JPH0543780B2 - - Google Patents

Info

Publication number
JPH0543780B2
JPH0543780B2 JP57127355A JP12735582A JPH0543780B2 JP H0543780 B2 JPH0543780 B2 JP H0543780B2 JP 57127355 A JP57127355 A JP 57127355A JP 12735582 A JP12735582 A JP 12735582A JP H0543780 B2 JPH0543780 B2 JP H0543780B2
Authority
JP
Japan
Prior art keywords
steel sheet
steel
alloyed
paint
steel sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57127355A
Other languages
Japanese (ja)
Other versions
JPS5920456A (en
Inventor
Toshio Nakamori
Atsuyoshi Shibuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP57127355A priority Critical patent/JPS5920456A/en
Publication of JPS5920456A publication Critical patent/JPS5920456A/en
Publication of JPH0543780B2 publication Critical patent/JPH0543780B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、合金化処理した溶融亜鉛メツキ鋼
板に塗料を塗布するプレコート鋼板(有機被覆鋼
板)の製造方法に関する。 合金化処理溶融亜鉛メツキ鋼板(以下合金化処
理鋼板と呼ぶ)は、亜鉛層と鋼素地との間に相互
拡散を行なわせ、メツキ層全体をFe−Zn合金と
したもので、非合金溶融亜鉛メツキ鋼板に比し、
塗装仕上り外観が均一でむらがない、塗膜密
着性が良好である、塗装下地鋼板として耐食性
がすぐれている、抵抗溶接で電極の消耗が少な
く、冷延鋼板に近い作業性を有する、等の特徴が
あるため、自動車、家電製品、計器等と巾広い用
途を有し、そのほとんどが塗装して用いられるこ
とから塗装鋼板としての機能を有している。 近年、塗装鋼板に関して、従来行なわれていた
ユーザでの塗装工程等を省略すべく、冷延鋼板や
亜鉛メツキ鋼板等の薄鋼板に塗料を塗布し、その
まま加工、組立てて使用されるプレコート鋼板が
普及しつつあり、塗装下地鋼板としてすぐれた特
性を有する合金化処理鋼板もプレコート鋼板の原
板として用いられつつある。 すなわち、ユーザの化成処理、塗装工程の省略
化要望、加工性の良好な塗料の開発、塗装鋼板成
型技術の改善等により、あらかじめ鋼板製造メー
カ側で塗装した鋼板、すなわちプレコート鋼板が
新規需要として増えつつある。ところが、このよ
うなプレコート化の普及に伴なつて、当初予見で
きなかつた問題が発生した。それは、合金化処理
鋼板に比較的硬質の塗料を塗布した場合に起こる
メツキ皮膜の剥離現象である。 第1図aは従来の合金化処理鋼板に硬質の塗料
を塗布したプレコート鋼板の皮膜構成を示すもの
で、1は母材、2は合金化亜鉛メツキ皮膜、3は
塗膜を示す。 すなわち、通常のプレコート鋼板は、母材1に
溶融亜鉛メツキを施した後、直ちに炉温900〜
1100℃に保持した加熱炉に導いて合金化処理し、
冷却後塗料を塗布して製造されるが、従来の合金
化処理鋼板に比較的硬質(鉛筆硬度3H以上)の
塗料を塗布したプレコート鋼板の場合は、シヤー
4にて剪断加工すると、第1図bに示すごとく、
切断端面近辺で母材1と合金化亜鉛メツキ皮膜2
の境界で剥離が起こる。この剥離巾は1mm以下で
あり、一般に硬度の大きいメツキ皮膜に硬度の大
きい塗膜を被覆した場合に共通して見受けられ
る。また、この剥離現象は、プレコート鋼板の衝
撃曲げ変形等でも生じる。 このようなメツキ皮膜の剥離は、プレコート鋼
板の製品価値を低下させるのみならず、ユーザで
の使用に大きな支障をきたす。従つて、合金化処
理鋼板をプレコート鋼板の原板として用いる場
合、メツキ皮膜の剥離は可及的に解決されなけれ
ばならない。 しかし、この剥離現象の機構は、メツキ皮膜の
密着力、塗装皮膜の硬度、シヤークリアランス、
母材成分等の諸因子が関与しているものと考えら
れるが、その詳細については現在のところ十分に
解明されていないため、適切な解決方法は見い出
されていない現状である。 この発明は、上記メツキ皮膜の剥離現象を防止
することを目的としてなされたものであり、塗装
下地鋼板としてすぐれた特性を有する合金化処理
鋼板がプレコート鋼板の素材としての巾広い用途
をもつべく、剪断加工および衝撃変形に対してす
ぐれた耐性を示すプレコート鋼板の製造方法を提
案するものである。 この発明は、鋼素地の成分を変えることによ
り、亜鉛層と鋼素地との間の相互拡散により他層
に食い込む効果(一般にアンカー効果と呼ばれて
いる)をより高めてメツキ皮膜の剥離現象を防止
することを主たる特徴とするもので、その要旨
は、合金化処理鋼板に塗料を塗布するプレコート
鋼板の製造方法において、C≦0.1%、Si≦0.1%、
Mn0.10〜0.5%、Pは0.03≧P≧0.24×C%+
0.005を満足し、残部Feおよび不可避的不純物よ
りなる組成を有する母材に、片面当り45g/m2
上120g/m2以下の溶融亜鉛メツキを施すことを
特徴とするプレコート鋼板の製造方法にある。 この発明者らは、合金化処理鋼板の鋼素地とメ
ツキ層の密着力を鋭意検討した結果、主として一
般概念における合金化度を高めることによつてメ
ツキ層の密着力が向上することを確認した。しか
し、メツキ層の合金化度を高める方法において
は、メツキ層の密着性の向上には効果はあつて
も、主として加工時にパウダリング、フレーキン
グ等のメツキ皮膜の層間離脱を生じ易い結果を招
く。そこで、この発明者らは、合金化度を必要以
上に高めることなく合金化処理鋼板の剪断加工、
衝撃変形に対するメツキ皮膜の密着性を確保する
方法について種々検討した結果、母材の成分、特
に鋼中のCおよびPの成分含有量を調整すること
により、剪断加工および衝撃変形に対してすぐれ
た耐性を示すことを見い出した。 すなわち、この発明は、プレコート鋼板の鋼素
地として、C≦0.1%、Si≦0.1%、Mn0.10〜0.5
%、0.030≧P≧0.24×C+0.005%、残部Feおよ
び不可避的不純物よりなる組成を有する母材を用
いることを特徴とするものである。このように母
材の鋼成分を限定したのは、次に示す理由によ
る。 C含有量は合金化処理鋼板の耐衝撃変形能に影
響し、0.1%を越えると耐衝撃変形能を低下させ
るとともに、強度および加工性に悪影響をおよぼ
す。一方、鋼中Cが少ないとフエライト結晶粒が
大きくなり、合金化処理時にZnがフエライト地
鉄中に拡散浸透し易くなり、いわゆるアンカー効
果により合金化処理鋼板の母材とメツキ皮膜の密
着力が向上するため、C含有量は0.1%以下、望
ましくは0.05%以下が好ましい。 Siは通常の軟鋼板と同程度の含有量であれば良
いが、0.1%を越えると亜鉛メツキ層の合金化開
始温度および合金化速度、耐パウダリング性に悪
影響をおよぼすため0.1%以下とした。 Mnは所定の強度を維持するために含有させる
もので、その含有量は通常の軟鋼板と同程度の
0.1〜0.5%とした。 PはCと同様この発明鋼における主要成分の一
つであり、Pは添加によつてプレコート鋼板の耐
衝撃変形能は向上するが、Cとの兼ね合いがあ
り、C含有量が少なければ低濃度のPで耐衝撃変
形能が維持される。一方、鋼中Pが増加すると、
合金化処理時Fe−Zn合金化が抑制され、逆にメ
ツキ層のZnが地鉄フエライト中に拡散浸透しZn
のアンカー効果により合金化処理鋼板の母材とメ
ツキ皮膜の密着力が向上する。第4図はこの発明
者らが下表に示す材料を用いてC、Pの含有量と
シヤー剥離巾の関係を調べて結果を示す図表であ
る。なお、このときの塗装皮膜は硬質アクリル系
塗料を15μ塗布して形成した。すなわち、P含有
量が0.03%を越えると降伏強度が上昇して加工性
の低下を招くとともに、降伏強度の上昇が耐衝撃
変形能の低下につながるため、Pの上限は0.03%
が好ましく、また0.24×C%+0.005以下では耐
衝撃変形能が維持されず、かつメツキ皮膜の密着
力の向上がはかられないため、Pの下限は0.24×
C%+0.005とした。
The present invention relates to a method for manufacturing a pre-coated steel sheet (organic coated steel sheet) in which a paint is applied to an alloyed hot-dip galvanized steel sheet. Alloyed hot-dip galvanized steel sheets (hereinafter referred to as alloyed steel sheets) are made by interdiffusion between the zinc layer and the steel base, and the entire galvanized layer is made of Fe-Zn alloy. Compared to plated steel plate,
Uniform and even paint finish appearance, good paint film adhesion, excellent corrosion resistance as a base steel sheet for painting, low electrode wear during resistance welding, and workability similar to that of cold-rolled steel sheets. Due to its unique characteristics, it has a wide range of uses, including automobiles, home appliances, and meters, and most of them are used after being painted, so it functions as a coated steel sheet. In recent years, with regard to painted steel sheets, pre-painted steel sheets have been developed, which are used by applying paint to thin steel sheets such as cold-rolled steel sheets and galvanized steel sheets, and then processing and assembling them as they are, in order to eliminate the conventional painting process performed by the user. Alloyed steel sheets, which are becoming popular and have excellent properties as base steel sheets for painting, are also being used as base sheets for pre-painted steel sheets. In other words, new demand for steel sheets that have been pre-painted by steel sheet manufacturers, i.e., pre-painted steel sheets, is increasing due to users' requests for chemical conversion treatment and the abbreviation of painting processes, the development of paints with good workability, and improvements in coated steel sheet forming technology. It's coming. However, with the spread of such precoating, problems that could not have been foreseen at the beginning have arisen. This is a phenomenon in which the plating film peels off when a relatively hard paint is applied to an alloyed steel sheet. FIG. 1a shows the film structure of a pre-coated steel sheet in which a hard paint is applied to a conventional alloyed steel sheet, where 1 is the base material, 2 is the alloyed galvanized film, and 3 is the paint film. In other words, for normal pre-coated steel sheets, after hot-dip galvanizing is applied to the base material 1, the furnace temperature is immediately heated to 900~900°C.
It is guided to a heating furnace maintained at 1100℃ and alloyed.
It is manufactured by applying paint after cooling, but in the case of a pre-coated steel sheet, which is a conventional alloyed steel sheet coated with a relatively hard paint (pencil hardness of 3H or more), it is sheared with a shear 4, as shown in Figure 1. As shown in b,
Base material 1 and alloyed galvanized film 2 near the cut end surface
Separation occurs at the boundary. This peeling width is 1 mm or less, and is commonly observed when a hard plating film is coated with a hard coating film. This peeling phenomenon also occurs due to impact bending deformation of the pre-coated steel sheet. Such peeling of the plating film not only reduces the product value of the pre-coated steel sheet, but also seriously impedes its use by users. Therefore, when an alloyed steel sheet is used as a base sheet for a pre-coated steel sheet, peeling of the plating film must be solved as much as possible. However, the mechanism of this peeling phenomenon depends on the adhesion of the plating film, the hardness of the paint film, shear clearance,
It is thought that various factors such as base material components are involved, but the details have not been fully elucidated at present, and an appropriate solution has not yet been found. This invention was made with the aim of preventing the above-mentioned peeling phenomenon of the plating film, and in order that the alloyed steel sheet, which has excellent properties as a base steel sheet for painting, would have a wide range of uses as a material for pre-coated steel sheets. The present invention proposes a method for producing prepainted steel sheets that exhibit excellent resistance to shearing and impact deformation. This invention improves the effect of biting into other layers (generally called the anchor effect) through mutual diffusion between the zinc layer and the steel base by changing the composition of the steel base, thereby suppressing the peeling phenomenon of the plating film. The main feature is to prevent C≦0.1%, Si≦0.1%,
Mn0.10~0.5%, P is 0.03≧P≧0.24×C%+
0.005, with the balance consisting of Fe and unavoidable impurities, a method for producing a pre-painted steel sheet, characterized by applying hot-dip galvanizing of 45 g/m 2 to 120 g/m 2 per side to a base material satisfying 0.005 and having a composition consisting of Fe and unavoidable impurities. . As a result of intensive investigation of the adhesion between the steel substrate and the plating layer of alloyed steel sheets, the inventors confirmed that the adhesion of the plating layer can be improved mainly by increasing the degree of alloying in a general concept. . However, although the method of increasing the degree of alloying of the plating layer is effective in improving the adhesion of the plating layer, it tends to cause delamination of the plating film such as powdering and flaking during processing. . Therefore, the inventors conducted a shearing process on an alloyed steel sheet without increasing the degree of alloying more than necessary.
As a result of various studies on methods to ensure the adhesion of the plating film against impact deformation, we found that by adjusting the components of the base metal, especially the content of C and P in the steel, we found that it has excellent resistance to shearing and impact deformation. It was found that it shows resistance. That is, in this invention, as the steel base of the pre-painted steel sheet, C≦0.1%, Si≦0.1%, Mn 0.10 to 0.5
%, 0.030≧P≧0.24×C+0.005%, the balance being Fe and inevitable impurities. The reason why the steel composition of the base metal is limited in this way is as follows. The C content affects the impact deformation resistance of the alloyed steel sheet, and if it exceeds 0.1%, it reduces the impact deformation resistance and has an adverse effect on the strength and workability. On the other hand, if the C content in the steel is low, the ferrite crystal grains will become larger, and Zn will more easily diffuse into the ferrite base steel during alloying, and the so-called anchor effect will reduce the adhesion between the base material of the alloyed steel sheet and the plating film. In order to improve the carbon content, the C content is preferably 0.1% or less, preferably 0.05% or less. The content of Si should be the same as that of ordinary mild steel sheets, but if it exceeds 0.1%, it will adversely affect the alloying start temperature, alloying speed, and powdering resistance of the galvanized layer, so it is set to 0.1% or less. . Mn is added to maintain a specified strength, and its content is about the same as that of ordinary mild steel sheets.
It was set at 0.1 to 0.5%. Like C, P is one of the main components in this invention steel, and the addition of P improves the impact deformation resistance of pre-coated steel sheets, but there is a balance with C, and if the C content is low, the concentration is low. The impact deformation ability is maintained at P of . On the other hand, when P in steel increases,
During alloying treatment, Fe-Zn alloying is suppressed, and conversely, Zn in the plating layer diffuses into the base ferrite and becomes Zn.
The anchor effect improves the adhesion between the base material of the alloyed steel sheet and the plating film. FIG. 4 is a chart showing the results of an investigation by the inventors of the relationship between the C and P contents and the shear peeling width using the materials shown in the table below. The coating film at this time was formed by applying 15μ of hard acrylic paint. In other words, if the P content exceeds 0.03%, the yield strength will increase, leading to a decrease in workability, and an increase in the yield strength will lead to a decrease in impact deformation resistance, so the upper limit of P is 0.03%.
is preferable, and if it is less than 0.24×C%+0.005, the impact deformation resistance cannot be maintained and the adhesion of the plating film cannot be improved, so the lower limit of P is 0.24×
It was set as C%+0.005.

〔実施例〕〔Example〕

成分組成の異なる冷延鋼板(板厚0.49〜0.71
mm)を母材として用い、連続溶融亜鉛メツキ後合
金化処理し、これら合金化処理鋼板を巾80mm×長
さ150mmの試片に加工後、通常の脱脂、リン酸亜
鉛処理を行ない、硬質アクリル系塗料を15μ塗布
し、熱硬化後電動シヤーで剪断し、端面剥離巾を
測定するとともに、デユポン衝撃試験(球径
12φ、荷重1Kg、鋼球落下高さ50mm)を実施し、
メツキ剥離状況の評価を行なつた。 本実施例における供試材としては、本発明に係
るもの11鋼種と比較例として用いたもの15鋼種の
全部で26鋼種であつた。これら26鋼種の成分組成
およびメツキ剥離状況評価結果を第1表に示す。 第1表より明らかなごとく、本発明に係るプレ
コート鋼板の場合は、C、Pの含有量が本発明の
範囲を外れた比較例のプレコート鋼板に比べてシ
ヤー剥離巾はほとんど0.25mm以下と小さく、従つ
てデユポン衝撃テスト結果においても良好で、耐
衝撃変形能の大きいことが判明した。
Cold-rolled steel sheets with different compositions (thickness 0.49 to 0.71
mm) as the base material, alloyed after continuous hot-dip galvanizing, and processed these alloyed steel sheets into specimens of width 80 mm x length 150 mm, followed by normal degreasing, zinc phosphate treatment, hard acrylic Apply 15μ of the paint, heat cure, shear it with an electric shear, measure the edge peeling width, and conduct the Dupont impact test (ball diameter
12φ, load 1Kg, steel ball falling height 50mm),
The peeling status of plating was evaluated. The test materials in this example were 26 steel types in total, 11 steel types related to the present invention and 15 steel types used as comparative examples. Table 1 shows the chemical composition of these 26 steel types and the evaluation results of plating peeling. As is clear from Table 1, in the case of the pre-coated steel sheet according to the present invention, the shear peeling width is small, almost 0.25 mm or less, compared to the pre-coated steel sheet of the comparative example in which the content of C and P is outside the range of the present invention. Therefore, it was found that the DuPont impact test results were also good, and the impact deformation resistance was high.

【表】【table】

【表】 以上説明したごとく、この発明法によれば、合
金化処理鋼板の鋼素地とメツキ皮膜の密着力を向
上させることができるので、硬質の塗料を塗布し
ても剪断加工および衝撃変形に対してすぐれた耐
性を示すプレコート鋼板を得ることができ、合金
化処理鋼板のプルコート化の普及に多大な効果を
奏するものである。
[Table] As explained above, according to the method of the present invention, it is possible to improve the adhesion between the steel substrate of the alloyed steel sheet and the plating film, so even if hard paint is applied, shearing and impact deformation will not occur. It is possible to obtain a pre-coated steel sheet that exhibits excellent resistance to anti-alloyed steel sheets, which has a great effect on the spread of pull-coating of alloyed steel sheets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の合金化処理鋼板に硬質の塗料を
塗布したプレコート鋼板の皮膜構成を示す断面
図、第1図bは同上プレコート鋼板を剪断加工し
た場合のメツキ皮膜剥離状況を示す断面図、第2
図は合金化処理設備の一例を示す概略図、第3図
はコイル塗装方法を示す概略図で、同図aはナチ
ユラルコータ、同図bはリバースコータ、第4図
および第5図は本発明者らが行なつた実験結果を
示すもので、第4図はC、Pの含有量とシヤー剥
離巾の関係を示す図表、第5図は片面亜鉛付着量
とシヤー時の剥離巾の関係を示す図表である。 1……母材、2……合金化亜鉛メツキ皮膜、3
……塗膜、4……シヤー、11……メツキ槽、1
2……付着量制御装置、13……加熱炉、14…
…保熱炉、15……冷却装置、16……トツプロ
ール、20……塗料パン、21……ピツクアツプ
ロール、22……コーテイングロール、23……
バツクアツプロール、24……コイル。
Fig. 1 is a cross-sectional view showing the film structure of a pre-coated steel plate in which a hard paint is applied to a conventional alloyed steel plate, Fig. 1b is a cross-sectional view showing the peeling of the plating film when the same pre-coated steel plate is subjected to shear processing, Second
The figure is a schematic diagram showing an example of alloying treatment equipment, and Figure 3 is a schematic diagram showing a coil coating method, in which figure a is a natural coater, figure b is a reverse coater, and figures 4 and 5 are in accordance with the present invention. Figure 4 shows the relationship between the content of C and P and the shear peeling width, and Figure 5 shows the relationship between the amount of zinc deposited on one side and the peeling width during shearing. This is a chart showing. 1... Base material, 2... Alloyed zinc plating film, 3
... Paint film, 4 ... Shear, 11 ... Plating tank, 1
2... Adhesion amount control device, 13... Heating furnace, 14...
... Heat retention furnace, 15 ... Cooling device, 16 ... Top roll, 20 ... Paint pan, 21 ... Pick-up roll, 22 ... Coating roll, 23 ...
Backup Prowl, 24...Coil.

Claims (1)

【特許請求の範囲】 1 合金化溶融亜鉛メツキ鋼板に塗料を塗布する
プレコート鋼板の製造方法において、C≦0.1%、
Si≦0.1%、Mn0.10〜0.5%、Pは下記式を満足
し、残部Feおよび不可避的不純物よりなる組成
を有する母材に、片面45g/m2以上120g/m2
下の溶融亜鉛メツキ層を施すことを特徴とするプ
レコート鋼板の製造法。 記 0.03≧P≧0.24×C%+0.005
[Claims] 1. A method for producing a pre-coated steel sheet in which a paint is applied to an alloyed hot-dip galvanized steel sheet, C≦0.1%,
Si≦0.1%, Mn0.10-0.5%, P satisfies the following formula, and the balance consists of Fe and unavoidable impurities. Hot-dip galvanizing of 45 g/m 2 or more and 120 g/m 2 or less on one side A method for producing prepainted steel sheets characterized by applying a layer. Note 0.03≧P≧0.24×C%+0.005
JP57127355A 1982-07-21 1982-07-21 Manufacture of precoated steel plate Granted JPS5920456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57127355A JPS5920456A (en) 1982-07-21 1982-07-21 Manufacture of precoated steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57127355A JPS5920456A (en) 1982-07-21 1982-07-21 Manufacture of precoated steel plate

Publications (2)

Publication Number Publication Date
JPS5920456A JPS5920456A (en) 1984-02-02
JPH0543780B2 true JPH0543780B2 (en) 1993-07-02

Family

ID=14957882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57127355A Granted JPS5920456A (en) 1982-07-21 1982-07-21 Manufacture of precoated steel plate

Country Status (1)

Country Link
JP (1) JPS5920456A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612314A (en) * 1979-07-09 1981-02-06 Shaw Seth Thomas Jr Drug for iud appliance
JPS5613470A (en) * 1979-07-12 1981-02-09 Nippon Kokan Kk <Nkk> Manufacture of alloyed galvanized steel sheet for coating substrate
JPS5623264A (en) * 1979-08-02 1981-03-05 Kobe Steel Ltd Production of galvanized steel sheet
JPS5723054A (en) * 1980-07-14 1982-02-06 Nippon Steel Corp Preparation of zinc plated steel strip with excellent plating close adhesiveness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612314A (en) * 1979-07-09 1981-02-06 Shaw Seth Thomas Jr Drug for iud appliance
JPS5613470A (en) * 1979-07-12 1981-02-09 Nippon Kokan Kk <Nkk> Manufacture of alloyed galvanized steel sheet for coating substrate
JPS5623264A (en) * 1979-08-02 1981-03-05 Kobe Steel Ltd Production of galvanized steel sheet
JPS5723054A (en) * 1980-07-14 1982-02-06 Nippon Steel Corp Preparation of zinc plated steel strip with excellent plating close adhesiveness

Also Published As

Publication number Publication date
JPS5920456A (en) 1984-02-02

Similar Documents

Publication Publication Date Title
US3962501A (en) Method for coating of corrosion-resistant molten alloy
JP3561421B2 (en) Painted steel plate with excellent corrosion resistance
JP2755387B2 (en) Manufacturing method of hot-dip zinc-alloy-plated steel sheet for pre-coated steel sheet and pre-coated steel sheet
JPS5891162A (en) Manufacture of galvanized steel plate
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JP2834529B2 (en) Surface-treated steel sheet excellent in corrosion resistance and weldability and method for producing the same
JPH06128713A (en) Production of coated aluminum plated steel sheet excellent in corrosion resistance and workability
JPH0543780B2 (en)
JP3016122B2 (en) Galvannealed steel sheet with excellent paintability and its manufacturing method
JP2970410B2 (en) Alloyed hot-dip galvanized steel sheet with good adhesiveness and press-formability and method for producing the same
JPH04235266A (en) Manufacture of alloying galvannealed steel sheet excellent in workability and corrosion resistance
JPH0368749A (en) Production of hot dip galvanized steel sheet
JP3205292B2 (en) Manufacturing method of hot-dip galvanized steel sheet with excellent corrosion resistance and plating adhesion
JP3111904B2 (en) Manufacturing method of galvanized steel sheet
JPH0544006A (en) Production of alloyed hot dip galvanized steel sheet having excellent workability and corrosion resistance
JP2800512B2 (en) Manufacturing method of galvannealed steel sheet
JP2841898B2 (en) Alloyed hot-dip galvanized steel sheet with excellent surface smoothness
JPH04360A (en) Galvannealed steel sheet excellent in workability
JPH03243755A (en) Organic composite alloying hot dip galvanized steel sheet excellent in press formability
JPH09143659A (en) Galvannealed steel sheet excellent in initial white rust resistance
JPH0343347B2 (en)
JPS62192597A (en) Plated steel sheet having superior powdering resistance
JP3191637B2 (en) Manufacturing method of galvanized steel sheet
JP2792809B2 (en) Hot-dip galvanized steel sheet
JPH07145469A (en) Manufacture of galvannealed steel sheet excellent for corrosion resistance and press formability