JPH0544005B2 - - Google Patents

Info

Publication number
JPH0544005B2
JPH0544005B2 JP61180684A JP18068486A JPH0544005B2 JP H0544005 B2 JPH0544005 B2 JP H0544005B2 JP 61180684 A JP61180684 A JP 61180684A JP 18068486 A JP18068486 A JP 18068486A JP H0544005 B2 JPH0544005 B2 JP H0544005B2
Authority
JP
Japan
Prior art keywords
optical fiber
coating
spacer
cable
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61180684A
Other languages
Japanese (ja)
Other versions
JPS6336211A (en
Inventor
Yoshinobu Kitayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61180684A priority Critical patent/JPS6336211A/en
Publication of JPS6336211A publication Critical patent/JPS6336211A/en
Publication of JPH0544005B2 publication Critical patent/JPH0544005B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱性を要求される環境下で用いら
れる光フアイバケーブルに関し、とくに光フアイ
バケーブルを構成する光フアイバの構造の改良に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical fiber cable used in an environment requiring heat resistance, and particularly relates to an improvement in the structure of the optical fiber constituting the optical fiber cable. be.

〔従来の技術〕[Conventional technology]

第4図に従来の耐熱性光ケーブルを用いた光フ
アイバ複合架空地線の断面構造図を示す。スペー
サ1の外周にはらせん状の溝(以下らせん溝とい
う。)2が刻設されており、らせん溝2に光フア
イバ3が収納されている。更にスペーサ1にはシ
ース4が被覆されて光フアイバケーブル5を形成
する。光フアイバケーブル5の外周には、更にア
ルミ覆鋼線6が撚合されて巻積される。らせん溝
2に収納される光フアイバ3は、第5図に断面構
造を示すとおり、ガラスフアイバ7の外周にシリ
コン樹脂による1次被覆8を施し、2次被覆とし
て弗素樹脂を押出し成形した押出成形弗素樹脂被
覆9を施した構造を備えている。
FIG. 4 shows a cross-sectional structural diagram of an optical fiber composite overhead ground wire using a conventional heat-resistant optical cable. A spiral groove (hereinafter referred to as a spiral groove) 2 is cut on the outer periphery of the spacer 1, and an optical fiber 3 is housed in the spiral groove 2. Further, the spacer 1 is covered with a sheath 4 to form an optical fiber cable 5. An aluminum covered steel wire 6 is further twisted and wound around the outer periphery of the optical fiber cable 5. The optical fiber 3 housed in the helical groove 2 is extruded, as shown in the cross-sectional structure in FIG. It has a structure coated with a fluororesin coating 9.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来構造の光フアイバケーブルは、耐熱性、機
械特性において優れた特徴を有しているが、光フ
アイバの2次被覆としての弗素樹脂被覆に押出成
形技術が用いられていたため、光フアイバの細径
化には限度がある。たとえば、現行では、1次被
覆径は製造性、安定性から400μm以上が必要で
あり、また2次被覆は、肉厚が150μm以上を必要
とし、従つて光フアイバ心線径は700μm以上と
なつている。このため、光フアイバケーブルの細
径、多心化が困難であるという問題がある。
Optical fiber cables with conventional structures have excellent heat resistance and mechanical properties, but because extrusion molding technology is used for the fluororesin coating as the secondary coating of the optical fiber, the optical fiber has a small diameter. There are limits to what can be done. For example, currently, the primary coating diameter needs to be 400 μm or more for manufacturability and stability, and the secondary coating needs to have a wall thickness of 150 μm or more, so the optical fiber core diameter is 700 μm or more. ing. Therefore, there is a problem in that it is difficult to make the optical fiber cable smaller in diameter and to increase the number of fibers.

また上述した問題点の対応策として、1次被覆
だけを施した光フアイバをスペーサの溝に収納す
る構造も考えられるが、発明者らの実験による
と、耐熱性1次被覆として用いられるシリコン樹
脂はヤング率が約100g/mm2程度の低ヤング率で、
また脆いことから機械特性の点で問題があり、さ
らに摩擦係数が大きく、スペーサの溝内壁との間
にすべりが悪いため、光ケーブルに外力が加つた
ときに長手方向の摩擦が不均一となり、光フアイ
バにマイクロベンドを発生し易いことが判明し
た。
In addition, as a solution to the above-mentioned problems, a structure in which the optical fiber with only the primary coating is housed in the groove of the spacer may be considered, but according to the inventors' experiments, silicone resin used as the heat-resistant primary coating has a low Young's modulus of about 100g/ mm2 ,
In addition, there are problems with mechanical properties due to its brittleness.Furthermore, the coefficient of friction is large and slippage between the spacer and the inner wall of the groove is poor, so when an external force is applied to the optical cable, friction in the longitudinal direction becomes uneven, causing optical It was found that microbending easily occurs in the fiber.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は従来の問題点を解決するため、溝付ス
ペーサのらせん溝内に光フアイバを収納し、シー
スを被覆したスペーサ型光ケーブルにおいて、光
フアイバはガラスフアイバにシリコン樹脂からな
る1次被覆を施し、1次被覆の外周に熱硬化型弗
素樹脂を肉厚100μm以下で焼付塗布した2次被覆
を備えた構造を有することを特徴とするものであ
る。
In order to solve the conventional problems, the present invention is a spacer-type optical cable in which an optical fiber is housed in a helical groove of a grooved spacer and covered with a sheath. It is characterized by having a structure including a secondary coating in which a thermosetting fluororesin is baked and coated on the outer periphery of the primary coating to a thickness of 100 μm or less.

〔作用〕[Effect]

本説明の光フアイバケーブルを構成する光フア
イバ心線は、従来の耐熱光フアイバ心線に比べ、
2次被覆を薄肉化することができ、かつ製造に際
し、1次被覆と2次被覆とを同一工程で実施でき
ることから1次被覆の薄肉化が可能となり、光フ
アイバケーブルの細径、多心化が容易となる。以
下実施例について説明する。
Compared to conventional heat-resistant optical fibers, the optical fibers that make up the optical fiber cable described in this article are
The secondary coating can be made thinner, and the primary coating and the secondary coating can be carried out in the same process during manufacturing, making it possible to reduce the thickness of the primary coating, making it possible to make optical fiber cables smaller in diameter and with more fibers. becomes easier. Examples will be described below.

〔実施例〕〔Example〕

本発明に係る光フアイバの実施例の断面構造を
第1図に示す。本実施例は、125μmのガラスフ
アイバ7の外周に1次被覆8として外径300μm
までシリコン樹脂の被覆を施し、2次被覆とし
て、外径400μmまで、熱硬化型の弗素樹脂を焼
付塗布することにより焼付塗布熱硬化型弗素樹脂
被覆10を施す。熱硬化型弗素樹脂とは、弗素樹
脂を熱揮発性溶剤に溶かすかまたは分散すること
によつて得られる溶液のことで、加熱することに
よつて硬化し、焼付塗布熱硬化型弗素樹脂被覆と
なる。本実施例においては、熱硬化型弗素樹脂を
ダイスによつて1次被覆の外周に塗布した後、硬
化炉の中を通して焼付硬化を行つている。
FIG. 1 shows a cross-sectional structure of an embodiment of an optical fiber according to the present invention. In this example, the outer diameter of the primary coating 8 is 300 μm on the outer periphery of the 125 μm glass fiber 7.
As a secondary coating, a thermosetting fluororesin coating 10 is applied by baking a thermosetting fluororesin up to an outer diameter of 400 μm. Thermosetting fluororesin is a solution obtained by dissolving or dispersing fluororesin in a thermovolatile solvent.It hardens by heating and can be used as a bake-on thermosetting fluororesin coating. Become. In this embodiment, the thermosetting fluororesin is applied to the outer periphery of the primary coating using a die, and then baked and hardened by passing it through a curing furnace.

光フアイバの細径化という点は、シリコン樹脂
による1次被覆を薄くする必要があるが、そのた
めには、1次被覆と2次被覆とを同一工程で実施
し、製造中の光フアイバの機械強度の点で、1次
被覆後に、直ちに2次被覆によりガラスフアイバ
を保護することが望ましい。
In order to reduce the diameter of optical fibers, it is necessary to make the primary coating with silicone resin thinner, but in order to do so, the primary coating and secondary coating must be performed in the same process, and the optical fiber machine during manufacture must be thinner. In terms of strength, it is desirable to protect the glass fiber with a secondary coating immediately after the primary coating.

従来、5.0mmの光フアイバケーブル外径に対
し光フアイバを5心までしか収納できなかつた
が、本発明による光フアイバは9心まで収納でき
た。
Conventionally, only up to 5 optical fibers could be accommodated in an optical fiber cable with an outer diameter of 5.0 mm, but the optical fiber according to the present invention can accommodate up to 9 optical fibers.

また本発明により光フアイバの細径化が可能と
なつた一例として従来の光フアイバの外径が
700μmあつたものが、400μmへと細径化がで
き、多心化が容易となつた。
Furthermore, as an example of how the present invention has made it possible to reduce the diameter of optical fibers, the outer diameter of conventional optical fibers has been reduced.
The diameter was reduced from 700μm to 400μm, making it easier to increase the number of cores.

さらに、本発明の光フアイバは2次被覆が薄肉
化されることにより、高温または低温下において
被覆の収縮によつて生ずるマイクロベンド損失が
低減される。第2図は、本発明の構造による光フ
アイバについて弗素樹脂の肉厚を変えた場合の、
−20〜150℃の温度範囲におけるヒートサイクル
による損失変化を示す図である。本実施例は、ガ
ラスフアイバが外径125μmのマルチモードフア
イバで、1次被覆のシリコン被覆後の外径は
300μmとし、2次被覆の弗素樹脂の肉厚を50,
100,150,200μmと変化させてヒートサイクルを
行つたときの伝送損失の最大変化量を示してい
る。第2図より、2次被覆の肉厚を100μm以下と
することにより伝送損失の改善されることが解
る。
Furthermore, since the optical fiber of the present invention has a thin secondary coating, microbend loss caused by shrinkage of the coating at high or low temperatures is reduced. FIG. 2 shows the optical fiber with the structure of the present invention when the thickness of the fluororesin is changed.
It is a figure which shows the loss change by a heat cycle in the temperature range of -20-150 degreeC. In this example, the glass fiber is a multimode fiber with an outer diameter of 125 μm, and the outer diameter after the primary silicon coating is
300 μm, and the thickness of the fluororesin for the secondary coating was 50 μm.
It shows the maximum change in transmission loss when a heat cycle is performed with the thickness changed to 100, 150, and 200 μm. From FIG. 2, it can be seen that the transmission loss is improved by making the thickness of the secondary coating 100 μm or less.

また、細径化のため1次被覆だけの光フアイバ
を用いた場合、シリコン樹脂の粘着性のためスペ
ーサの溝内壁との間で長手方向に摩擦の不均一を
生ずる。第3図は、長さ1mの、1次被覆だけの
従来の光フアイバを用いたスペーサ型光フアイバ
ケーブルと、本発明による焼付塗布により2次被
覆を施した光フアイバを用いたスペーサ型光フア
イバケーブルに、それぞれ、同じように振幅±5
mm、周波数35Hzの振動を加えながら光フアイバの
伝送損失変化を連続測定した結果を示したもので
ある。第3図において、実線は本発明による結
果で、点線は従来の1次被覆だけの光フアイバ
を用いた結果である。第3図から解かるように、
本発明の構造を備えた光フアイバケーブルは、光
フアイバのスペーサ溝内壁に対するすべりを改善
することによつて、伝送損失の増加を0.2dB/Km
から損失変化なしに改善された。
Further, when an optical fiber coated only with a primary coating is used to reduce the diameter, uneven friction occurs in the longitudinal direction between the optical fiber and the inner wall of the groove of the spacer due to the adhesiveness of the silicone resin. Figure 3 shows a 1 m long spacer-type optical fiber cable using a conventional optical fiber with only a primary coating, and a spacer-type optical fiber cable using an optical fiber with a secondary coating by baking coating according to the present invention. Same amplitude ±5 for each cable.
This figure shows the results of continuous measurement of changes in transmission loss of an optical fiber while applying vibration at a frequency of 35 Hz. In FIG. 3, the solid line shows the results according to the present invention, and the dotted line shows the results using a conventional optical fiber with only a primary coating. As can be seen from Figure 3,
The optical fiber cable with the structure of the present invention reduces the increase in transmission loss by 0.2 dB/Km by improving the slippage of the optical fiber against the inner wall of the spacer groove.
improved without any change in loss.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば従来の耐熱
光フアイバ心線に比べ、2次被覆の薄肉化が可能
であり、かつ1次被覆と2次被覆とを同一工程で
実施できることから、1次被覆の薄肉化も可能と
なり、光フアイバの細径化ができ、光フアイバケ
ーブルの多心化が容易となる。また2次被覆が薄
肉化されることにより、高温または低温下におい
て被覆の収縮により生じるマイクロベンド損失が
低減される。さらに被覆薄肉化によつて従来の光
フアイバに比べて側圧特性などの機械特性は低下
するが、スペーサ構造とすることにより、光フア
イバは外力から保護され、実用上問題はない。ま
た本発明による光フアイバケーブルは、光フアイ
バのスペーサ溝内壁に対するすべりが改善され、
伝送損失の増加も抑止できる。
As described above, according to the present invention, the secondary coating can be made thinner than the conventional heat-resistant optical fiber core wire, and the primary coating and the secondary coating can be performed in the same process. It is also possible to make the thickness of the next coating thinner, and the diameter of the optical fiber can be made smaller, making it easier to increase the number of fibers in the optical fiber cable. Furthermore, by making the secondary coating thinner, microbend loss caused by shrinkage of the coating at high or low temperatures is reduced. Furthermore, due to the thinning of the coating, mechanical properties such as lateral pressure properties are lowered compared to conventional optical fibers, but the spacer structure protects the optical fiber from external forces and causes no practical problems. Furthermore, the optical fiber cable according to the present invention has improved slippage of the optical fiber against the inner wall of the spacer groove,
Increase in transmission loss can also be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光フアイバの断面構造
図、第2図は本発明に係る光フアイバのヒートサ
イクル時の2次被覆肉厚と伝送損失変化を示す
図、第3図は光フアイバに加わる振動回数と伝送
損失変化の測定結果例を示す図、第4図は光フア
イバ複合架空地線の断面構造図、第5図は従来の
光フアイバの断面構造図である。 1……スペーサ、2……らせん溝、3……光フ
アイバ、4……シース、5……光フアイバケーブ
ル、6……アルミ覆鋼線、7……ガラスフアイ
バ、8……1次被覆、9……押出成形弗素樹脂被
覆、10……焼付塗布熱硬化型弗素樹脂被覆。
Fig. 1 is a cross-sectional structural diagram of the optical fiber according to the present invention, Fig. 2 is a diagram showing the secondary coating thickness and transmission loss change during heat cycling of the optical fiber according to the present invention, and Fig. 3 is a diagram showing the optical fiber according to the present invention. FIG. 4 is a cross-sectional structural diagram of an optical fiber composite overhead ground wire, and FIG. 5 is a cross-sectional structural diagram of a conventional optical fiber. DESCRIPTION OF SYMBOLS 1... Spacer, 2... Spiral groove, 3... Optical fiber, 4... Sheath, 5... Optical fiber cable, 6... Aluminum covered steel wire, 7... Glass fiber, 8... Primary coating, 9...Extrusion molded fluororesin coating, 10...Baking coating thermosetting fluororesin coating.

Claims (1)

【特許請求の範囲】 1 溝付スペーサのらせん溝内に光フアイバを収
納し、シースを被覆したスペーサ型光ケーブルに
おいて、 前記光フアイバは、 ガラスフアイバにシリコン樹脂からなる1次被
覆を施し、 前記1次被覆の外周に熱硬化型弗素樹脂を肉厚
100μm以下で焼付塗布した2次被覆を備えてなる
ことを特徴とする光フアイバケーブル。
[Scope of Claims] 1. A spacer-type optical cable in which an optical fiber is housed in a helical groove of a grooved spacer and covered with a sheath, wherein the optical fiber is a glass fiber with a primary coating made of silicone resin, and 1. Next, thick thermosetting fluororesin is applied to the outer periphery of the coating.
An optical fiber cable characterized by comprising a secondary coating coated by baking to a thickness of 100 μm or less.
JP61180684A 1986-07-31 1986-07-31 Optical fiber cable Granted JPS6336211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61180684A JPS6336211A (en) 1986-07-31 1986-07-31 Optical fiber cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61180684A JPS6336211A (en) 1986-07-31 1986-07-31 Optical fiber cable

Publications (2)

Publication Number Publication Date
JPS6336211A JPS6336211A (en) 1988-02-16
JPH0544005B2 true JPH0544005B2 (en) 1993-07-05

Family

ID=16087497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61180684A Granted JPS6336211A (en) 1986-07-31 1986-07-31 Optical fiber cable

Country Status (1)

Country Link
JP (1) JPS6336211A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5580127B2 (en) * 2010-07-20 2014-08-27 株式会社アマダ Laser beam transmission device

Also Published As

Publication number Publication date
JPS6336211A (en) 1988-02-16

Similar Documents

Publication Publication Date Title
JPS59111602A (en) Casing for light guide tube
JPH0544005B2 (en)
JPS596268B2 (en) Method of reinforcing glass fiber for optical transmission
JPS61198113A (en) Optical fiber core
JPS63225562A (en) Production of optical fiber coil
JPH052122B2 (en)
JPH0875959A (en) Jelly-filled optical fiber cable
JPH0235131Y2 (en)
JP2514047Y2 (en) Optical fiber composite optical fiber for overhead ground wire
JPS6110044A (en) Production of fiber for optical transmission
JPH11305086A (en) Optical fiber unit and optical fiber cable using the same
JPS6299711A (en) Covered optical fiber core
JPH0425685Y2 (en)
JPS6132013A (en) Coated optical fiber
JPH01304408A (en) Optical fiber cable
JPS6210402B2 (en)
JPS604163Y2 (en) optical transmission line
JPH0248607A (en) Optical fiber unit
JPH05127052A (en) Heat-resistant optical fiber
JPH023524Y2 (en)
JPS6273214A (en) Optical fiber strand coated with resin curable by uv rays
JPS59228607A (en) Optical fiber core
JPH0115045B2 (en)
JPS63198008A (en) Optical fiber core for extremely low temperature
JP2001042180A (en) Optical fiber unit