JPH0543716B2 - - Google Patents

Info

Publication number
JPH0543716B2
JPH0543716B2 JP62065405A JP6540587A JPH0543716B2 JP H0543716 B2 JPH0543716 B2 JP H0543716B2 JP 62065405 A JP62065405 A JP 62065405A JP 6540587 A JP6540587 A JP 6540587A JP H0543716 B2 JPH0543716 B2 JP H0543716B2
Authority
JP
Japan
Prior art keywords
general formula
group
hydrogen atom
compound
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62065405A
Other languages
Japanese (ja)
Other versions
JPS63230699A (en
Inventor
Akira Matsuda
Tooru Ueda
Kenji Takenuki
Haruhiko Machida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamasa Shoyu KK
Original Assignee
Yamasa Shoyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Shoyu KK filed Critical Yamasa Shoyu KK
Priority to JP62065405A priority Critical patent/JPS63230699A/en
Priority to KR1019880701498A priority patent/KR910008800B1/en
Priority to DE3854110T priority patent/DE3854110T2/en
Priority to AT88902560T priority patent/ATE124702T1/en
Priority to US07/295,948 priority patent/US5047520A/en
Priority to EP88902560A priority patent/EP0310673B1/en
Priority to PCT/JP1988/000278 priority patent/WO1988007049A1/en
Publication of JPS63230699A publication Critical patent/JPS63230699A/en
Priority to US07/721,828 priority patent/US5300636A/en
Publication of JPH0543716B2 publication Critical patent/JPH0543716B2/ja
Priority to US08/125,839 priority patent/US5430139A/en
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、新規化合物、2′−アルキリデンピリ
ミジンヌクレオシド誘導体、その製造法およびそ
れを有効成分として含有してなる抗ウイルス剤に
関するものである。 〔従来の技術〕 近年、種々のウイルス感染症の病原ウイルスに
関する研究が進むにつれ、その予防薬や治療薬の
開発が注目を集めている。 従来、化学療法による抗ウイルス剤としてイド
クスウリジン、シタラビン、ビダラビン、アシク
ロビルが臨床に供されている(たとえば水島裕、
宮本昭正共著、1986年版 今日の治療薬 解説と
便覧、第47〜50頁、1986年3月10日発行、南江堂
参照)のをはじめ、各種の抗ウイルス活性ヌクレ
オシドの医薬としての開発が進められている。 〔発明が解決しようとする問題点〕 しかしながら、上記薬剤は抗ウイルス活性スペ
クトル、低吸収性、難溶解性、易分解性、薬剤耐
性ウイルス株の出現、種々の副作用などにより臨
床面での利用が制限されるなどの問題があるもの
が多い。このため、新規な抗ウイルス剤の開発が
強く要望されている。 本発明はすぐれた抗ウイルス作用を有する新規
な化合物を提供することを主たる目的とするもの
である。 〔問題点を解決するための手段〕 本発明者らは、抗ウイルス剤として有用な新規
化合物を開発すべく研究を重ねた結果、下記一般
式〔〕で表わされる2′−アルキリデンピリミジ
ンヌクレオシド誘導体が優れた抗ウイルス活性を
有していることを見い出した。本発明は、該知見
に基づいて完成されたものである。 すなわち、本発明は、一般式〔〕 (式中、R1はアミノ基または水酸基、R2は水
素原子、ハロゲン原子または低級アルキル基、
R3は水素原子または低級アルキル基、R4は水素
原子またはリン酸残基をそれぞれ示す。)で表わ
される2′−アルキリデンピリミジンヌクレオシド
誘導体またはその塩に関するものである。 また、本発明は、下記の第1〜3工程よりなる
上記式〔〕で表わされる2′−アルキリデンピリ
ミジンヌクレオシド誘導体の製造法に関するもの
である。 第1工程; 下記一般式〔〕で表わされる化合物の糖部
2′位をウイツテイヒ試薬によりアルキリデン化
し、下記一般式〔〕で表わされる化合物を得る
工程 (式中、R2およびR3は前記と同意義であり、
R5はアルコキシル基、水酸基またはアミノ基、
Zは保護基を示す) 第2工程; 下記一般式〔〕で表わされる化合物の糖部保
護基を脱離させ、下記一般式〔〕で表わされる
化合物を得る工程 (式中、R2,R3,R5およびZは前記と同意義) 第3工程; 下記一般式〔〕で表わされる化合物を、R5
がアルコキシル基の場合は塩基部4位を加水分解
またはアミノ化した後、所望によりさらに糖部
5′位をリン酸化することにより下記一般式〔〕
で表わされる化合物を得る工程 (式中、R1,R2,R3,R4およびR5は前記と同
意義) さらに本発明は前記一般式〔〕で表わされる
2′−アルキリデンピリミジンヌクレオシド誘導体
またはその塩を有効成分として含有してなる抗ウ
イルス剤に関するものである。 以下、本発明について詳述する。 本発明化合物である2′−アルキリデンピリミジ
ンヌクレオシド誘導体は、前記一般式〔〕で表
わされるものである。該一般式におけるR1,R2
R3およびR4は前記定義のとおりであるが、R2
よびR3の低級アルキル基の具体例としては、炭
素数1〜3の低級アルキル基、さらに具体的には
メチル、エチル、プロピル、イソプロピルなどが
挙げられる。また、R2のハロゲン原子の具体例
としては塩素、フツ素、臭素、ヨウ素などが挙げ
られる。 このような本発明化合物の代表例としては、た
とえば2′−メチリデン−2′−デオキシウリジン、
2′−メチリデンチミジン、2′−エチリデンチミジ
ン、2′−メチリデン−2′−デオキシシチジン、
2′−メチリデン−2′−デオキシ−5−フルオロウ
リジン、2′−メチリデン−2′−デオキシ−5−ク
ロロウリジン、2′−メチリデン−2′−デオキシ−
5−ブロモウリジン、2′−メチリデン−2′−デオ
キシ−5−ヨードウリジンなどのヌクレオシドお
よびこれらの5′−りん酸エステルが挙げられる。 本発明化合物は、ウイルス、特に単純ヘルペス
ウイルス、サイトメガロウイルスなどのヘルペス
ウイルス科の属するウイルスに対して抗ウイルス
活性を有し、これらのウイルスによりもたらされ
る感染症の予防、治療に有用である。本発明化合
物の中でも特に、一般式〔〕中のR2が水素原
子、ハロゲン原子またはメチル基、R3が水素原
子である化合物群が単純ヘルペスウイルス
(HSV)に対して強力な抗ウイルス活性を有して
いる。 本発明化合物は塩の形態も含包するものであ
り、かかる塩としては、たとえば前記一般式
〔〕のR4が水素原子であるものの場合には塩酸
塩または硫酸塩などの酸付加塩、R4がリン酸残
基である場合にはナトリウム塩、カリウム塩また
はリチウム塩などのアルカリ金属塩、カルシウム
塩などのアルカリ土類金属塩もしくはアンモニウ
ム塩などの薬学的に許容される任意に塩が例示さ
れる。 本発明方法における原料化合物であるピリミジ
ンヌクレオシド誘導体は前記一般式〔〕で表わ
されるものである。該式中のR2,R5およびZは
前記定義のとおりであり、R5のアルコキシル基
の具体例としては炭素数1〜3の低級アルコキシ
ル基、さらに具体的にはメトキシ、エトキシ、プ
ロポキシなどが挙げられる。またZの保護基とし
ては、通常のヌクレオシドの保護基として使用さ
れるものであればよく、たとえばアセチル、プロ
ピオニル、ブチリル、ベンゾイルなどのアシル
基、ベンジリデンなどのアルキリデン基、トリチ
ルなどのアリールアルキル基、テトライソプロピ
ルジシロキシル(TIPDS)、t−ブチルジメチル
シリンなどのシリル保護基が例示できる。 本原料化合物は公知の方法を応用して合成する
ことができる。一般式〔〕化合物中のR5がア
ルコキシル基で表わされる化合物はたとえば次の
ような反応経路により調製することが可能であ
る。 (式中、R2およびZは前記と同意義であり、
R5′はアルコキシル基である) すなわち、一般式(A)で表わされるウリジン類の
糖部水酸基を保護した後、塩基部4位をハロゲン
化剤によりハロゲン化し、次いでこれにアルコキ
シドを反応させてアルコキシル基を導入し、一般
式(B)化合物を得る。一般式(B)で表わされる4−ア
ルコキシ体の糖部3′および5′位を保護した後、糖
部2′位水酸基を酸化することにより一般式〔′〕
化合物を得ることができる。 ハロゲン化反応における水酸基の保護基として
は、ハロゲン化反応の障害にならないものであれ
ば特に限定されず、アシル基、アルキリデン基、
アリールアルキル基など通常の水酸基の保護基が
適用されるが、特に酸の存在により脱離しない保
護基、たとえばアシル基が好ましい。 たとえばアシル保護反応は常法によつて行えば
よく、一般式(A)化合物に反応溶媒(たとえばピリ
ジン、ピコリン、ジエチルアニリン、ジメチルア
ミノピリジン、ジメチルホルムアミド、アセトニ
トリル、テトラブチルアミン、トリエチルアミン
などの単独または混合溶媒)中でアシル化剤(た
とえば、酢酸、プロピオン酸、酪酸、安息香酸、
置換安息香酸などの酸無水物もしくはそれらの酸
塩化物など)を3〜10倍モル、反応温度0〜50℃
で反応させることにより実施することができる。 ハロゲン化反応は、不活性溶媒(たとえば、ク
ロロホルム、塩化メチレンなど)中、ハロゲン化
剤を作用させる方法により行うことができる。ハ
ロゲン化剤としては塩化チオニル、臭化チオニ
ル、オキシ塩化リンなどを適用することができ、
必要に応じてジメチルスルホキシドなどの有機溶
媒溶液として使用してもよい。使用量は一般式(A)
化合物1モルに対して1〜5モル程度である。反
応は、加熱還流下で行えばよい。 アルコキシル基の導入反応は、保護基を有する
一般式(A)の4−ハロゲノ体に反応溶媒(たとえ
ば、メタノール、エタノール、プロパノールなど
のアルコール類など)中でアルコキシド(たとえ
ば、ナトリウムメトキシド、カリウムメトキシ
ド、ナトリウムエトキシド、カリウムエトキシ
ド、ナトリウムプロポキシドなど)を1〜5倍モ
ル程度加熱反応させることにより実施することが
できる。 3′位および5′位の保護基としては、前記のハロ
ゲン化反応で使用されるものと同一のものでよ
く、好ましくはシリル保護基であり、特に
TIPOS基が好適である。 シリル化保護を例にして説明すれば、シリル化
剤の使用量は一般式(B)化合物1モルに対して1〜
3モルの範囲から適宜選定でき、反応条件は前述
のアシル化反応と同様の条件を採用できる。 2′位水酸基の酸化方法としては、クロム酸−ピ
リジン−無水酢酸の複合体などを用いるクロム酸
酸化(A法)もしくは、塩化オキサリル−ジメチ
ルスルホキシドなどにより生じる活性化ジメチル
スルホキシドを用いる活性化ジメチルスルホキシ
ド酸化(B法)などを採用することができる。反
応は、A法の場合−10℃〜室温、B法の場合−10
〜−70℃で1〜10当量の酸化剤の存在下に実施す
ることができる。 また、一般式〔〕化合物中のR5が水酸基ま
たはアミノ基で表わされる化合物もたとえば次の
ような反応経路により調製することが可能であ
る。 (式中、R2およびZは前記と同意義であり、
R5″は水酸基またはアミノ基である) すなわち、一般式(A)で表わされるウリジン類の
糖部3′および5′位水酸基を保護した後、糖部2′位
水酸基を酸化することにより一般式〔′〕化合
物を得ることができる。 3′および5′位水酸基の保護化反応および2′位水
酸基の酸化反応は上記の一般式〔′〕化合物製
造の際の3′および5′位水酸基の保護化反応および
2′位水酸基の酸化反応に準じて実施することがで
きる。 前述のようにして製造される一般式〔〕化合
物化合物の単離は、通常の分離精製手段を用いれ
ばよく、たとえば溶媒を留去後、カラムクロマト
グラフイーに対し、n−ヘキサン等の適当な有機
溶媒にて結晶化する。 本発明方法の第1工程は一般式〔〕化合物の
2′位をウイツテイヒ試薬によりアルキリデン化す
る反応工程である。 アルキリデン化反応に使用するウイテイヒ試薬
は、一般式(C6H53P=CH−R3(式中、R3は前
記と同意義。)で表わされるアルキリデンホスホ
ランであり、具体的にはトリフエニルホスフイン
メチレン、トリフエニルホスフインエチレン、ト
リフエニルホスフインプロピレンなどが用いられ
る。 反応に使用するウイツテイヒ試薬は、使用直前
に一般式〔(C6H53P+−CH2−R3〕X-(式中、R3
は前記と同意義、X-はBr-、I-などのハロゲンイ
オンを示す。)で表わされるトリフエニルホスホ
ニウム化合物(たとえば臭化メチルトリフエニル
ホスホニウム、ヨウ化メチルトリフエニルホスホ
ニウム、臭化エチルトリフエニルホスホニウムな
ど)と強アルカリ(たとえば、水素化カリウム、
水素化ナトリウム、n−ブチルリチウム、ナトリ
ウムメトキシド、カリウム−t−ブトキシド、ナ
トリウムアミドなど)から常法に従つて調製した
ものを使用するのが好ましい。ウイツテイヒ試薬
の使用量は一般式〔〕化合物1モルに対して1
〜3モルから適宜選定できる。 アルキリデン化反応は、溶媒(たとえばテトラ
ヒドロフラン、ジオキサン、エーテル、ベンゼ
ン、ジメチルスルホキシドなどの単独もしくは混
合溶媒)中、一般式〔〕化合物とウイツテイヒ
試薬を室温にて反応させることにより実施するこ
とができる。 前述のようにして製造した一般式〔〕化合物
は通常のシリカゲルカラムクロマトグラフイーに
より単離精製することができる。 本発明方法の第2工程は一般式〔〕化合物の
糖部を保護基を脱離させる反応工程である。 脱保護反応は、使用した保護基に応じた酸性加
水分解、アルカリ性加水分解、フツ化アンモニウ
ム処理、接触還元などの通常の処理を適宜選択し
て行えばよい。 このようにして合成される一般式〔〕化合物
は、通常のシリカゲルカラムクロマトグラフイー
等にて単離することができる。 本発明方法の第3工程は、一般式〔〕で表わ
される化合物を、R5がアルコキシル基の場合は
塩基部4位を加水分解またはアミノ化した後、所
望により糖部5′位をリン酸化して一般式〔〕で
表わされる本発明化合物を得る反応工程である。 アミノ化反応は常法に従つて行えばよく、たと
えば封管中でメタノール性アンモニアを一般式
〔〕化合物に反応させることにより行うことが
できる。反応温度は50〜150℃である。 加水分解反応も、常法に従つて行えばよく、特
に酸性加水分解が好ましい。 また、一般式〔〕中R4がリン酸残基である
化合物の製造を目的とする場合には、上述のアミ
ノ化反応もしくは、加水分解反応終了後、オキシ
塩化リン、テトラクロロピロリン酸などの通常の
ヌクレオシドの5′位の選択的リン酸化に使用する
リン酸化剤と反応させて常法により遊離酸型また
は塩型の目的化合物を得ることができる。 このようにして合成される一般式〔〕化合物
は、一般のヌクレオシド、ヌクレオチドの単離精
製に使用されている方法を適宜組み合わせて分離
精製することができる。たとえば、ヌクレオシド
体(R4が水素原子)の場合には溶媒留去後、エ
タノール等の適当な溶媒から結晶化すればよく、
必要に応じ塩型として得ることもできる。ヌクレ
オチド体(R4がリン酸残基)の場合にはイオン
交換樹脂などのイオン交換カラムクロマトグラフ
イー、活性炭などの吸着カラムクロマトグラフイ
ーなどにより精製し、凍結乾燥または結晶化によ
り遊離酸型を得ることができ、必要に応じて塩型
として得ることもできる。 本発明化合物またはその塩は、ウイルス、特に
単純ヘルペスウイルス(HSV)、サイトメガロウ
イルス(CMV)などのヘルペスウイルス科の属
するウイルスに対して抗ウイルス活性を有し、か
つ本発明の代表的化合物の一つである後述実施例
1で合成する2′−デオキシ−2′−メチリデンシチ
ジンのICR系雄性マウス(5週齢、1群8匹)を
用いた静脈内投与による急性毒性値(LD50)は
2000mg/Kg以上の数値を示し、低毒性であること
から、本発明化合物またはその塩を有効成分とし
て含有する本発明薬剤はウイルス感染症の予防、
治療の場に用いられる。 本発明薬剤の有効成分である本発明化合物の投
与量は、患者の重篤度、薬物に対する忍容性など
により異なり、最終的には医師の判断により決定
されるべきものであるが、通常成人1日当り0.1
〜10g、好ましくは0.2〜5gであり、これを1
回または分割して投与する。投与方法は投与ルー
トに適した任意の形態をとることができる。 本発明薬剤は任意慣用の製剤方法により投与用
に調製することができる。したがつて、本発明薬
剤は人体医薬として好適な一般式〔〕で表わさ
れる2′−アルキリデンピリミジンヌクレオシド誘
導体を含有する製剤組成物を包含するものであ
る。 このような組成物は任意所要の製薬用担体また
は補助剤により慣用の方法で投与に供される。 たとえば経口投与用の組成物製剤である場合に
は、消化管からの吸収に好適な形態で提供され、
錠剤、カプセル剤、散剤、糖衣錠、顆粒剤など固
型剤、シロツプ剤、懸濁剤、エリキシル剤などの
液剤として調製すればよい。固型剤の場合、シロ
ツプ、アラビアゴム、ゼラチン、ソルビツト、ト
ラガカント、ポリビニルピロリドンなどの結合
剤、乳糖、砂糖、コーンスターチ、りん酸カルシ
ウム、ソルビツト、グリシンなどの賦形剤、ステ
アリン酸マグネシウム、タルク、ポリエチレング
リコール、シリカなどの潤滑剤、馬鈴薯でんぷん
などの崩壊剤、湿潤剤、安定化剤、矯味剤などの
補助剤を製剤学的配慮により選択使用して製剤化
することができる。液剤の場合は、補助剤とし
て、必要に応じてソルビツトシロツプ、メチルセ
ルロース、グルコース/糖シロツプ、ゼラチン、
ヒドロキシエチルセルロース、カルボキシメチル
セルロース、ステアリン酸アルミニウムゲル、水
素化食用脂などの懸濁化剤、乳化剤、p−ヒドロ
キシ安息香酸メチル、p−ヒドロキシ安息香酸プ
ロピル、ソルビン酸などの防腐剤を用いることが
できる。 また、注射投与用の組成物製剤を調製する場合
は、本発明の有効成分である本発明化合物に必要
によりPH調整剤、緩衝剤、安定化剤、保存剤、可
溶性可剤などを添加し、常法により、皮下、筋肉
内、静脈内注射剤とする。 〔発明の効果〕 以下に、本発明薬剤の有効成分である一般式
〔〕化合物の抗HSV作用および抗CMV作用に
ついての試験方法および結果を以下に述べる。 試験方法(HSV) A ヒト胎児肺由来細胞をイーグルMEM培地
(10%準胎児血清添加)で継代培養する。 B 上記継代培養したものを親培養とし、これを
2倍に希釈した細胞懸濁液を150μ/ウエル
の割合で96穴ミクロウエルに播き、炭酸ガスイ
ンキユベーター内で37℃、4〜5日間培養す
る。 C 培養液を捨て、50%組織培養感染量の100〜
320倍(100〜320TCID50)のHSVタイプ1
(HSV−1)VR−3株またはHSVタイプ2
(HSV−2)MS株を接種する。37℃、1時間
インキユベートした後、ウイルス液は捨て、適
当濃度の被験化合物を含むイーグルMEM培地
(2.5%準胎児血清添加)150μを加えて37℃で
培養する。被験化合物は通常100〜1μg/mlの
範囲で0.5log10倍段階希釈して試験を供す。 D 2〜3日間培養後、被験化合物を含まない対
照がウイルス感染により完全に細胞が変性した
時点で顕微鏡下各ウエルの細胞変性効果
(CPE)の程度を観察し、スコアー0〜4をつ
ける。 E CPEを50%以上阻止(CPEスコア2以下)
する最少濃度を被験化合物の最少有効濃度
(MIC)とする。 試験方法(CMV) A ヒト胎児肺由来細胞をイーグルMEM培地
(10%準胎児血清添加)で継代培養する。 B 上記継代培養したものを親培養とし、これを
2倍に希釈した細胞懸濁液を150μ/ウエル
の割合で24穴セミミクロウエルに播き、炭酸ガ
スインキユベーター内で37℃、4〜5日間培養
する。 C 培養液を捨て、約50プラークホーミングユニ
ツトのCMV AD169株を接種する。37℃、1
時間インキユベートした後、適当濃度の被験化
合物を含むイーグルMEM培地(2.5%準胎児血
清添加)400μを加えて37℃で培養する。被
験化合物は通常100〜1μg/mlの範囲で
0.5log10倍段階希釈して試験を供す。 D 4〜6日間培養後、感染細胞を0.5%クリス
タルバイオレツト染色液で染色し、形成された
プラーク数を顕微鏡下で計算する。 E 被験化合物無添加の対照群におけるプラーク
数に対して、プラーク形成数を50%以上阻止す
る最少濃度を被験化合物の最少有効濃度
(MIC)とする。
[Industrial Application Field] The present invention relates to a novel compound, a 2'-alkylidenepyrimidine nucleoside derivative, a method for producing the same, and an antiviral agent containing the same as an active ingredient. [Background Art] In recent years, as research on pathogenic viruses of various viral infections progresses, the development of preventive and therapeutic drugs has been attracting attention. Conventionally, idoxuridine, cytarabine, vidarabine, and acyclovir have been used clinically as antiviral agents for chemotherapy (for example, Yutaka Mizushima,
Co-authored by Akimasa Miyamoto, 1986 edition, Today's Therapeutic Drugs Commentary and Handbook, pp. 47-50, Published March 10, 1986, Nankodo), and various antiviral active nucleosides are being developed as pharmaceuticals. There is. [Problems to be solved by the invention] However, the above drugs cannot be used clinically due to their antiviral activity spectrum, low absorption, poor solubility, easy degradability, emergence of drug-resistant virus strains, and various side effects. There are many problems such as restrictions. Therefore, there is a strong demand for the development of new antiviral agents. The main object of the present invention is to provide a novel compound with excellent antiviral activity. [Means for Solving the Problems] As a result of repeated research to develop new compounds useful as antiviral agents, the present inventors have discovered that a 2'-alkylidenepyrimidine nucleoside derivative represented by the following general formula [] It was found that it has excellent antiviral activity. The present invention was completed based on this knowledge. That is, the present invention provides general formula [] (In the formula, R 1 is an amino group or a hydroxyl group, R 2 is a hydrogen atom, a halogen atom or a lower alkyl group,
R 3 represents a hydrogen atom or a lower alkyl group, and R 4 represents a hydrogen atom or a phosphoric acid residue. ) or a salt thereof. The present invention also relates to a method for producing a 2'-alkylidenepyrimidine nucleoside derivative represented by the above formula [], which comprises the following first to third steps. 1st step: Step of alkylidening the 2'-position of the sugar moiety of the compound represented by the following general formula [] with a Witteich reagent to obtain a compound represented by the following general formula [] (In the formula, R 2 and R 3 have the same meanings as above,
R 5 is an alkoxyl group, hydroxyl group or amino group,
Z represents a protecting group) 2nd step; Step of removing the sugar protecting group of the compound represented by the following general formula [] to obtain a compound represented by the following general formula [] (In the formula, R 2 , R 3 , R 5 and Z have the same meanings as above) Third step;
When is an alkoxyl group, after hydrolyzing or aminating the 4-position of the base moiety, if desired, the sugar moiety is further added.
By phosphorylating the 5′ position, the following general formula []
Step of obtaining a compound represented by (In the formula, R 1 , R 2 , R 3 , R 4 and R 5 have the same meanings as above) Furthermore, the present invention is represented by the general formula []
The present invention relates to an antiviral agent containing a 2'-alkylidenepyrimidine nucleoside derivative or a salt thereof as an active ingredient. The present invention will be explained in detail below. The 2'-alkylidenepyrimidine nucleoside derivative which is the compound of the present invention is represented by the above general formula []. R 1 , R 2 , in the general formula
R 3 and R 4 are as defined above, but specific examples of lower alkyl groups for R 2 and R 3 include lower alkyl groups having 1 to 3 carbon atoms, more specifically methyl, ethyl, propyl, Examples include isopropyl. Furthermore, specific examples of the halogen atom for R 2 include chlorine, fluorine, bromine, and iodine. Representative examples of such compounds of the present invention include, for example, 2'-methylidene-2'-deoxyuridine,
2'-methylidenethymidine, 2'-ethylidenethymidine, 2'-methylidene-2'-deoxycytidine,
2'-Methylidene-2'-deoxy-5-fluorouridine, 2'-methylidene-2'-deoxy-5-chlorouridine, 2'-methylidene-2'-deoxy-
Examples thereof include nucleosides such as 5-bromouridine and 2'-methylidene-2'-deoxy-5-iodouridine, and their 5'-phosphate esters. The compounds of the present invention have antiviral activity against viruses, particularly viruses belonging to the herpesviridae family, such as herpes simplex virus and cytomegalovirus, and are useful for the prevention and treatment of infectious diseases caused by these viruses. Among the compounds of the present invention, compounds in which R 2 in the general formula [] is a hydrogen atom, a halogen atom, or a methyl group, and R 3 is a hydrogen atom, have particularly strong antiviral activity against herpes simplex virus (HSV). have. The compounds of the present invention also include salt forms, and examples of such salts include acid addition salts such as hydrochloride or sulfate when R 4 in the general formula [] is a hydrogen atom, and R When 4 is a phosphoric acid residue, any pharmaceutically acceptable salts such as alkali metal salts such as sodium salts, potassium salts or lithium salts, alkaline earth metal salts such as calcium salts, or ammonium salts are exemplified. be done. The pyrimidine nucleoside derivative which is the raw material compound in the method of the present invention is represented by the above general formula []. In the formula, R 2 , R 5 and Z are as defined above, and specific examples of the alkoxyl group for R 5 include lower alkoxyl groups having 1 to 3 carbon atoms, more specifically methoxy, ethoxy, propoxy, etc. can be mentioned. The protecting group for Z may be one that is used as a normal nucleoside protecting group, such as acyl groups such as acetyl, propionyl, butyryl, and benzoyl, alkylidene groups such as benzylidene, arylalkyl groups such as trityl, Examples include silyl protecting groups such as tetraisopropyldisiloxyl (TIPDS) and t-butyldimethylsiline. This raw material compound can be synthesized by applying a known method. A compound in which R 5 in the compound of general formula [] is represented by an alkoxyl group can be prepared, for example, by the following reaction route. (In the formula, R 2 and Z have the same meanings as above,
(R 5 ' is an alkoxyl group) That is, after protecting the hydroxyl group of the sugar moiety of the uridine represented by the general formula (A), the 4-position of the base moiety is halogenated with a halogenating agent, and then this is reacted with an alkoxide. An alkoxyl group is introduced to obtain a compound of general formula (B). After protecting the 3' and 5' positions of the sugar moiety of the 4-alkoxy compound represented by general formula (B), the hydroxyl group at the 2' position of the sugar moiety is oxidized to form the general formula [']
compound can be obtained. The protecting group for the hydroxyl group in the halogenation reaction is not particularly limited as long as it does not interfere with the halogenation reaction, such as an acyl group, an alkylidene group,
Usual protecting groups for hydroxyl groups such as arylalkyl groups are applicable, but protecting groups that do not come off in the presence of acids, such as acyl groups, are particularly preferred. For example, the acyl protection reaction may be carried out in a conventional manner, using a reaction solvent (for example, pyridine, picoline, diethylaniline, dimethylaminopyridine, dimethylformamide, acetonitrile, tetrabutylamine, triethylamine, etc. alone or in combination) for the compound of general formula (A). acylating agents (e.g. acetic acid, propionic acid, butyric acid, benzoic acid,
acid anhydrides such as substituted benzoic acid or their acid chlorides), 3 to 10 times the mole, reaction temperature 0 to 50°C
This can be carried out by reacting with The halogenation reaction can be carried out by using a halogenating agent in an inert solvent (eg, chloroform, methylene chloride, etc.). Thionyl chloride, thionyl bromide, phosphorus oxychloride, etc. can be used as the halogenating agent.
If necessary, it may be used as a solution in an organic solvent such as dimethyl sulfoxide. The amount used is the general formula (A)
The amount is about 1 to 5 mol per 1 mol of the compound. The reaction may be carried out under heating and reflux. The reaction for introducing an alkoxyl group is carried out by adding an alkoxide (e.g., sodium methoxide, potassium methoxide, or This can be carried out by heating and reacting about 1 to 5 times the mole of sodium ethoxide, potassium ethoxide, sodium propoxide, etc.). The protecting groups at the 3' and 5' positions may be the same as those used in the halogenation reaction, preferably silyl protecting groups, especially
The TIPOS group is preferred. To explain silylation protection as an example, the amount of silylating agent used is 1 to 1 mol per mol of the compound of general formula (B).
The amount can be appropriately selected from a range of 3 moles, and the reaction conditions can be the same as those for the above-mentioned acylation reaction. Methods for oxidizing the 2'-position hydroxyl group include chromic acid oxidation (method A) using a complex of chromic acid-pyridine-acetic anhydride, or activated dimethyl sulfoxide using activated dimethyl sulfoxide generated from oxalyl chloride-dimethyl sulfoxide. Oxidation (Method B) etc. can be adopted. The reaction is carried out at -10℃ to room temperature for method A, and -10℃ for method B.
It can be carried out at ~-70°C in the presence of 1 to 10 equivalents of oxidizing agent. Furthermore, a compound in which R 5 in the compound of general formula [] is represented by a hydroxyl group or an amino group can also be prepared, for example, by the following reaction route. (In the formula, R 2 and Z have the same meanings as above,
(R 5 ″ is a hydroxyl group or an amino group) In other words, after protecting the hydroxyl groups at the 3′ and 5′ positions of the sugar moiety of the uridine represented by the general formula (A), the hydroxyl group at the 2′ position of the sugar moiety is oxidized. A compound of the formula [′] can be obtained. The protection reaction of the 3′ and 5′ hydroxyl groups and the oxidation reaction of the 2′ hydroxyl group can be carried out using the 3′ and 5′ hydroxyl groups during the production of the above-mentioned general formula [′] compound. protection reaction and
It can be carried out in accordance with the oxidation reaction of the 2'-position hydroxyl group. The compound of general formula [] produced as described above may be isolated using ordinary separation and purification means. For example, after distilling off the solvent, column chromatography is performed using a suitable solvent such as n-hexane. Crystallize in organic solvent. The first step of the method of the present invention is a compound of the general formula []
This is a reaction step in which the 2' position is alkylidened with a Witteich reagent. The Wittig reagent used in the alkylidene reaction is an alkylidene phosphorane represented by the general formula (C 6 H 5 ) 3 P=CH-R 3 (wherein R 3 has the same meaning as above), and specifically For example, triphenylphosphine methylene, triphenylphosphine ethylene, triphenylphosphine propylene, etc. are used. The Witzteig reagent used in the reaction is prepared immediately before use using the general formula [(C 6 H 5 ) 3 P + −CH 2 −R 3 ]X (where R 3
has the same meaning as above, and X - represents a halogen ion such as Br - or I - . ) and strong alkalis (e.g., potassium hydride,
It is preferable to use a compound prepared from sodium hydride, n-butyllithium, sodium methoxide, potassium t-butoxide, sodium amide, etc. according to a conventional method. The amount of Witteich reagent used is 1 per mole of the compound of general formula []
It can be appropriately selected from ~3 moles. The alkylidene reaction can be carried out by reacting a compound of the general formula [] with a Wittich reagent in a solvent (eg, tetrahydrofuran, dioxane, ether, benzene, dimethyl sulfoxide, etc. alone or in a mixed solvent) at room temperature. The compound of general formula [] produced as described above can be isolated and purified by conventional silica gel column chromatography. The second step of the method of the present invention is a reaction step in which the protecting group is removed from the sugar moiety of the compound of general formula []. The deprotection reaction may be carried out by appropriately selecting a conventional treatment such as acidic hydrolysis, alkaline hydrolysis, ammonium fluoride treatment, or catalytic reduction depending on the protecting group used. The compound of general formula [] synthesized in this manner can be isolated by conventional silica gel column chromatography or the like. In the third step of the method of the present invention, when R 5 is an alkoxyl group, the compound represented by the general formula [] is hydrolyzed or aminated at the 4-position of the base moiety, and then, if desired, the 5'-position of the sugar moiety is phosphorylated. This is a reaction step for obtaining the compound of the present invention represented by the general formula []. The amination reaction may be carried out according to a conventional method, for example, by reacting methanolic ammonia with a compound of the general formula [] in a sealed tube. The reaction temperature is 50-150°C. The hydrolysis reaction may also be carried out according to a conventional method, and acidic hydrolysis is particularly preferred. In addition, when the purpose is to produce a compound in which R 4 in the general formula [] is a phosphoric acid residue, after the above-mentioned amination reaction or hydrolysis reaction, phosphorus oxychloride, tetrachloropyrophosphoric acid, etc. The desired compound in free acid form or salt form can be obtained by a conventional method by reacting with a phosphorylating agent commonly used for selective phosphorylation of the 5'-position of nucleosides. The compound of the general formula [] synthesized in this manner can be separated and purified by appropriately combining methods used for the isolation and purification of general nucleosides and nucleotides. For example, in the case of a nucleoside (R 4 is a hydrogen atom), the solvent may be distilled off and then crystallized from a suitable solvent such as ethanol.
It can also be obtained as a salt form if necessary. In the case of a nucleotide ( R4 is a phosphate residue), it is purified by ion exchange column chromatography using ion exchange resin, adsorption column chromatography using activated carbon, etc., and the free acid form is obtained by freeze-drying or crystallization. If necessary, it can also be obtained in the form of a salt. The compound of the present invention or a salt thereof has antiviral activity against viruses, particularly viruses belonging to the herpesviridae family such as herpes simplex virus (HSV) and cytomegalovirus (CMV), and The acute toxicity value (LD 50 )teeth
Since it shows a value of 2000 mg/Kg or more and has low toxicity, the drug of the present invention containing the compound of the present invention or its salt as an active ingredient can be used to prevent viral infections,
Used in therapeutic settings. The dosage of the compound of the present invention, which is the active ingredient of the drug of the present invention, varies depending on the patient's severity of illness, tolerance to the drug, etc., and should ultimately be determined by a physician's judgment. 0.1 per day
~10g, preferably 0.2~5g, which is 1
Administer in doses or in divided doses. The method of administration can take any form appropriate to the route of administration. The medicament of the present invention can be prepared for administration by any conventional method of formulation. Therefore, the drug of the present invention includes a pharmaceutical composition containing a 2'-alkylidenepyrimidine nucleoside derivative represented by the general formula [] suitable for use as a human medicine. Such compositions are subjected to administration in a conventional manner with any required pharmaceutical carriers or adjuvants. For example, in the case of a composition formulation for oral administration, it is provided in a form suitable for absorption from the gastrointestinal tract,
It may be prepared as solid preparations such as tablets, capsules, powders, sugar-coated tablets, and granules, or liquid preparations such as syrups, suspensions, and elixirs. For solid agents, binders such as syrup, gum arabic, gelatin, sorbit, tragacanth, polyvinylpyrrolidone, excipients such as lactose, sugar, corn starch, calcium phosphate, sorbit, glycine, magnesium stearate, talc, polyethylene. Auxiliary agents such as lubricants such as glycol and silica, disintegrants such as potato starch, wetting agents, stabilizers, and flavoring agents can be selected and used in formulations based on pharmaceutical considerations. In the case of liquid preparations, sorbitol syrup, methylcellulose, glucose/sugar syrup, gelatin,
Suspending agents such as hydroxyethyl cellulose, carboxymethyl cellulose, aluminum stearate gel, and hydrogenated edible fat, emulsifying agents, and preservatives such as methyl p-hydroxybenzoate, propyl p-hydroxybenzoate, and sorbic acid can be used. In addition, when preparing a composition preparation for injection administration, a PH adjuster, a buffer, a stabilizer, a preservative, a soluble agent, etc. are added to the compound of the present invention, which is the active ingredient of the present invention, as necessary. Inject subcutaneously, intramuscularly, or intravenously using conventional methods. [Effects of the Invention] Test methods and results regarding the anti-HSV effect and anti-CMV effect of the compound of general formula [] which is the active ingredient of the drug of the present invention will be described below. Test method (HSV) A Human fetal lung-derived cells are subcultured in Eagle's MEM medium (added with 10% quasi-fetal serum). B The above subculture was used as the parent culture, and a cell suspension diluted 2 times was seeded in 96 microwells at a ratio of 150μ/well, and incubated at 37℃ in a carbon dioxide incubator for 4 to 5 days. Incubate for days. C. Discard the culture medium and use 50% of the tissue culture infectious dose of 100 ~
320x (100~320TCID 50 ) HSV type 1
(HSV-1) VR-3 strain or HSV type 2
(HSV-2) MS strain is inoculated. After incubating at 37°C for 1 hour, the virus solution is discarded, and 150μ of Eagle's MEM medium (2.5% quasi-fetal serum added) containing an appropriate concentration of the test compound is added and cultured at 37°C. Test compounds are usually diluted in 0.5 log 10-fold serial dilutions in the range of 100 to 1 μg/ml. D After culturing for 2 to 3 days, when the control cells containing no test compound have completely degenerated due to virus infection, observe the degree of cytopathic effect (CPE) in each well under a microscope and give a score of 0 to 4. E Prevent CPE by 50% or more (CPE score 2 or less)
The lowest concentration of the test compound is the minimum effective concentration (MIC) of the test compound. Test method (CMV) A Human fetal lung-derived cells are subcultured in Eagle's MEM medium (added with 10% quasi-fetal serum). B The above subculture was used as the parent culture, and a cell suspension diluted 2 times was seeded in 24 semi-microwells at a ratio of 150 μ/well, and incubated at 37°C in a carbon dioxide incubator for 4 to 5 days. Incubate for days. C. Discard the culture medium and inoculate approximately 50 plaque homing units of CMV AD169 strain. 37℃, 1
After incubation for an hour, 400μ of Eagle's MEM medium (added with 2.5% quasi-fetal serum) containing an appropriate concentration of the test compound is added and cultured at 37°C. The test compound is usually in the range of 100 to 1 μg/ml.
Test by serially diluting 0.5 log 10 times. D After culturing for 4-6 days, the infected cells are stained with 0.5% crystal violet staining solution and the number of formed plaques is calculated under a microscope. E The minimum effective concentration (MIC) of the test compound is the minimum concentration that inhibits the number of plaque formation by 50% or more compared to the number of plaques in the control group without the addition of the test compound.

【表】 実施例 以下に本発明の実施例をあげて本発明について
具体的に説明するが、本発明は何らこれらによつ
て限定されるものではない。 実施例1 2′−メチリデン−2′−デオキシシチジ
ン〔一般式〔〕、R1=NH2、R2=H、R3
H、R4=H〕の塩酸塩の製造 1 4−O−エチルウリジン〔一般式(B)、R2
H、R5=OC2H5〕の合成 2′,3′,5′−トリ−O−アセチルウリジン3.35
gをクロロホルム50mlに溶解させ、塩化チオニル
8.1mlおよびジメチルホルムアミド0.5mlを加え、
6時間30分還流した後、減圧下乾固させた。残渣
をエタノール20mlに溶解させ、1規定のナトリウ
ムエトキシド30mlを加え、2時間還流した後、1
規定の塩酸で中和し、析出した塩を濾別して溶液
を濃縮乾固した。これをシリカゲルカラム(4×
31cm)に吸着させ、目的化合物含有画分を16%エ
タノール−クロロホルムで溶出し、溶媒を留去し
て目的物の粗結晶を得た。これをエタノールより
再結晶して目的物2.08g(収率84.2%)を得た。 融点:136〜137.5℃ 元素分析値:C11H16N2O6・1/3H2Oとして 計算値 C:46.97%,H:6.09%,N:9.96
%,O:36.98% 実測値 C:46.91%,H:6.02%,N:9.98
%,O:37.09% 2 1−(3,5−O−TIPDS−β−D−エリス
ロペントフラン−2−ウロシル)−4−エトキ
シ−2−ピリミジノン〔一般式〔〕、R2
H、R5=OC2H5、Z(3′)−Z(5′)=TIPDS〕
の合成 4−O−エチルウリジン7.04gをピリジン80ml
に溶解させ、氷冷してから1,1,3,3−ジク
ロロテトライソプロピルジシロキサン9.57gを加
え、室温で4時間30分攪拌反応させた。氷水を加
え、溶媒を留去し、残渣をクロロホルム−水で分
配し、クロロホルム層を乾燥後、溶媒を留去し、
残渣をシリカゲルカラム(10×130cm)に吸着さ
せ、40%酢酸エチル−ヘキサンで溶出された部分
を集めて濃縮し、3′,5′−O−TIPDS体12.3gを
得た。 次に塩化オキサリル2.7mlを塩化メチレン40ml
に溶解させ、−70℃に冷却した。これにアルゴン
気流下、塩化メチレン20mlに溶解させたジメチル
スルホキシド4.8mlを20分間かけて滴下し、その
後30分間攪拌した。これに塩化メチレン50mlに溶
解させた上記3′,5′−O−TIPDS体(12.3g)を
滴下し、−70℃で2時間攪拌した後、トリエチル
アミン20mlを加えてさらに1時間攪拌した。この
反応液を室温に戻し、水を加えて分配し、塩化メ
チレン層を分取して溶媒を留去し、残渣を酢酸エ
チルに溶解させ、水と分配した。酢酸エチル層を
濃縮乾固し、シリカゲルカラム(5×28cm)に吸
着させ、20%酢酸エチル−n−ヘキサンで溶出さ
れる目的物質を含む画分を集め、溶媒留去後n−
ヘキサンから結晶化して目的物質10.2g(収率
72.1%)を得た。 融点:157.5〜159℃ 元素分析:C20H40N2O7Si2として 計算値 C:53.87%,H:7.86%,N:5.46
% 実測値 C:53.73%,H:7.87%,N:5.57
% 3 2′−メチリデン−4−O−エチル−2′−デオ
キシウリジン〔一般式〔〕、R2=H、R3
H、R5=OC2H5〕の合成 水素化カリウム232mgをアルゴン気流下ジメチ
ルスルホキシド2.4mlに加え、室温で40分間攪拌
した。臭化メチルトリフエニルホスホニウム2.2
gをジメチルスルホキシド8mlに溶解させ、これ
に氷冷下アルゴン気流中上記の水素化カリウム−
ジメチルスルホキシド混合物を滴下し、10分間攪
拌した。これに上記の1−(3,5−O−TIPDS
−β−D−エリスロペントフラン−2−ウロシ
ル)−4−エトキシ−2−ピリミジノンの結晶
1.02gをジメチルスルホキシド10mlに溶解させた
ものをアルゴン気流下で滴下し、氷冷下2時間攪
拌した。これに1規定の塩化アンモニウム水溶液
10ml加え、さらに酢酸エチル50ml、水40ml加え分
配した。有機層を減圧下濃縮してシリカゲルカラ
ム(2.4×30cm)に吸着させ、n−ヘキサン−酢
酸エチル混合溶媒で溶出し、2′−メチリデン化さ
れた化合物を得た。 上記で得られた化合物320mgをテトラヒドロフ
ラン10mlに溶解させ、フツ化トリn−ブチルアン
モニウム1mlを加え、室温10分間攪拌した。酢酸
で中和酸シリカゲルカラム(2.4×12cm)に吸着
させ、クロロホルム−エタノールで溶出し、目的
物を含む溶出画分を集めて脱保護された2′−メチ
リデン−4−O−エチル体155mg(収率30%)を
得た。 融点:157.5〜159℃ 元素分析:C12H16N2O5として 計算値 C:53.72%,H:6.01%,N:
10.44% 実測値 C:53.80%,H:5.99%,N:
10.37% 4 2′−メチリデン−2′−デオキシシチジン〔一
般式〔〕、R1=NH2、R2=H、R3=H、R4
=H〕塩酸塩の合成 2′−メチリデン−4−O−エチル体150mgを氷
冷下アンモニア飽和メタノール溶液10mlに溶解さ
せ、封管に入れ100℃、2日間加熱した。方冷後、
2規定の塩酸2mlを加え濃縮し、エタノール−水
から結晶化して標記の化合物125mg(収率81.7%)
を得た。 融点:148〜155℃(分解点) 元素分析:C10H13N3O4・HCl・l/2H2Oと
して 計算値 C:42.14%,H:5.31%,N:
14.74% 実測値 C:42.25%,H:5.26%,N:
14.69% 実施例2 2′−メチリデンチミジン〔一般式
〔〕、R1=OH、R2=CH3、R3=H、R4=H〕
の製造 1 3′,5′−O−TIPDS−2′−ケトチミジン〔一
般式〔〕、R5=OH、R2=CH3、Z(3′)−Z
(5′)=TIPDS〕の合成 5−メチルウリジン4.13gをピリジン50mlに溶
解させ氷冷下1,1,3,3−ジクロロテトライ
ソプロピルジシロキサン5.57gを加え、室温で6
時間攪拌した。これに少量の水を加え、30分間攪
拌後、減圧下濃縮乾固した。残渣をクロロホルム
−水で分配し、有機層を濃縮後シリカゲルカラム
(5×21cm)に吸着させ、2%エタノール−クロ
ロホルムの溶出画分より3′,5′−保護体を得た。
一方、塩化オキサリル1.7mlを塩化メチレン40ml
に溶解させ、−70℃に冷却し、アルゴン気流下ジ
メチルスルホキシド3mlと塩化メチレン20ml混合
液を滴下し、さらに30分間攪拌した。この溶液に
上記の3′,5′−保護体8.04gを塩化メチレン50ml
に溶解させたものを滴下し、さらに−70℃で2時
間攪拌した。これにトリエチルアミン6.6mlを滴
下して1時間半攪拌後、室温にもどし、クロロホ
ルムと水を加えて分配し、有機層を減圧下濃縮乾
固し、シリカゲルカラム(4×28cm)に展開し、
40%酢酸エチル−n−ヘキサンで溶出される画分
を濃縮し、n−ヘキサンより結晶化して2′−ケト
体6.68g(収率83.2%)を得た。 融点:168〜170℃ 元素分析:C22H38N2O7Si2として 計算値 C:52.98%,H:7.68%,N:5.62
% 実測値 C:52.93%,H:7.71%,N:5.61
% 2 2′−メチリデンチミジン〔一般式〔〕、R1
=OH、R2=CH3、R3=H、R4=H〕の合成 水素化カリウム455mgをアルゴン気流下ジメチ
ルスルホキシド5mlに加え、室温で50分間攪拌し
た。一方、臭化メチルトリフエニルホスホニウム
4.28gをジメチルスルホキシド10mlに溶解させ、
この溶液に上記の水素化カリウムを含む溶液を氷
冷下滴下し、さらに20分間攪拌した。この溶液に
上記の3′,5′−O−TIPDS−2′−ケトチミジン1.5
gをテトラヒドロフラン5mlとジメチルスルホキ
シド5mlの混合溶媒に溶解させたものを滴下し、
室温で10分間攪拌した。次に反応液を1規定の塩
化アンモニウムで中和後、これに酢酸エチル120
ml、水120mlを加え分配し、有機層を濃縮乾固し
て残渣をシリカゲルカラム(2.4×24cm)に展開
し、20%酢酸エチル−n−ヘキサンで溶出される
画分を集め、2′−メチリデン体を得た。これをテ
トラヒドロフラン10mlに溶解させ、フツ化テトラ
n−ブチルアンモニウム/テトラヒドロフラン1
モル溶液1mlを加え室温で10分間攪拌し脱保護し
た。次に、酢酸で中和後、減圧下濃縮乾固してシ
リカゲルカラム(2.4×14cm)に展開し、7%エ
タノール−クロロホルム溶液で溶出される画分を
集め、濃縮して2′−メチリデンチミジンの結晶性
粉末257mg(収率85%)を得た。 融点:161〜162℃ 元素分析:C11H14N2O5として 計算値 C:49.58%,H:5.83%,N:
11.57% 実測値 C:49.46%,H:5.91%,N:
11.48% 実施例3 2′−エチリデンチミジン〔一般式
〔〕、R1=OH、R2=CH3、R3=CH3、R4
H〕の製造 水素化カリウム455mgをアルゴン気流下ジメチ
ルスルホキシド5mlに加え、室温で50分間攪拌し
た。一方、臭化エチルトリフエニルホスホニウム
4.44gをジメチルスルホキシド10mlに溶解させ、
この溶液に上記の水素化カリウムを含む溶液を氷
冷下滴下し、さらに20分間攪拌した。この溶液に
実施例2で得られた3′,5′−O−TIPDS−2′−ケ
トチミジン1.5gをテトラヒドロフラン5mlとジ
メチルスルホキシド5mlの混合溶媒に溶解させた
ものを滴下し、室温で12時間攪拌した。次に反応
液を1規定の塩化アンモニウムで中和後、これに
酢酸エチル140ml、水140mlを加え分配し、有機層
を濃縮乾固して残渣をシリカゲルカラム(2×18
cm)に展開し、10%酢酸エチル−n−ヘキサンで
溶出される画分を集め、2′−エチリデン体を得
た。これをテトラヒドロフラン10mlに溶解させ、
フツ化テトラn−ブチルアンモニウム/テトラヒ
ドロフラン1モル溶液1mlを加え室温で30分間攪
拌して脱保護した。次に、酢酸で中和後、減圧下
濃縮乾固してシリカゲルカラム(2×10cm)に展
開し、7%エタノール−クロロホルム溶液で溶出
される画分を集め、濃縮して2′−エチリデンチミ
ジンの非結晶性粉末190mgを得た。 元素分析:C12H16N2O5として 計算値 C:53.72%,H:6.01%,N:
10.44% 実測値 C:53.68%,H:6.15%,N:
10.39% 実施例4 2′−メチリデン−2′−デオキシ−5−
フルオロウリジン〔一般式〔〕、R1=OH、
R2=F、R3=H、R4=H〕の製造 1 1−(3,5−O−TIPDS−β−エリスロペ
ントフラン−2−ウロシル)−5−フルオロウ
ラシル〔一般式〔〕、R5=OH、R2=F、Z
(3′)−Z(5′)=TIPDS〕の合成 5−フルオロウリジン2.42gをピリジン30mlに
溶解させ、氷冷下1,1,3,3−ジクロロテト
ライソプロピルジシロキサン3.3gを加え、2時
間攪拌し、室温にもどして1時間30分攪拌した。
これに少量の水を加え、攪拌後、減圧下濃縮乾固
し、シリカゲルカラム(2.4×23cm)に展開し、
25%酢酸エチル−n−ヘキサンで溶出される画分
を集め、3′,5′−O−TIPDS体を得た。 3′,5′−O−TIPDS体3.91gを塩化メチレン10
mlに溶解させ、4当量のクロム酸コンプレツクス
(三酸化クロム(CrO3)3g、ピリジン5ml、無
水酢酸3mlを塩化エチレン80mlに加え混合したも
の)を加え、室温で1時間、−4℃で14時間攪拌
後、さらに4当量のクロム酸コンプレツクスを加
えて室温で1時間攪拌した。反応液を酢酸エチル
600mlに滴下し、シリカゲル(6×15cm)を用い
て濾過し、濾液を減圧下濃縮乾固し、残渣をシリ
カゲルカラム(2.4×21cm)に展開し、20%酢酸
エチル−n−ヘキサンで溶出される画分を集め、
2′−ケト体2.8g(収率71.6%)を得た。 融点:183〜186℃ 元素分析:C21H35N2O7FSi2として 計算値 C:50.15%,H:7.01%,N:5.57
% 実測値 C:50.01%,H:7.22%,N:5.49
% 2 2′−メチリデン−2′−デオキシ−5−フルオ
ロウリジン〔一般式〔〕、R1=OH、R2=F、
R3=H、R4=H〕の合成 水素化カリウム1.1gをアルゴン気流下ジメチ
ルスルホキシド12mlに加え、室温で1時間攪拌し
た。一方、臭化メチルトリフエニルホスホニウム
11gをジメチルスルホキシド25mlに溶解させ、こ
の溶液に上記の水素化カリウムを含む溶液を氷冷
下滴下し、さらに10分間攪拌した。この溶液に上
記2′−ケト体1.4gをジメチルスルホキシド25ml
に溶解させたものを滴下し、室温で十時間攪拌し
た。次に反応液を1規定の塩化アンモニウムで中
和後、酢酸エチル200ml、水200mlを加え分配し、
有機層を濃縮乾固し、残渣をシリカゲルカラム
(2.4×22cm)に展開し、20%酢酸エチル−n−ヘ
キサンで溶出される画分を集め、2′−メチリデン
体を得た。これをテトラヒドロフラン5mlに溶解
させ、フツ化テトラn−ブチルアンモニウム/テ
トラヒドロフラン1モル溶液4mlを加え、室温で
30分間攪拌して脱保護した。次に、酢酸で中和
後、減圧下濃縮乾固してシリカゲルカラム(2.4
×17cm)に展開し、7%エタノール−クロロホル
ム溶液で溶出される画分を集め、濃縮して2′−メ
チリデン−2′−デオキシ−5−フルオロウリジン
0.37g(収率54%)を得た。 融点:154〜156℃ 元素分析:C10H11N2O5Fとして 計算値 C:46.55%,H:4.30%,N:
10.86% 実測値 C:46.49%,H:4.41%,N:
10.78% 実施例5 2′−メチリデン−2′−デオキシ−5−
ヨードウリジン〔一般式〔〕、R1=OH、R2
=I、R3=H、R4=H〕の製造 1 1−(3,5−O−TIPDS−β−D−エリス
ロペントフラン−2−ウロシル)−5−ヨード
ウラシル〔一般式〔〕、R5=OH、R2=I、
Z(3′)−Z(5′)=TIPDS〕合成 5−ヨードウリジン10.0gをピリジン100mlに
溶解させ、氷冷下1,1,3,3−ジクロロテト
ライソプロピルジシロキサン8.94gを加え、1時
間30分攪拌し、室温にもどしてさらに3時間攪拌
した。これに少量の水を加え、攪拌後、減圧下濃
縮乾固し、シリカゲルカラム(3×30cm)に展開
し、25%酢酸エチル−n−ヘキサンで溶出される
画分を集め、3′,5′−O−TIPDS体を得た。 3′,5′−O−TIPDS体13.65gを塩化メチレン
30mlに溶解させ、4当量のクロム酸コンプレツク
ス(三酸化クロム(CrO3)9g、ピリジン15ml、
無水酢酸9mlを塩化メチレン230mlに加え混合し
たもの)を加え、室温で2時間攪拌した後、さら
に2当量のクロム酸コンプレツクスを加えて室温
で2時間攪拌した。攪拌後、反応液を酢酸エチル
1.5に滴下し、シリカゲル(10×20cm)を用い
て濾過し、濾液を減圧下濃縮乾固し、残渣をシリ
カゲルカラム(3.0×32cm)に展開し、20%酢酸
エチル−n−ヘキサンで溶出される画分を集め、
2′−ケト体4.4gを得た。 2 2′−メチリデン−2′−デオキシ−5−ヨード
ウリジン〔一般式〔〕、R1=OH、R2=I、
R3=H、R4=H〕の合成 臭化メチルトリフエニルホスホニウム22.0gを
テトラヒドロフラン100mlに溶解させ、アルゴン
気流下、n−ブチルリチウム37.5mlを滴下し、1
時間攪拌した。この溶液に上記2′−ケト体4.0g
をテトラヒドロフラン20mlに溶解させたものを−
10℃で滴下後、30分間攪拌し、さらに室温で1時
間30分間攪拌した。次に反応液を1規定の塩化ア
ンモニウムで中和後、酢酸エチル200ml、水200ml
を加え分配し、有機層を濃縮乾固し、残渣をシリ
カゲルカラム(3×23cm)に展開し、20%酢酸エ
チル−n−ヘキサンで溶出される画分を集め、
2′−メチリデン体を得た。この2′−メチリデン体
30mgをテトラヒドロフラン5mlに溶解させ、フツ
化テトラn−ブチルアンモニウム/テトラヒドロ
フラン1モル溶液1.1mlを加え、室温で30分間攪
拌して脱保護した。次に、酢酸で中和後、減圧下
濃縮乾固してシリカゲルカラム(2.4×17cm)に
展開し、7%エタノール−クロロホルム溶液で溶
出される画分を集め、濃縮して2′−メチリデン−
2′−デオキシ−5−ヨードウリジン118mgを得た。 融点:169〜172℃ 元素分析:C10H11N2O5Iとして 計算値 C:32.82%,H:3.03%,N:7.65
% 実測値 C:32.76%,H:3.15%,N:7.60
% 実施例6 2′−メチリデン−2′−デオキシ−5−
ブロモウリジン〔一般式〔〕、R1=OH、R2
=Br、R3=H、R4=H〕の製造 5−ブロモウリジン3.32gをピリジン30mlに溶
解させ、氷冷下1,1,3,3−ジクロロテトラ
イソプロピルジシロキサン3.3gを加え、2時間
攪拌し、室温にもどしてさらに1時間40分攪拌し
た。これに少量の水を加え、攪拌後、減圧下濃縮
乾固し、シリカゲルカラム(2.4×25cm)に展開
し、25%酢酸エチル−n−ヘキサンで溶出される
画分を集め、3′,5′−O−TIPDS体を得た。 3′,5′−O−TIPDS体4.30gを塩化メチレン10
mlに溶解させ、4当量のクロム酸コンプレツクス
(三酸化クロム(CrO3)3g、ピリジン5ml、無
水酢酸3mlを塩化メチレン80mlに加え混合したも
の)を加え、室温で2時間攪拌した。攪拌後、反
応液を酢酸エチル300mlに滴下し、シリカゲル
(6×10cm)を用いて濾過し、濾液を減圧下濃縮
乾固し、残渣をシリカゲルカラム(2.4×32cm)
に展開し、20%酢酸エチル−n−ヘキサンで溶出
される画分を集め、2′−ケト体2.4gを得た。 臭化メチルトリフエニルホスホニウム3.3gを
テトラヒドロフラン20mlに溶解させ、アルゴン気
流下、n−ブチルリチウム6.6mlを氷冷下滴下し、
さらに50分間攪拌した。この溶液に上記2′−ケト
体650mgをケトラヒドロフラン10mlに溶解させた
ものを−10℃で滴下後、1時間攪拌し、さらに室
温で4時間攪拌した。次に反応液を1規定の塩化
アンモニウムで中和後、酢酸エチル100ml、水100
mlを加え分配し、有機層を濃縮乾固し、残渣をシ
リカゲルカラム(2.4×18cm)に展開し、20%酢
酸エチル−n−ヘキサンで溶出される画分を集
め、2′−メチリデン体を得た。これをテトラヒド
ロフラン5mlに溶解させ、フツ化テトラn−ブチ
ルアンモニウム/テトラヒドロフラン1モル溶液
1.4mlを加え、室温で30分間攪拌して脱保護した。
次に、酢酸で中和後、減圧下濃縮乾固してシリカ
ゲルカラム(2.4×12cm)に展開し、7%エタノ
ール−クロロホルム溶液で溶出される画分を集
め、濃縮して2′−メチリデン−2′−デオキシ−5
−ブロモウリジンを非結晶性粉末として得た。 元素分析:C10H11N2O5Brとして 計算値 C:37.65%,H:3.48%,N:8.78
% 実測値 C:37.49%,H:3.55%,N:8.79
% 実施例7 2′−メチリデン−2′−デオキシ−ウリ
ジン〔一般式〔〕、R1=OH、R2=H、R3
H、R4=H〕の製造 ウリジン3.91gをピリジン50mlに溶解させ氷冷
下1,1,3,3−ジクロロテトライソプロピル
ジシロキサン5.57gを加え、室温で6時間攪拌し
た。これに少量の水を加え、30分間攪拌後、減圧
下濃縮乾固した。残渣をクロロホルム−水で分配
し、有機層を濃縮後シリカゲルカラム(5×21
cm)に吸着させ、2%エタノール−クロロホルム
の溶出画分より3′,5′−保護体を得た。一方、塩
化オキサリル1.7mlを塩化メチレン40mlに溶解さ
せ、−70℃に冷却し、アルゴン気流下ジメチルス
ルホキシド3mlと塩化メチレン20ml混合液を滴下
し、さらに30分間攪拌した。この溶液に上記の
3′,5′−保護体7.8gを塩化メチレン50mlに溶解さ
せたものを滴下し、さらに−70℃で2時間攪拌し
た。これにトリエチルアミン6.6mlを滴下して1
時間半攪拌後、室温にもどし、クロロホルムと水
を加えて分配し、有機層を減圧下濃縮乾固し、シ
リカゲルカラム(4×28cm)に展開し、40%酢酸
エチル−n−ヘキサンで溶出される画分を濃縮
し、n−ヘキサンより結晶化して2′−ケト体6.53
gを得た。 一方、臭化メチルトリフエニルホスホニウム
22.0gをテトラヒドロフラン100mlに溶解させ、
アルゴン気流下、n−ブチルリチウム37.5mlを滴
下し、1時間攪拌した。この溶液に上記の2′−ケ
ト体3.2gをテトラヒドロフラン20mlに溶解させ
たものを−10℃で滴下後、30分間攪拌し、さらに
室温で1時間30分間攪拌した。次に反応液を1規
定の塩化アンモニウムで中和後、これに酢酸エチ
ル200ml、水200mlを加え分配し、有機層を濃縮乾
固して残渣をシリカゲルカラム(3×24cm)に展
開し、20%酢酸エチル−n−ヘキサンで溶出され
る画分を集め、2′−メチリデン体を得た。この
2′−メチリデン体240mgをテトラヒドロフラン5
mlに溶解させ、フツ化テトラn−ブチルアンモニ
ウム/テトラヒドロフラン1モル溶液1mlを加え
室温で30分間攪拌し脱保護した。次に、酢酸で中
和後、減圧下濃縮乾固してシリカゲルカラム
(2.4×14cm)に展開し、7%エタノール−クロロ
ホルム溶液で溶出される画分を集め、濃縮して
2′−メチリデン−2′−デオキシ−ウリジンの結晶
性粉末77mgを得た。 融点:163〜165℃ 元素分析:C10H12N2O5として 計算値 C:50.00%,H:5.04%,N:
11.66% 実測値 C:49.88%,H:5.13%,N:
11.59% 実施例8 2′−メチリデン−2′−デオキシクロロ
ウリジン〔一般式〔〕、R1OH、R2=Cl、R3
=H、R4=H〕の製造 実施例7のウリジンの代わりに5−クロロウリ
ジンを用いて実施例7と同様に保護、酸化、メチ
リデン化および脱保護の各反応に付し、2′−メチ
リデン−2′−デオキシ−5−クロロウリジンを得
た。 なお、40%酢酸エチル−n−ヘキサンの代わり
に30%酢酸エチル−n−ヘキサンを用いた。 融点:149〜152℃ 元素分析:C10H11N2O5Clとして 計算値 C:43.68%,H:4.03%,N:
10.19% 実測値 C:43.77%,H:3.98%,N:
10.20% 実施例9 2′−メチリデンチミジン−5′−リン酸
の製造 2′−メチリデンチミジン2.54gをトリメチルリ
ン酸60mlへ加えて氷冷し、これに1.53gのオキシ
塩化リンを滴下し、さらに1時間攪拌する。この
反応液を8gの炭酸水素ナトリウムを含む100g
の氷水中へ注加し、そのまま1時間攪拌し、これ
にエーテル100ml加えて分配する。水層を濃縮し、
アニオン交換樹脂ダウエツクス1(ギ酸型)へ吸
着させ、1モルのギ酸溶液で溶出し、目的物質を
含む画分を集め濃縮し、凍結乾燥して2′−メチリ
デンチミジン−5′−リン酸を得る。 実施例10 錠剤 2′−メチリデンチミジン 10g コーンスターチ 65g カルボキシセルロース 20g ポリビニルピロリドン 3g ステアリン酸カルシウム 2g 全 量 100g 常法により1錠100mgの錠剤を調製する。錠剤
1錠中、2′−メチリデンチミジン10mgを含有す
る。 実施例11 散剤、カプセル剤 2′メチリデン−2′−デオキシシチジン塩酸塩
20g 結晶セルロース 80g 全 量 100g 両粉末を混合して散剤とする。また散剤100mg
を5号のハードカプセルに充填してカプセル剤と
する。
[Table] Examples The present invention will be specifically explained below with reference to Examples, but the present invention is not limited by these in any way. Example 1 2'-methylidene-2'-deoxycytidine [general formula [], R 1 = NH 2 , R 2 = H, R 3 =
Production of hydrochloride of H, R 4 = H] 1 4-O-ethyluridine [general formula (B), R 2 =
Synthesis of H, R 5 = OC 2 H 5 ] 2′,3′,5′-tri-O-acetyluridine 3.35
Dissolve g in 50 ml of chloroform and add thionyl chloride.
Add 8.1 ml and 0.5 ml dimethylformamide,
After refluxing for 6 hours and 30 minutes, the mixture was dried under reduced pressure. The residue was dissolved in 20 ml of ethanol, 30 ml of 1N sodium ethoxide was added, and after refluxing for 2 hours,
The mixture was neutralized with specified hydrochloric acid, the precipitated salt was filtered off, and the solution was concentrated to dryness. This was applied to a silica gel column (4×
The target compound-containing fraction was eluted with 16% ethanol-chloroform, and the solvent was distilled off to obtain crude crystals of the target compound. This was recrystallized from ethanol to obtain 2.08 g (yield: 84.2%) of the desired product. Melting point: 136-137.5℃ Elemental analysis value: C11H16N2O61 / 3H2O Calculated value C: 46.97 %, H: 6.09%, N: 9.96
%, O: 36.98% Actual value C: 46.91%, H: 6.02%, N: 9.98
%, O: 37.09% 2 1-(3,5-O-TIPDS-β-D-erythropentofuran-2-urosyl)-4-ethoxy-2-pyrimidinone [general formula [], R 2 =
H, R 5 = OC 2 H 5 , Z (3') - Z (5') = TIPDS]
Synthesis of 7.04g of 4-O-ethyluridine and 80ml of pyridine
After cooling on ice, 9.57 g of 1,1,3,3-dichlorotetraisopropyldisiloxane was added, and the mixture was reacted with stirring at room temperature for 4 hours and 30 minutes. Add ice water, evaporate the solvent, partition the residue between chloroform and water, dry the chloroform layer, and evaporate the solvent.
The residue was adsorbed on a silica gel column (10 x 130 cm), and the eluted portion with 40% ethyl acetate-hexane was collected and concentrated to obtain 12.3 g of 3',5'-O-TIPDS. Next, add 2.7ml of oxalyl chloride to 40ml of methylene chloride.
and cooled to -70°C. To this was added dropwise 4.8 ml of dimethyl sulfoxide dissolved in 20 ml of methylene chloride over 20 minutes under an argon stream, followed by stirring for 30 minutes. The above 3',5'-O-TIPDS (12.3 g) dissolved in 50 ml of methylene chloride was added dropwise thereto, and after stirring at -70°C for 2 hours, 20 ml of triethylamine was added and the mixture was further stirred for 1 hour. The reaction solution was returned to room temperature, water was added and partitioned, the methylene chloride layer was separated, the solvent was distilled off, the residue was dissolved in ethyl acetate, and the mixture was partitioned with water. The ethyl acetate layer was concentrated to dryness and adsorbed on a silica gel column (5 x 28 cm). Fractions containing the target substance eluted with 20% ethyl acetate-n-hexane were collected, and after evaporation of the solvent, n-
Crystallized from hexane, 10.2g of target substance (yield
72.1%). Melting point: 157.5-159℃ Elemental analysis: Calculated value as C 20 H 40 N 2 O 7 Si 2 C: 53.87%, H: 7.86%, N: 5.46
% Actual value C: 53.73%, H: 7.87%, N: 5.57
% 3 2'-methylidene-4-O-ethyl-2'-deoxyuridine [general formula [], R 2 = H, R 3 =
Synthesis of H, R 5 =OC 2 H 5 ] 232 mg of potassium hydride was added to 2.4 ml of dimethyl sulfoxide under an argon stream, and the mixture was stirred at room temperature for 40 minutes. Methyltriphenylphosphonium bromide 2.2
g was dissolved in 8 ml of dimethyl sulfoxide, and the above potassium hydride solution was added to this in an argon stream under ice cooling.
The dimethyl sulfoxide mixture was added dropwise and stirred for 10 minutes. Add to this the above 1-(3,5-O-TIPDS
-β-D-erythropentofuran-2-urosyl)-4-ethoxy-2-pyrimidinone crystals
A solution of 1.02 g dissolved in 10 ml of dimethyl sulfoxide was added dropwise under an argon stream, and the mixture was stirred for 2 hours under ice cooling. Add to this a 1N ammonium chloride aqueous solution.
10 ml was added, and further 50 ml of ethyl acetate and 40 ml of water were added and distributed. The organic layer was concentrated under reduced pressure, adsorbed on a silica gel column (2.4 x 30 cm), and eluted with a mixed solvent of n-hexane and ethyl acetate to obtain a 2'-methylidened compound. 320 mg of the compound obtained above was dissolved in 10 ml of tetrahydrofuran, 1 ml of tri-n-butylammonium fluoride was added, and the mixture was stirred at room temperature for 10 minutes. It was adsorbed on an acid silica gel column (2.4 x 12 cm) neutralized with acetic acid, eluted with chloroform-ethanol, and the eluted fractions containing the target compound were collected to obtain 155 mg of the deprotected 2'-methylidene-4-O-ethyl compound ( A yield of 30% was obtained. Melting point: 157.5-159℃ Elemental analysis: Calculated value as C 12 H 16 N 2 O 5 C: 53.72%, H: 6.01%, N:
10.44% Actual value C: 53.80%, H: 5.99%, N:
10.37% 4 2'-methylidene-2'-deoxycytidine [general formula], R 1 = NH 2 , R 2 = H, R 3 = H, R 4
=H] Synthesis of hydrochloride 150 mg of 2'-methylidene-4-O-ethyl compound was dissolved in 10 ml of ammonia-saturated methanol solution under ice cooling, and the solution was placed in a sealed tube and heated at 100°C for 2 days. After cooling,
Add 2 ml of 2N hydrochloric acid, concentrate, and crystallize from ethanol-water to obtain 125 mg of the title compound (yield 81.7%).
I got it. Melting point: 148-155℃ (decomposition point) Elemental analysis: C10H13N3O4 HCl・l/ 2H2O Calculated values C : 42.14 %, H: 5.31%, N:
14.74% Actual value C: 42.25%, H: 5.26%, N:
14.69% Example 2 2'-Methylidenethymidine [General formula [], R 1 = OH, R 2 = CH 3 , R 3 = H, R 4 = H]
Production 1 3′,5′-O-TIPDS-2′-ketothymidine [general formula [], R 5 = OH, R 2 = CH 3 , Z(3′)-Z
Synthesis of (5′)=TIPDS] 4.13 g of 5-methyluridine was dissolved in 50 ml of pyridine, 5.57 g of 1,1,3,3-dichlorotetraisopropyl disiloxane was added under ice cooling, and
Stir for hours. A small amount of water was added to this, and after stirring for 30 minutes, the mixture was concentrated to dryness under reduced pressure. The residue was partitioned between chloroform and water, the organic layer was concentrated and adsorbed onto a silica gel column (5 x 21 cm), and the 3',5'-protected product was obtained from the 2% ethanol-chloroform elution fraction.
Meanwhile, add 1.7 ml of oxalyl chloride to 40 ml of methylene chloride.
The solution was cooled to -70°C, and a mixed solution of 3 ml of dimethyl sulfoxide and 20 ml of methylene chloride was added dropwise under an argon atmosphere, followed by further stirring for 30 minutes. Add 8.04 g of the above 3',5'-protected body to this solution and 50 ml of methylene chloride.
was added dropwise, and the mixture was further stirred at -70°C for 2 hours. 6.6 ml of triethylamine was added dropwise to this, and after stirring for 1.5 hours, the temperature was returned to room temperature, chloroform and water were added and partitioned, the organic layer was concentrated to dryness under reduced pressure, and developed on a silica gel column (4 x 28 cm).
The fraction eluted with 40% ethyl acetate-n-hexane was concentrated and crystallized from n-hexane to obtain 6.68 g (yield: 83.2%) of the 2'-keto compound. Melting point: 168-170℃ Elemental analysis: Calculated value as C 22 H 38 N 2 O 7 Si 2 C: 52.98%, H: 7.68%, N: 5.62
% Actual value C: 52.93%, H: 7.71%, N: 5.61
% 2 2′-Methylidenethymidine [general formula [], R 1
Synthesis of =OH, R 2 = CH 3 , R 3 = H, R 4 = H] 455 mg of potassium hydride was added to 5 ml of dimethyl sulfoxide under an argon stream, and the mixture was stirred at room temperature for 50 minutes. On the other hand, methyltriphenylphosphonium bromide
Dissolve 4.28g in 10ml of dimethyl sulfoxide,
The above solution containing potassium hydride was added dropwise to this solution under ice cooling, and the mixture was further stirred for 20 minutes. Add 1.5% of the above 3',5'-O-TIPDS-2'-ketothymidine to this solution.
g dissolved in a mixed solvent of 5 ml of tetrahydrofuran and 5 ml of dimethyl sulfoxide was added dropwise,
Stirred at room temperature for 10 minutes. Next, after neutralizing the reaction solution with 1N ammonium chloride, add 120% of ethyl acetate to this.
ml and 120 ml of water were added, the organic layer was concentrated to dryness, the residue was developed on a silica gel column (2.4 x 24 cm), the fractions eluted with 20% ethyl acetate-n-hexane were collected, and the 2'- A methylidene compound was obtained. Dissolve this in 10 ml of tetrahydrofuran and add 1 ml of tetra-n-butylammonium fluoride/tetrahydrofuran.
1 ml of molar solution was added and stirred at room temperature for 10 minutes to deprotect. Next, after neutralizing with acetic acid, it was concentrated to dryness under reduced pressure and developed on a silica gel column (2.4 x 14 cm). The fractions eluted with a 7% ethanol-chloroform solution were collected, concentrated and 2'-methylidene 257 mg (85% yield) of crystalline powder of thymidine was obtained. Melting point: 161-162℃ Elemental analysis: Calculated value as C 11 H 14 N 2 O 5 C: 49.58%, H: 5.83%, N:
11.57% Actual value C: 49.46%, H: 5.91%, N:
11.48% Example 3 2'-ethylidenethymidine [general formula], R 1 = OH, R 2 = CH 3 , R 3 = CH 3 , R 4 =
Production of H] 455 mg of potassium hydride was added to 5 ml of dimethyl sulfoxide under an argon stream, and the mixture was stirred at room temperature for 50 minutes. On the other hand, ethyltriphenylphosphonium bromide
Dissolve 4.44g in 10ml of dimethyl sulfoxide,
The above solution containing potassium hydride was added dropwise to this solution under ice cooling, and the mixture was further stirred for 20 minutes. A solution of 1.5 g of 3',5'-O-TIPDS-2'-ketothymidine obtained in Example 2 dissolved in a mixed solvent of 5 ml of tetrahydrofuran and 5 ml of dimethyl sulfoxide was added dropwise to this solution, and the mixture was stirred at room temperature for 12 hours. did. Next, the reaction solution was neutralized with 1 N ammonium chloride, 140 ml of ethyl acetate and 140 ml of water were added thereto, and the organic layer was concentrated to dryness.
cm), and the fractions eluted with 10% ethyl acetate-n-hexane were collected to obtain the 2'-ethylidene compound. Dissolve this in 10ml of tetrahydrofuran,
1 ml of a 1 molar solution of tetra-n-butylammonium fluoride/tetrahydrofuran was added and the mixture was stirred at room temperature for 30 minutes to deprotect. Next, after neutralizing with acetic acid, it was concentrated to dryness under reduced pressure and developed on a silica gel column (2 x 10 cm), and the fractions eluted with a 7% ethanol-chloroform solution were collected and concentrated. 190 mg of amorphous powder was obtained. Elemental analysis: Calculated values as C 12 H 16 N 2 O 5 C: 53.72%, H: 6.01%, N:
10.44% Actual value C: 53.68%, H: 6.15%, N:
10.39% Example 4 2'-methylidene-2'-deoxy-5-
Fluorouridine [general formula [], R 1 = OH,
Production 1 of R 2 = F, R 3 = H, R 4 = H] 1-(3,5-O-TIPDS-β-erythropentofuran-2-urocil)-5-fluorouracil [general formula [], R 5 =OH, R2 =F, Z
Synthesis of (3′)-Z(5′)=TIPDS] 2.42 g of 5-fluorouridine was dissolved in 30 ml of pyridine, and 3.3 g of 1,1,3,3-dichlorotetraisopropyldisiloxane was added under ice cooling. The mixture was stirred for an hour, returned to room temperature, and stirred for 1 hour and 30 minutes.
A small amount of water was added to this, and after stirring, it was concentrated to dryness under reduced pressure, and developed on a silica gel column (2.4 x 23 cm).
Fractions eluted with 25% ethyl acetate-n-hexane were collected to obtain 3',5'-O-TIPDS. 3.91 g of 3′,5′-O-TIPDS was added to 10 methylene chloride.
ml, add 4 equivalents of chromic acid complex (mixture of 3 g of chromium trioxide (CrO 3 ), 5 ml of pyridine, and 3 ml of acetic anhydride in 80 ml of ethylene chloride), and stir at room temperature for 1 hour at -4°C. After stirring for 14 hours, 4 equivalents of chromic acid complex was further added and stirred at room temperature for 1 hour. Dilute the reaction solution with ethyl acetate
The solution was added dropwise to 600 ml, filtered using silica gel (6 x 15 cm), the filtrate was concentrated to dryness under reduced pressure, the residue was developed on a silica gel column (2.4 x 21 cm), and eluted with 20% ethyl acetate-n-hexane. Collect the fractions
2.8 g (yield 71.6%) of 2'-keto compound was obtained. Melting point: 183-186℃ Elemental analysis: Calculated value as C 21 H 35 N 2 O 7 FSi 2 C: 50.15%, H: 7.01%, N: 5.57
% Actual value C: 50.01%, H: 7.22%, N: 5.49
%2 2'-methylidene-2'-deoxy-5-fluorouridine [general formula [], R 1 = OH, R 2 = F,
Synthesis of R 3 = H, R 4 = H] 1.1 g of potassium hydride was added to 12 ml of dimethyl sulfoxide under an argon stream, and the mixture was stirred at room temperature for 1 hour. On the other hand, methyltriphenylphosphonium bromide
11 g was dissolved in 25 ml of dimethyl sulfoxide, and the above solution containing potassium hydride was added dropwise to this solution under ice cooling, and the mixture was further stirred for 10 minutes. Add 1.4 g of the above 2'-keto compound to this solution and add 25 ml of dimethyl sulfoxide.
was added dropwise and stirred at room temperature for 10 hours. Next, after neutralizing the reaction solution with 1N ammonium chloride, 200ml of ethyl acetate and 200ml of water were added and distributed.
The organic layer was concentrated to dryness, the residue was developed on a silica gel column (2.4 x 22 cm), and the fractions eluted with 20% ethyl acetate-n-hexane were collected to obtain the 2'-methylidene compound. Dissolve this in 5 ml of tetrahydrofuran, add 4 ml of a 1 molar solution of tetra-n-butylammonium fluoride/tetrahydrofuran, and leave at room temperature.
Deprotection was performed by stirring for 30 minutes. Next, after neutralizing with acetic acid, the silica gel column (2.4
x 17 cm), and the fractions eluted with 7% ethanol-chloroform solution were collected and concentrated to 2'-methylidene-2'-deoxy-5-fluorouridine.
0.37 g (yield 54%) was obtained. Melting point: 154-156℃ Elemental analysis: Calculated value as C 10 H 11 N 2 O 5 F C: 46.55%, H: 4.30%, N:
10.86% Actual value C: 46.49%, H: 4.41%, N:
10.78% Example 5 2'-methylidene-2'-deoxy-5-
Iodouridine [general formula [], R 1 = OH, R 2
=I, R3 =H, R4 =H] Production 1 1-(3,5-O-TIPDS-β-D-erythropentofuran-2-urocil)-5-iodouracil [general formula [], R 5 =OH, R 2 =I,
Z(3′)-Z(5′)=TIPDS] Synthesis Dissolve 10.0 g of 5-iodouridine in 100 ml of pyridine, add 8.94 g of 1,1,3,3-dichlorotetraisopropyldisiloxane under ice cooling, The mixture was stirred for 30 minutes, returned to room temperature, and further stirred for 3 hours. A small amount of water was added to this, and after stirring, it was concentrated to dryness under reduced pressure, developed on a silica gel column (3 x 30 cm), and the fractions eluted with 25% ethyl acetate-n-hexane were collected. '-O-TIPDS body was obtained. 13.65g of 3′,5′-O-TIPDS was added to methylene chloride.
4 equivalents of chromic acid complex (9 g of chromium trioxide (CrO 3 ), 15 ml of pyridine,
A mixture of 9 ml of acetic anhydride and 230 ml of methylene chloride was added and stirred at room temperature for 2 hours, followed by further addition of 2 equivalents of chromic acid complex and stirring at room temperature for 2 hours. After stirring, the reaction solution was diluted with ethyl acetate.
1.5 and filtered using silica gel (10 x 20 cm), the filtrate was concentrated to dryness under reduced pressure, the residue was developed on a silica gel column (3.0 x 32 cm), and eluted with 20% ethyl acetate-n-hexane. Collect the fractions
4.4 g of 2'-keto compound was obtained. 2 2'-methylidene-2'-deoxy-5-iodouridine [general formula [], R 1 = OH, R 2 = I,
Synthesis of R 3 = H, R 4 = H] 22.0 g of methyltriphenylphosphonium bromide was dissolved in 100 ml of tetrahydrofuran, and 37.5 ml of n-butyllithium was added dropwise under an argon stream.
Stir for hours. Add 4.0g of the above 2'-keto compound to this solution.
Dissolved in 20ml of tetrahydrofuran -
After the dropwise addition at 10°C, the mixture was stirred for 30 minutes, and further stirred at room temperature for 1 hour and 30 minutes. Next, after neutralizing the reaction solution with 1N ammonium chloride, 200ml of ethyl acetate and 200ml of water.
The organic layer was concentrated to dryness, the residue was developed on a silica gel column (3 x 23 cm), and the fractions eluted with 20% ethyl acetate-n-hexane were collected.
A 2'-methylidene compound was obtained. This 2′-methylidene body
30 mg was dissolved in 5 ml of tetrahydrofuran, 1.1 ml of a 1 molar solution of tetra-n-butylammonium fluoride/tetrahydrofuran was added, and the mixture was stirred at room temperature for 30 minutes to deprotect. Next, after neutralizing with acetic acid, it was concentrated to dryness under reduced pressure and developed on a silica gel column (2.4 x 17 cm). The fractions eluted with a 7% ethanol-chloroform solution were collected, concentrated and 2'-methylidene-
118 mg of 2'-deoxy-5-iodouridine was obtained. Melting point: 169-172℃ Elemental analysis: Calculated value as C 10 H 11 N 2 O 5 I C: 32.82%, H: 3.03%, N: 7.65
% Actual value C: 32.76%, H: 3.15%, N: 7.60
% Example 6 2'-methylidene-2'-deoxy-5-
Bromouridine [general formula [], R 1 = OH, R 2
= Br, R 3 = H, R 4 = H] 3.32 g of 5-bromouridine was dissolved in 30 ml of pyridine, and 3.3 g of 1,1,3,3-dichlorotetraisopropyldisiloxane was added under ice cooling. The mixture was stirred for an hour, returned to room temperature, and further stirred for 1 hour and 40 minutes. A small amount of water was added to this, and after stirring, it was concentrated to dryness under reduced pressure, developed on a silica gel column (2.4 x 25 cm), and the fractions eluted with 25% ethyl acetate-n-hexane were collected. '-O-TIPDS body was obtained. 4.30g of 3′,5′-O-TIPDS was added to 10% of methylene chloride.
ml, and 4 equivalents of chromic acid complex (mixture of 3 g of chromium trioxide (CrO 3 ), 5 ml of pyridine, and 3 ml of acetic anhydride in 80 ml of methylene chloride) was added, and the mixture was stirred at room temperature for 2 hours. After stirring, the reaction solution was added dropwise to 300 ml of ethyl acetate, filtered using silica gel (6 x 10 cm), the filtrate was concentrated to dryness under reduced pressure, and the residue was transferred to a silica gel column (2.4 x 32 cm).
The mixture was developed and the fractions eluted with 20% ethyl acetate-n-hexane were collected to obtain 2.4 g of the 2'-keto compound. 3.3 g of methyltriphenylphosphonium bromide was dissolved in 20 ml of tetrahydrofuran, and 6.6 ml of n-butyllithium was added dropwise under ice cooling under an argon stream.
Stirred for an additional 50 minutes. A solution of 650 mg of the above 2'-keto compound dissolved in 10 ml of ketorahydrofuran was added dropwise to this solution at -10°C, followed by stirring for 1 hour and further stirring at room temperature for 4 hours. Next, after neutralizing the reaction solution with 1N ammonium chloride, add 100ml of ethyl acetate and 100ml of water.
The organic layer was concentrated to dryness, the residue was developed on a silica gel column (2.4 x 18 cm), the fractions eluted with 20% ethyl acetate-n-hexane were collected, and the 2'-methylidene compound was separated. Obtained. Dissolve this in 5 ml of tetrahydrofuran and prepare a 1 molar solution of tetra-n-butylammonium fluoride/tetrahydrofuran.
1.4 ml was added and stirred at room temperature for 30 minutes to deprotect.
Next, after neutralizing with acetic acid, it was concentrated to dryness under reduced pressure and developed on a silica gel column (2.4 x 12 cm), and the fractions eluted with a 7% ethanol-chloroform solution were collected, concentrated and 2'-methylidene- 2'-deoxy-5
- Bromouridine was obtained as an amorphous powder. Elemental analysis: Calculated values as C 10 H 11 N 2 O 5 Br C: 37.65%, H: 3.48%, N: 8.78
% Actual value C: 37.49%, H: 3.55%, N: 8.79
% Example 7 2'-methylidene-2'-deoxy-uridine [general formula [], R 1 = OH, R 2 = H, R 3 =
H, R 4 =H] 3.91 g of uridine was dissolved in 50 ml of pyridine, 5.57 g of 1,1,3,3-dichlorotetraisopropyldisiloxane was added under ice cooling, and the mixture was stirred at room temperature for 6 hours. A small amount of water was added to this, and after stirring for 30 minutes, the mixture was concentrated to dryness under reduced pressure. The residue was partitioned between chloroform and water, and the organic layer was concentrated and then applied to a silica gel column (5 x 21
cm), and the 3',5'-protected product was obtained from the 2% ethanol-chloroform elution fraction. Separately, 1.7 ml of oxalyl chloride was dissolved in 40 ml of methylene chloride, cooled to -70°C, and a mixed solution of 3 ml of dimethyl sulfoxide and 20 ml of methylene chloride was added dropwise under an argon stream, followed by further stirring for 30 minutes. Add the above to this solution.
A solution of 7.8 g of the 3',5'-protector dissolved in 50 ml of methylene chloride was added dropwise, and the mixture was further stirred at -70°C for 2 hours. Add 6.6ml of triethylamine to this and
After stirring for half an hour, the temperature was returned to room temperature, chloroform and water were added and partitioned, and the organic layer was concentrated to dryness under reduced pressure, developed on a silica gel column (4 x 28 cm), and eluted with 40% ethyl acetate-n-hexane. The fractions were concentrated and crystallized from n-hexane to obtain the 2'-keto form 6.53
I got g. On the other hand, methyltriphenylphosphonium bromide
Dissolve 22.0g in 100ml of tetrahydrofuran,
37.5 ml of n-butyllithium was added dropwise under an argon stream, and the mixture was stirred for 1 hour. A solution of 3.2 g of the above 2'-keto compound dissolved in 20 ml of tetrahydrofuran was added dropwise to this solution at -10°C, followed by stirring for 30 minutes and further stirring for 1 hour and 30 minutes at room temperature. Next, the reaction solution was neutralized with 1 N ammonium chloride, 200 ml of ethyl acetate and 200 ml of water were added thereto, and the organic layer was concentrated to dryness. The residue was developed on a silica gel column (3 x 24 cm). Fractions eluted with % ethyl acetate-n-hexane were collected to obtain a 2'-methylidene compound. this
240 mg of 2'-methylidene compound was added to 55 mg of tetrahydrofuran.
1 ml of a 1 molar solution of tetra-n-butylammonium fluoride/tetrahydrofuran was added thereto, and the mixture was stirred at room temperature for 30 minutes for deprotection. Next, after neutralizing with acetic acid, it was concentrated to dryness under reduced pressure and developed on a silica gel column (2.4 x 14 cm), and the fractions eluted with a 7% ethanol-chloroform solution were collected and concentrated.
77 mg of crystalline powder of 2'-methylidene-2'-deoxy-uridine was obtained. Melting point: 163-165℃ Elemental analysis: Calculated value as C 10 H 12 N 2 O 5 C: 50.00%, H: 5.04%, N:
11.66% Actual value C: 49.88%, H: 5.13%, N:
11.59% Example 8 2'-methylidene-2'-deoxychlorouridine [general formula [], R 1 OH, R 2 = Cl, R 3
=H, R 4 =H] Using 5-chlorouridine in place of uridine in Example 7, it was subjected to the protection, oxidation, methylidenation, and deprotection reactions in the same manner as in Example 7 to obtain 2'- Methylidene-2'-deoxy-5-chlorouridine was obtained. Note that 30% ethyl acetate-n-hexane was used instead of 40% ethyl acetate-n-hexane. Melting point: 149-152℃ Elemental analysis: Calculated value as C 10 H 11 N 2 O 5 Cl C: 43.68%, H: 4.03%, N:
10.19% Actual value C: 43.77%, H: 3.98%, N:
10.20% Example 9 Production of 2'-methylidenethymidine-5'-phosphoric acid 2.54g of 2'-methylidenethymidine was added to 60ml of trimethylphosphoric acid, cooled on ice, and 1.53g of phosphorus oxychloride was added dropwise to this. , stir for an additional hour. 100g of this reaction solution containing 8g of sodium hydrogen carbonate
The mixture was poured into ice water and stirred for 1 hour, then 100 ml of ether was added and distributed. Concentrate the aqueous layer,
It was adsorbed onto anion exchange resin Dowex 1 (formic acid type), eluted with a 1 molar formic acid solution, the fractions containing the target substance were collected, concentrated, and lyophilized to obtain 2'-methylidenethymidine-5'-phosphoric acid. obtain. Example 10 Tablets 2'-methylidene thymidine 10 g Cornstarch 65 g Carboxycellulose 20 g Polyvinylpyrrolidone 3 g Calcium stearate 2 g Total amount 100 g Tablets each weighing 100 mg are prepared by a conventional method. One tablet contains 10 mg of 2'-methylidenethymidine. Example 11 Powder, capsule 2'methylidene-2'-deoxycytidine hydrochloride
20g crystalline cellulose 80g Total amount 100g Mix both powders to make a powder. Also powder 100mg
The mixture is filled into No. 5 hard capsules to prepare capsules.

Claims (1)

【特許請求の範囲】 1 一般式〔〕 (式中、R1はアミノ基または水酸基、R2は水
素原子、ハロゲン原子または低級アルキル基、
R3は水素原子または低級アルキル基、R4は水素
原子またはリン酸残基を示す)で表わされる2′−
アルキリデンピリミジンヌクレオシド誘導体また
はその塩。 2 R3が水素原子である、特許請求の範囲第1
項記載の2′−アルキリデンピリミジンヌクレオシ
ド誘導体またはその塩。 3 R2が水素原子、ハロゲン原子またはメチル
基、R3が水素原子である、特許請求の範囲第1
項記載の2′−アルキリデンピリミジンヌクレオシ
ド誘導体またはその塩。 4 R1がアミノ基、R2およびR3が水素原子であ
る、特許請求の範囲第1項記載の2′−アルキリデ
ンピリミジンヌクレオシド誘導体またはその塩。 5 R1が水酸基、R2がメチル基、R3が水素原子
である、特許請求の範囲第1項記載の2′−アルキ
リデンピリミジンヌクレオシド誘導体またはその
塩。 6 下記の第1〜3工程よりなる一般式〔〕 (式中、R1はアミノ基または水酸基、R2は水
素原子、ハロゲン原子または低級アルキル基、
R3は水素原子または低級アルキル基、R4は水素
原子またはリン酸残基を示す)で表わされる2′−
アルキリデンピリミジンヌクレオシド誘導体の製
造法。 第1工程; 下記一般式〔〕で表わされる化合物の糖部
2′位をウイツテイヒ試薬によりアルキリデン化
し、下記一般式〔〕で表わされる化合物を得る
工程 (式中、R2およびR3は前記と同意義であり、
R5はアルコキシル基、水酸基またはアミノ基、
Zは保護基を示す) 第2工程; 下記一般式〔〕で表わされる化合物の糖部保
護基を脱離させ、下記一般式〔〕で表わされる
化合物を得る工程 (式中、R2,R3,R5およびZは前記と同意義) 第3工程; 下記一般式〔〕で表わされる化合物を、R5
がアルコキシル基の場合は塩基部4位を加水分解
またはアミノ化した後、所望により糖部5′位をリ
ン酸化することにより下記一般式〔〕で表わさ
れる化合物を得る工程 (式中、R1,R2,R3,R4およびR5は前記と同
意義) 7 一般式〔〕で表わされる化合物のR1がア
ミノ基または水酸基であり、一般式〔〕で表わ
される化合物のR5がアルコキシル基である、特
許請求の範囲第6項記載の2′−アルキリデンピリ
ミジンヌクレオシド誘導体の製造法。 8 一般式〔〕で表わされる化合物のR1がア
ミノ基または水酸基であり、一般式〔〕で表わ
される化合物のR5がアミノ基または水酸基であ
る、特許請求の範囲第6項記載の2′−アルキリデ
ンピリミジンヌクレオシド誘導体の製造法。 9 ウイツテイヒ試薬が下記一般式 (C6H53P=CH−R3 (式中、R3は水素原子または低級アルキル基
を示す)で表わされるものである、特許請求の範
囲第6項に記載の2′−アルキリデンピリミジンヌ
クレオシド誘導体の製造法。 10 一般式〔〕 (式中、R1はアミノ基または水酸基、R2は水
素原子、ハロゲン原子または低級アルキル基、
R3は水素原子または低級アルキル基、R4は水素
原子またはリン酸残基を示す)で表わされる2′−
アルキリデンピリミジンヌクレオシド誘導体また
はその塩を有効成分として含有してなる抗ウイル
ス剤。 11 ウイルスがヘルペスウイルス科に属するも
のである、特許請求の範囲第10項に記載の抗ウ
イルス剤。 12 R3が水素原子である、特許請求の範囲第
10項記載の抗ウイルス剤。 13 R2が水素原子、ハロゲン原子またはメチ
ル基、R3が水素原子である、特許請求の範囲第
10項記載の抗ウイルス剤。 14 R1がアミノ基、R2およびR3が水素原子で
ある、特許請求の範囲第10項記載の抗ウイルス
剤。 15 R1が水酸基、R2がメチル基、R3が水素原
子である、特許請求の範囲第10項記載の抗ウイ
ルス剤。
[Claims] 1. General formula [] (In the formula, R 1 is an amino group or a hydroxyl group, R 2 is a hydrogen atom, a halogen atom or a lower alkyl group,
R 3 is a hydrogen atom or a lower alkyl group, R 4 is a hydrogen atom or a phosphoric acid residue)
Alkylidenepyrimidine nucleoside derivatives or salts thereof. Claim 1, in which 2 R 3 is a hydrogen atom
2'-Alkylidenepyrimidine nucleoside derivative or salt thereof as described in 2. 3 R 2 is a hydrogen atom, a halogen atom or a methyl group, and R 3 is a hydrogen atom, Claim 1
2'-Alkylidenepyrimidine nucleoside derivative or salt thereof as described in 2. 4. The 2' -alkylidenepyrimidine nucleoside derivative or salt thereof according to claim 1, wherein R 1 is an amino group, and R 2 and R 3 are hydrogen atoms. 5. The 2' -alkylidenepyrimidine nucleoside derivative or salt thereof according to claim 1, wherein R 1 is a hydroxyl group, R 2 is a methyl group, and R 3 is a hydrogen atom. 6 General formula consisting of the following 1st to 3rd steps [] (In the formula, R 1 is an amino group or a hydroxyl group, R 2 is a hydrogen atom, a halogen atom or a lower alkyl group,
R 3 is a hydrogen atom or a lower alkyl group, R 4 is a hydrogen atom or a phosphoric acid residue)
Method for producing alkylidenepyrimidine nucleoside derivatives. 1st step: Step of alkylidening the 2'-position of the sugar moiety of the compound represented by the following general formula [] with a Witteich reagent to obtain a compound represented by the following general formula [] (In the formula, R 2 and R 3 have the same meanings as above,
R 5 is an alkoxyl group, hydroxyl group or amino group,
Z represents a protecting group) 2nd step; Step of removing the sugar protecting group of the compound represented by the following general formula [] to obtain a compound represented by the following general formula [] (In the formula, R 2 , R 3 , R 5 and Z have the same meanings as above) Third step;
When is an alkoxyl group, after hydrolyzing or aminating the 4-position of the base moiety, optionally phosphorylating the 5'-position of the sugar moiety to obtain a compound represented by the following general formula [] (In the formula, R 1 , R 2 , R 3 , R 4 and R 5 have the same meanings as above) 7 R 1 of the compound represented by the general formula [] is an amino group or a hydroxyl group, and the compound represented by the general formula [] 7. The method for producing a 2'-alkylidenepyrimidine nucleoside derivative according to claim 6, wherein R5 of the compound is an alkoxyl group. 8. 2' according to claim 6, wherein R 1 of the compound represented by the general formula [] is an amino group or a hydroxyl group, and R 5 of the compound represented by the general formula [] is an amino group or a hydroxyl group. - A method for producing an alkylidenepyrimidine nucleoside derivative. 9. Claim 6, wherein the Witzteich reagent is represented by the following general formula (C 6 H 5 ) 3 P=CH-R 3 (wherein R 3 represents a hydrogen atom or a lower alkyl group) A method for producing a 2'-alkylidenepyrimidine nucleoside derivative as described in . 10 General formula [] (In the formula, R 1 is an amino group or a hydroxyl group, R 2 is a hydrogen atom, a halogen atom or a lower alkyl group,
R 3 is a hydrogen atom or a lower alkyl group, R 4 is a hydrogen atom or a phosphoric acid residue)
An antiviral agent containing an alkylidenepyrimidine nucleoside derivative or a salt thereof as an active ingredient. 11. The antiviral agent according to claim 10, wherein the virus belongs to the Herpesviridae family. The antiviral agent according to claim 10, wherein 12 R 3 is a hydrogen atom. 13. The antiviral agent according to claim 10, wherein R 2 is a hydrogen atom, a halogen atom, or a methyl group, and R 3 is a hydrogen atom. 14. The antiviral agent according to claim 10, wherein R 1 is an amino group, and R 2 and R 3 are hydrogen atoms. 15. The antiviral agent according to claim 10, wherein R 1 is a hydroxyl group, R 2 is a methyl group, and R 3 is a hydrogen atom.
JP62065405A 1987-03-19 1987-03-19 2'-alkylidene pyrimidine nucleotide Granted JPS63230699A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP62065405A JPS63230699A (en) 1987-03-19 1987-03-19 2'-alkylidene pyrimidine nucleotide
EP88902560A EP0310673B1 (en) 1987-03-19 1988-03-17 2'-alkylidenepyrimidine nucleoside derivatives, process for their preparation, and their use
DE3854110T DE3854110T2 (en) 1987-03-19 1988-03-17 2'-ALKYLIDEN-PYRIMIDINE NUCLEOSIDE DERIVATIVES, METHOD FOR THE PRODUCTION AND USE.
AT88902560T ATE124702T1 (en) 1987-03-19 1988-03-17 2'-ALKYLIDE-PYRIMIDINE NUCLEOSIDE DERIVATIVES, METHOD OF PREPARATION AND USE.
US07/295,948 US5047520A (en) 1987-03-19 1988-03-17 2'-alkylidenepyrimidine nucleoside derivatives, process for production thereof, and uses thereof
KR1019880701498A KR910008800B1 (en) 1987-03-19 1988-03-17 2'-alkylidenepyrimidine nucleoside derivatives process for their preparation and their use
PCT/JP1988/000278 WO1988007049A1 (en) 1987-03-19 1988-03-17 2'-alkylidenepyrimidine nucleoside derivatives, process for their preparation, and their use
US07/721,828 US5300636A (en) 1987-03-19 1991-06-26 2'-alkylidenepyrimidine nucleoside compounds and a process for production of same
US08/125,839 US5430139A (en) 1987-03-19 1993-09-24 2'-alkylidenepyrimidine nucleoside derivatives, process for production thereof, and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62065405A JPS63230699A (en) 1987-03-19 1987-03-19 2'-alkylidene pyrimidine nucleotide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5017981A Division JPH07633B2 (en) 1993-01-08 1993-01-08 1- (β-D-erythro-pentofuran-2-urosyl) pyrimidine derivative

Publications (2)

Publication Number Publication Date
JPS63230699A JPS63230699A (en) 1988-09-27
JPH0543716B2 true JPH0543716B2 (en) 1993-07-02

Family

ID=13286080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62065405A Granted JPS63230699A (en) 1987-03-19 1987-03-19 2'-alkylidene pyrimidine nucleotide

Country Status (1)

Country Link
JP (1) JPS63230699A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660194B2 (en) * 1988-12-07 1994-08-10 ヤマサ醤油株式会社 Pyrimidine 2'-deoxy-2'-methylidene nucleoside compound
WO1993022327A1 (en) * 1992-04-23 1993-11-11 Yoshitomi Pharmaceutical Industries, Ltd. 2'-methylidenenucleoside compound and pharmaceutical use thereof

Also Published As

Publication number Publication date
JPS63230699A (en) 1988-09-27

Similar Documents

Publication Publication Date Title
EP0310673B1 (en) 2'-alkylidenepyrimidine nucleoside derivatives, process for their preparation, and their use
US4211773A (en) 5-Substituted 1-(2'-Deoxy-2'-substituted-β-D-arabinofuranosyl)pyrimidine nucleosides
JP4253342B2 (en) 4'-C-substituted-2-haloadenosine derivatives
JP2502813B2 (en) Antivirus pyrimidine nucleoside
CN105085592B (en) N- [ (2' R) -2' -deoxy-2 ' -fluoro-2 ' -methyl-P-phenyl-5 ' -uridylyl ] -L-alanine 1-methylethyl ester and process for preparing same
US5668113A (en) Method of using 1,5-anhydrohexitol nucleoside analogues to treat viral infections
US4594339A (en) Anti-herpes virus compositions containing 5-substituted 1-2'(deoxy-2-'-substituted-β-d-arabinofuranosyl)pyrimedene nucleosides
JP2008069182A (en) 4'-c-substituted-2-haloadenosine derivative
JPH06228186A (en) 2'-deoxy-@(3754/24)2's)-alkylpyrimidine nucleoside derivative
JPH0699467B2 (en) 2 ▲ '▼ -Deoxy-2 ▲' ▼ (S) -alkylpyrimidine nucleoside derivative
JP4076114B2 (en) 4'-C-ethynylpurine nucleoside compounds
WO1999043690A1 (en) L-4'-arabinofuranonucleoside compound and medicine composition comprising the same
JPH0543716B2 (en)
JP4039790B2 (en) 4'-C-ethynylpyrimidine nucleoside compounds
JPH06211890A (en) 2'-deoxy-2'@(3754/24)s)-substituted alkylcytidine derivative
JP4211901B2 (en) 4'-methyl nucleoside compounds
EP0572669A1 (en) 1-B(beta)-D-Arabinofuranosyl-(E)-5-(2-halogenovinyl)-uracil-derivative
JP2665527B2 (en) 2'-deoxy-2'-methylidenepyrimidine nucleotide compounds
JPH0625278A (en) 1-@(3754/24)beta-d-erythro-pentofuran-2-urasyl)pyrimidine derivative
CA1319932C (en) 2'-alkylidenepyrimidine nucleoside derivatives, process for production thereof, and uses thereof
JPH1087687A (en) 5-substituted-1-(2-deoxy-2-fluoro-4-thio-beta-d-arabinofuranosyl)uracil
JPH0987295A (en) 2'-deoxy-2'-methylidene-4'-thiopyrimidine nucleoside and antiviral agent
JP2784941B2 (en) 2'-methylidenepyrimidine nucleoside compound and pharmaceutical use thereof
JP5070550B2 (en) Nucleoside derivatives with anti-herpesvirus activity
JPH0532691A (en) 2-halogeno-oxetanocin a and its phosphoric acid ester

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term