450V, image exposure scan method: image scan, exposure before primary charging:
The entire surface was exposed to red light at 50 lux, sec. Image formation was performed by line scanning a laser beam in accordance with character and image signals, and good prints were obtained for both characters and images. Furthermore, when printing 3000 images continuously, good prints were obtained that were stable from the initial stage up to 3000 sheets. Example 16 4-(4-dimethylaminophenyl)-2,6-
3 g of diphenylthiapyrylium perchlorate and 5 g of Compound Example (11) were mixed into a toluene (50 parts by weight)-dioxane (50 parts by weight) solution of polyester (Polyester Adhesive 49000, manufactured by DuPont).
The mixture was mixed in 100 ml and dispersed in a ball mill for 6 hours.
This dispersion was applied onto an aluminum sheet using a Mayer bar so that the film thickness after drying was 15 ÎŒm. The electrophotographic properties of the electrophotographic photoreceptor thus prepared were measured in the same manner as in Example 1. Show the results. V 0 : -700V V 1 : -695V E1/2: 1.5lux, sec Initial V D : -695V V L : -85V After 5,000 sheets durability V D : -690V V L : -95V Example 17 4-( 4-dimethylaminophenyl)-2,6-
After fully dissolving 3 g of diphenylthiapyrylium perchlorate and 3 g of poly(4,4'-isopropylidene diphenylene carbonate) in 200 ml of dichloromethane, 100 ml of toluene was added to precipitate a eutectic complex. After filtering this precipitate, add dichloromethane to redissolve it, and then add n to this solution.
- 100 ml of hexane was added to obtain a precipitate of the eutectic complex. 5g of this eutectic complex and 2g of polyvinyl butyral
The mixture was added to 95 ml of a methanol solution containing 100 ml of methanol, and dispersed using a ball mill dispersion machine for 6 hours. This dispersion was spread on an aluminum plate with a casein layer so that the film thickness after drying was
A charge generation layer was formed by coating with a Mayer bar to a thickness of 0.4 ÎŒm. Next, a cover layer of a charge transport layer was formed in the same manner as in Example 1 except that Compound Example (36) was used on the charge generation layer. The electrophotographic properties of the thus produced electrophotographic photoreceptor were measured in the same manner as in Example 1. Show the results. V 0 : −700V V 1 : −680V E1/2: 2.3lux, sec Initial V D : −695V V L : −105V After 5,000 sheets durability V D : −680V V L : −120V Example 18 On aluminum plate An ammonia aqueous solution of casein (described above) was applied to the substrate using a Mayer bar to form a subbing layer with a dry thickness of 1 ÎŒm. The charge transport layer and charge generation layer of Example 5 were sequentially laminated thereon, and an electrophotographic photoreceptor was prepared in the same manner as in Example 5 except for the layer structure, and the charging properties were the same as in Example 5. was measured. However, the charging polarity was set to +. Show the results. V 0 : +695V V 1 : +690V E1/2: 1.3lux, sec Example 19 Soluble nylon (6-66-610-
A 5% methanol solution of 12 quaternary nylon copolymer) was applied to form an undercoat layer with a dry thickness of 0.5 ÎŒm. Next, 5 g of a pigment having the following structural formula was dispersed in 95 ml of tetrahydrofuran using a sand mill disperser for 20 hours. Next, 5 g of compound example (20) and bisphenol Z type polycarbonate (viscosity average molecular weight 30,000) 10
g dissolved in 30 ml of chlorobenzene was added to the previously prepared dispersion, and the mixture was further dispersed in a sand mill for 2 hours. This dispersion was applied onto the previously formed subbing layer using a Mayer bar so that the film thickness after drying would be 20 ÎŒm, and then dried. The electrophotographic properties of the electrophotographic photoreceptor thus prepared were measured in the same manner as in Example 1. Show the results. V 0 :-685V V 1 :-665V E1/2 : 2.3 lux, sec [Effects of the invention] The electrophotographic photoreceptor containing the specific sulfide compound of the present invention has high sensitivity and continuous It is an electrophotographic photoreceptor with particularly excellent durability because there is little variation in bright area potential and dark area potential during image formation.

Claims (1)

【特蚱請求の範囲】  導電性支持䜓䞊に感光局を積局した電子写真
感光䜓においお、感光局が䞋蚘䞀般匏で瀺
す化合物を含有するこずを特城ずする電子写真感
光䜓。 匏䞭、R1およびR2は眮換基を有しおもよいア
ルキル基、アリヌル基たたはアラルキル基を瀺
し、同䞀であ぀おも異な぀おいおもよい。 R3は氎玠原子、眮換基を有しおもよいアルキ
ル基、アリヌル基、アラルキル基たたは−SR7基
R7はアルキル基、アリヌル基たたはアラルキル
基を瀺す。 R4R5およびR6は氎玠原子、眮換基を有しお
もよいアルキル基、アリヌル基、アラルキル基、
ハロゲン原子たたは−SR7基を瀺し、同䞀であ぀
おも異な぀おいおもよい。 䜆し、R1R2が眮換基を有する堎合の眮換基
たたはR3R4R5R6のうち少なくずも぀は
−SR7基であり、たた−SR7基が぀以䞊の堎
合、R7は同䞀でなくおよい。 ぱチレン基、ビニレン基、酞玠原子、アミ
ノ基−R8たたは硫黄原子を瀺し、R8は
アルキル基、アリヌル基たたはアラルキル基を瀺
す。
[Scope of Claims] 1. An electrophotographic photoreceptor comprising a photosensitive layer laminated on a conductive support, wherein the photosensitive layer contains a compound represented by the following general formula (). In the formula, R 1 and R 2 represent an alkyl group, an aryl group, or an aralkyl group that may have a substituent, and may be the same or different. R3 represents a hydrogen atom, an alkyl group, an aryl group, an aralkyl group, or a -SR7 group ( R7 is an alkyl group, an aryl group, or an aralkyl group) which may have a substituent. R 4 , R 5 and R 6 are hydrogen atoms, alkyl groups that may have substituents, aryl groups, aralkyl groups,
It represents a halogen atom or a -SR7 group, and may be the same or different. However, when R 1 and R 2 have a substituent, at least one of R 3 , R 4 , R 5 , and R 6 is a -SR 7 group, and two or more -SR 7 groups In this case, R 7 need not be the same. X represents an ethylene group, a vinylene group, an oxygen atom, an amino group (= NR8 ) or a sulfur atom, and R8 represents an alkyl group, an aryl group or an aralkyl group.
JP63180273A 1988-07-21 1988-07-21 Electrophotographic sensitive body Granted JPH0232358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63180273A JPH0232358A (en) 1988-07-21 1988-07-21 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63180273A JPH0232358A (en) 1988-07-21 1988-07-21 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPH0232358A JPH0232358A (en) 1990-02-02
JPH0544023B2 true JPH0544023B2 (en) 1993-07-05

Family

ID=16080344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63180273A Granted JPH0232358A (en) 1988-07-21 1988-07-21 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0232358A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200400816A (en) 2002-06-26 2004-01-16 Lilly Co Eli Tricyclic steroid hormone nuclear receptor modulators
WO2005066153A1 (en) 2003-12-19 2005-07-21 Eli Lilly And Company Tricyclic steroid hormone nuclear receptor modulators
JP4879063B2 (en) * 2007-03-28 2012-02-15 ダむハツ工業株匏䌚瀟 Molten metal leak detection mechanism of casting equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330852A (en) * 1986-07-25 1988-02-09 Canon Inc Electrophotographic sensitive body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6330852A (en) * 1986-07-25 1988-02-09 Canon Inc Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPH0232358A (en) 1990-02-02

Similar Documents

Publication Publication Date Title
JPH02190862A (en) Electrophotographic sensitive body
JPH02178670A (en) Electrophotographic sensitive body
JPH0750331B2 (en) Electrophotographic photoreceptor
JP2610503B2 (en) Electrophotographic photoreceptor
JP2692925B2 (en) Electrophotographic photoreceptor
JP2610502B2 (en) Electrophotographic photoreceptor
JPH0516018B2 (en)
JPH02178667A (en) Electrophotographic sensitive body
JPH0549226B2 (en)
JP2556572B2 (en) Electrophotographic photoreceptor
JPH0516019B2 (en)
JPH02134644A (en) Electrophotographic sensitive body
JP2610501B2 (en) Electrophotographic photoreceptor
JPH0544023B2 (en)
JPH02108058A (en) Electrophotographic sensitive body
JPH0514265B2 (en)
JPH02167552A (en) Electrophotographic sensitive body
JPH04233548A (en) Charge transfer material and photosensitive material using the same
JP2788129B2 (en) Charge transport material and photoreceptor using the same
JPH0513500B2 (en)
JPS63292141A (en) Electrophotographic sensitive body
JPH0253067A (en) Electrophotographic sensitive body
JPH01140162A (en) Electrophotographic sensitive body
JPH0282257A (en) Electrophotographic sensitive body
JPH01271755A (en) Electrophotographic sensitive body