JP4076114B2 - 4'-C-ethynylpurine nucleoside compounds - Google Patents

4'-C-ethynylpurine nucleoside compounds Download PDF

Info

Publication number
JP4076114B2
JP4076114B2 JP2000137982A JP2000137982A JP4076114B2 JP 4076114 B2 JP4076114 B2 JP 4076114B2 JP 2000137982 A JP2000137982 A JP 2000137982A JP 2000137982 A JP2000137982 A JP 2000137982A JP 4076114 B2 JP4076114 B2 JP 4076114B2
Authority
JP
Japan
Prior art keywords
compound
group
ethynyl
mmol
residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000137982A
Other languages
Japanese (ja)
Other versions
JP2001335592A (en
JP2001335592A5 (en
Inventor
洋 大類
悟 向後
栄一 児玉
雅雄 松岡
裕明 満屋
健司 北濃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamasa Corp
Original Assignee
Yamasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Corp filed Critical Yamasa Corp
Priority to JP2000137982A priority Critical patent/JP4076114B2/en
Publication of JP2001335592A publication Critical patent/JP2001335592A/en
Publication of JP2001335592A5 publication Critical patent/JP2001335592A5/ja
Application granted granted Critical
Publication of JP4076114B2 publication Critical patent/JP4076114B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、4’−C−エチニルヌクレオシド及びその医薬用途、特にエイズ(AIDS)の治療用用途に関するものである。
【0002】
【従来の技術】
AZT(ジドブジン)、ddI(ジダノシン)、ddC(ザルシタビン)、d4T(スタブジン)3TC(ラミブジン)などのヌクレオシド系逆転写酵素阻害剤(nucleoside reverse transcriptase inhibitors;NRTIs)にプロテアーゼ阻害剤(protease inhibitors;PIs)を加えた、いわゆる「強力な抗レトロウイルス剤による化学療法(highly active antiretroviral therapy;HAART)」と呼ばれる多剤併用療法によって、AIDSの臨床像は一変し、AIDSによる死亡者数も各国で激減した(Textbook of AIDS Medicine, p751(Williams & Wilkins, Baltimore, 1999))。
【0003】
しかし、HAARTによりAIDSによる死亡者が激減する一方で、複数の薬剤に対して交叉耐性を示す多剤耐性HIV−1(human immunodeficiency virus-1)株が出現し、たとえば、AZTと3TCの両方に耐性のHIVに感染した患者は、1990年初頭ではほとんど見られなかったのに対し、1995〜1996年になると42%にものぼっていることが報告されている(AIDS, 11, 1184(1997))。
【0004】
このような多剤耐性ウイルス株(multi-drug resistant virus)の出現により、「治療の失敗(drug failure:いったんウイルス血症レベルが検出限界以下になった症例で、再びウイルス血症が持続的に見られるようになったもの)」も30〜60%にも及んでいることが報告され(AIDS, 12, 1631(1998))、大きな問題となっている。
【0005】
【発明が解決しようとする課題】
従来、多剤耐性ウイルス株に対して抗ウイルス活性を示す化合物としては、多くのPIsに耐性なHIV−1株(multi-PI resistant HIV-1)に対して抗ウイルス活性を示すプロテアーゼ阻害剤:JE−2147などが知られているのみで(Proc. Natl. Acad. Sci. USA, 96,8675(1999))、ヌクレオシド系化合物において、多剤耐性ウイルス株に対して抗ウイルス活性を示す化合物は報告されていない。
【0006】
発明者の一人である大類らは、1−(4−C−エチニル−β−D−リボ−ペントフラノシル)チミン、4’−C−エチニルウリジン及び4’−C−エチニルシチジンを合成し、抗ウイルス活性、抗腫瘍活性などの生物活性を測定したが、それらの化合物に生物活性は観察されなかった(Biosci. Biotechnol. Biochem., 63(4), 736-742, 1999)。
【0007】
また、松田らは4’−C−エチニルチミジンを合成し、抗HIV活性を測定しているが、当該化合物の抗HIV活性はAZTの抗HIV活性よりも弱いものであった。なお、松田らの論文における抗HIV活性の測定は、MT−4細胞とHIV−1 IIIb株を用いた通常の抗HIV活性測定法であって、多剤耐性ウイルス株を用いたものではない(Bioorg. Med. Chem. Lett., 9(1999), 385-388)。
【0008】
【課題を解決するための手段】
本発明者らは、AZT以上の抗ウイルス活性を有する化合物を見つけるべく、種々の4’−C−エチニルヌクレオシドを合成し、抗ウイルス活性を測定した結果、▲1▼特定の構造を有する4’−C−エチニルヌクレオシドがAZTと同等あるいはAZTを凌ぐ優れた抗HIV活性を有すること、▲2▼AZT、ddI、ddC、d4T、3TCなどの複数の抗HIV剤に耐性を有する多剤耐性ウイルス株にも有効なこと、▲3▼細胞毒性も問題となるほど強くないことを確認し、本願発明を完成させた。
【0009】
すなわち、本発明は、式[I]で表される4’−C−エチニルヌクレオシド(ただし、4’−C−エチニルチミジンを除く)および当該化合物と薬学的に許容される担体とを含有してなる医薬組成物に関するものである。
【化2】

Figure 0004076114
Figure 0004076114
(式中、Bは、ピリミジン、プリンもしくはそれらの誘導体からなる群より選ばれた塩基を示し、Xは水素原子または水酸基を示し、Rは水素原子またはリン酸残基を示す。)
また、本発明は、上記式[I]の化合物の医薬としての使用に関するものである。
さらに、本発明は、上記式[I]の化合物をヒトを含む動物に投与することを特徴とするエイズの治療方法に関するものである。
【0010】
【発明の実施の形態】
(1)化合物
本発明化合物は、前記式[I]で表されるものであり、式中のBで表される塩基としては、ピリミジン、プリン(アザプリン及びデアザプリンをも含む)またはそれら塩基の誘導体を例示することができる。
【0011】
塩基の誘導体としては、ハロゲン原子、アルキル基、ハロアルキル基、アルケニル基、ハロアルケニル基、アルキニル基、アミノ基、アルキルアミノ基、水酸基、ヒドロキシアミノ基、アミノキシ基、アルコキシ基、メルカプト基、アルキルメルカプト基、アリール基、アリールオキシ基、シアノ基などの置換基を有するものが挙げられ、置換基の数及び位置は特に制限されるものではない。
【0012】
置換基としてのハロゲン原子としては、塩素、フッ素、ヨウ素、臭素が例示される。アルキル基としては、メチル、エチル、プロピルなどの炭素数1〜7の低級アルキル基が例示される。ハロアルキル基としては、フルオロメチル、ジフルオロメチル、トリフルオロメチル、ブロモメチル、ブロモエチルなどの炭素数1〜7のアルキルを有するハロアルキル基が例示される。アルケニル基としては、ビニル、アリルなどの炭素数2〜7のアルケニル基が例示される。ハロアルケニル基としては、ブロモビニル、クロロビニルなどの炭素数2〜7のアルケニルを有するハロアルケニル基が例示される。アルキニル基としては、エチニル、プロピニルなどの炭素数2〜7のアルキニル基が例示される。アルキルアミノ基としては、メチルアミノ、エチルアミノなどの炭素数1〜7のアルキルを有するアルキルアミノ基が例示される。
【0013】
アルコキシ基としては、メトキシ、エトキシなどの炭素数1〜7のアルコキシ基が例示される。アルキルメルカプト基としては、メチルメルカプト、エチルメルカプトなどの炭素数1〜7のアルキルを有するアルキルメルカプト基が例示される。アリール基としては、フェニル基;メチルフェニル、エチルフェニルなどの炭素数1〜5のアルキルを有するアルキルフェニル基;メトキシフェニル、エトキシフェニルなどの炭素数1〜5のアルコキシを有するアルコキシフェニル基;ジメチルアミノフェニル、ジエチルアミノフェニルなどの炭素数1〜5のアルキルアミノを有するアルキルアミノフェニル基;クロロフェニル、ブロモフェニルなどのハロゲノフェニル基などが例示される。
【0014】
ピリミジン系の塩基およびその誘導体を具体的に例示すれば、シトシン、ウラシル、5ーフルオロシトシン、5ーフルオロウラシル、5ークロロシトシン、5ークロロウラシル、5ーブロモシトシン、5ーブロモウラシル、5ーヨードシトシン、5ーヨードウラシル、5ーメチルシトシン、5ーエチルシトシン、5ーメチルウラシル(チミン)、5ーエチルウラシル、5ーフルオロメチルシトシン、5ーフルオロウラシル、5ートリフルオロシトシン、5ートリフルオロウラシル、5ービニルウラシル、5ーブロモビニルウラシル、5ークロロビニルウラシル、5ーエチニルシトシン、5ーエチニルウラシル、5ープロピニルウラシル、ピリミジンー2ーオン、4ーヒドロキシアミノピリミジンー2ーオン、4ーアミノオキシピリミジンー2ーオン、4ーメトキシピリミジンー2ーオン、4ーアセトキシピリミジンー2ーオン、4ーフルオロピリミジンー2ーオン、5ーフルオロピリミジンー2ーオンなどが挙げられる。
【0015】
プリン系の塩基およびその誘導体を具体的に例示すれば、プリン、6ーアミノプリン(アデニン)、6ーヒドロキシプリン、6ーフルオロプリン、6ークロロプリン、6ーメチルアミノプリン、6ージメチルアミノプリン、6ートリフルオロメチルアミノプリン、6ーベンゾイルアミノプリン、6ーアセチルアミノプリン、6ーヒドロキシアミノプリン、6ーアミノオキシプリン、6ーメトキシプリン、6ーアセトキシプリン、6ーベンゾイルオキシプリン、6ーメチルプリン、6ーエチルプリン、6ートリフルオロメチルプリン、6ーフェニルプリン、6ーメルカプトプリン、6ーメチルメルカプトプリン、6ーアミノプリンー1ーオキシド、6ーヒドロキシプリンー1ーオキシド、2ーアミノー6ーヒドロキシプリン(グアニン)、2,6−ジアミノプリン、2ーアミノー6ークロロプリン、2ーアミノー6ーヨードプリン、2ーアミノプリン、2ーアミノー6ーメルカプトプリン、2ーアミノー6ーメチルメルカプトプリン、2ーアミノー6ーヒドロキシアミノプリン、2ーアミノー6ーメトキシプリン、2ーアミノー6ーベンゾイルオキシプリン、2ーアミノー6ーアセトキシプリン、2ーアミノー6ーメチルプリン、2ーアミノー6ーサイクロプロピルアミノメチルプリン、2ーアミノー6ーフェニルプリン、2ーアミノー8ーブロモプリン、6ーシアノプリン、6ーアミノー2ークロロプリン(2ークロロアデニン)、6ーアミノー2ーフルオロプリン(2ーフルオロアデニン)、6ーアミノー3ーデアザプリン、6ーアミノー8ーアザプリン、2ーアミノー6ーヒドロキシー8ーアザプリン、6ーアミノー7ーデアザプリン、6ーアミノー1ーデアザプリン、6ーアミノー2ーアザプリンなどが挙げられる。
【0016】
Bがピリミジン系の塩基で、Xが水素原子である化合物としては、たとえば以下に示す化合物またはその5’−リン酸エステルが挙げられる。
4’−C−エチニル−2’−デオキシシチジン
4’−C−エチニル−2’−デオキシ−5−ハロゲノシチジン
4’−C−エチニル−2’−デオキシ−5−アルキルシチジン
4’−C−エチニル−2’−デオキシ−5−ハロアルキルシチジン
4’−C−エチニル−2’−デオキシ−5−アルケニルシチジン
4’−C−エチニル−2’−デオキシ−5−ハロアルケニルシチジン
4’−C−エチニル−2’−デオキシ−5−アルキニルシチジン
4’−C−エチニル−2’−デオキシ−5−ハロゲノウリジン
4’−C−エチニル−2’−デオキシ−5−アルキルウリジン(ただし、4’−C−エチニルチミジンを除く)
4’−C−エチニル−2’−デオキシ−5−ハロアルキルウリジン
4’−C−エチニル−2’−デオキシ−5−アルケニルウリジン
4’−C−エチニル−2’−デオキシ−5−ハロアルケニルウリジン
4’−C−エチニル−2’−デオキシ−5−アルキニルウリジン
【0017】
Bがピリミジン系の塩基で、Xが水酸基である化合物としては、たとえば以下に示す化合物またはその5’−リン酸エステルが挙げられる。
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)シトシン
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−ハロゲノシトシン
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−アルキルシトシン
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−ハロアルキルシトシン
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−アルケニルシトシン
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシ)−5−ハロアルケニルシトシン
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−アルキニルシトシン
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−ハロゲノウラシル
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−アルキルウラシル
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−ハロアルキルウラシル
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−アルケニルウラシル
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−ハロアルケニルウラシル
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−アルキニルウラシル
【0018】
Bがプリン系の塩基で、Xが水素原子である化合物としては、たとえば以下に示す化合物またはその5’−リン酸エステルが挙げられる。
4’−C−エチニル−2’−デオキシアデノシン
4’−C−エチニル−2’−デオキシグアノシン
4’−C−エチニル−2’−デオキシイノシン
9−(4−C−エチニル−2−デオキシ−β−D−リボ−フラノシル)プリン
9−(4−C−エチニル−2−デオキシ−β−D−リボ−フラノシル)−2,6−ジアミノプリン
【0019】
Bがプリン系の塩基で、Xが水酸基である化合物としては、たとえば以下に示す化合物またはその5’−リン酸エステルが挙げられる。
9−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)アデニン
9−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)グアニン
9−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)ヒポキサンチン
9−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)プリン
9−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−2,6−ジアミノプリン
【0020】
本発明化合物のうち、好ましい化合物としては、以下の化合物を例示することができる。
(1)4’−C−エチニルピリミジンヌクレオシド
1) 前記式[I]中のXが水素原子である化合物
2) 前記式[I]中のXが水酸基である化合物
3) 前記式[I]中のBがシトシンまたはその誘導体である化合物
4) 前記式[I]中のBがシトシンまたはその誘導体であり、Xが水素原子である化合物
5) 前記式[I]中のBがシトシンまたはその誘導体であり、Xが水酸基である化合物
6) 4’−C−エチニル−2’−デオキシシチジン
7) 4’−C−エチニル−2’−デオキシ−5−フルオロシチジン
8) 1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)シトシン
【0021】
(2)4’−C−エチニルプリンヌクレオシド
1) 前記式[I]中のXが水素原子である化合物
2) 前記式[I]中のXが水酸基である化合物
3) 前記式[I]中のBが、アデニン、グアニン、ヒポキサンチン、ジアミノプリンまたはその誘導体からなる群より選択されたものである化合物
4) 前記式[I]中のBが、アデニン、グアニン、ヒポキサンチン、ジアミノプリンまたはその誘導体からなる群より選択されたものであり、Xが水素原子である化合物
5) 前記式[I]中のBが、アデニン、グアニン、ヒポキサンチン、ジアミノプリンまたはその誘導体からなる群より選択されたものであり、Xが水酸基である化合物
6) 4’−C−エチニル−2’−デオキシアデノシン
7) 4’−C−エチニル−2’−デオキシグアノシン
8) 4’−C−エチニル−2’−デオキシイノシン
9) 9−(4−C−エチニル−2−デオキシ−β−D−リボ−ペントフラノシル)−2,6−ジアミノプリン
10) 9−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)アデニン
【0022】
本発明化合物は、塩、水和物または溶媒和物の形態であってもよい。そのような塩としては、Rが水素原子である場合には塩酸塩または硫酸塩などの酸付加物、Rがリン酸残基である場合にはナトリウム塩、カリウム塩またはリチウム塩などのアルカリ金属塩、カルシウム塩などのアルカリ土類金属塩もしくはアンモニウム塩などの薬学的に許容される任意の塩が例示される。
また、水和物または溶媒和物としては、本発明の化合物またはその塩1分子に対し、0.1〜3.0分子の水または溶媒が付着したものを例示することができる。さらに、本発明の化合物には、互変異性体などの各種異性体も包含されうる。
【0023】
(2)製造法
本発明化合物のうち、Xが水素原子である2’−デオキシ体は、以下に説明する工程により製造することができる。
第1工程;
第1工程は、式[II]で表される化合物の4位のハイドロキシメチル基を酸化してアルデヒド化合物とし、さらにアルキン化合物へ変換することにより式[III]で表される化合物を得る工程である。
【0024】
【化3】
Figure 0004076114
Figure 0004076114
(式中、R1〜R2は保護基を示し、R3は水素原子または保護基を示し、Bnはベンジル基を示す。)
【0025】
原料化合物は、式[II]で表される公知化合物である(Biosci. Biotech. Biochem., 57, 1433-1438(1993))。
R1〜R2で表わされる保護基としては、水酸基などで通常使用されるものであればよく、たとえばエーテル系保護基、アシル系保護基、シリル系保護基、アセタール系保護基などを例示することができる。より具体的には、エーテル系保護基としては、メチルエーテル、第3級ブチルエーテル、ベンジルエーテル、メトキシベンジルエーテル、トリチルエーテルなどを、アシル系保護基としてはアセチル、ベンゾイル、ピバロイルなどを、シリル系保護基としてはtーブチルジメチルシリル、tーブチルジフェニルシリル、トリメチルシリル、トリエチルシリルなどを、アセタール系保護基としてはイソプロピリデン、エチリデン、メチリデン、ベンジリデン、テトラヒドロピラニル、メトキシメチルなどをそれぞれ使用することができる。
【0026】
式[II]で表される化合物の4位のハイドロキシメチル基をアルデヒドに変換する場合、用いる酸化剤としては、無水クロム酸、ピリジンと無水酢酸との複合試薬、ピリジンクロロクロメート、ピリジンジクロメートなどのクロム系酸化剤;デス−マーチン試薬などの高原子価ヨウ素酸化剤;ジメチルスルホキシドと無水酢酸、塩化オキサリルまたはジシクロヘキシルカルボジイミドとを組み合わせて用いるジメチルスルホキシド系酸化剤などを例示することができる。
【0027】
反応条件は用いる酸化剤により異なり、たとえば、塩化オキサリルとジメチルスルホキシドを用いて酸化する場合、ジクロロメタンなどの有機溶媒中、必要によりアルゴン、窒素などの不活性ガス雰囲気下、式[II]化合物1モルに対して塩化オキサリルとジメチルスルホキシドをそれぞれ0.5〜5モル、1.5〜6モル用い、−100〜0℃で15分から2時間程度反応させ、トリエチルアミンなどの塩基類を2〜10モル添加し、さらに室温にて15分から2時間程度反応させることにより実施できる。
【0028】
次に、得られたアルデヒド化合物からアルキン化合物への変換は、アルデヒド化合物を増炭反応(C−C結合形成反応)に付し、強塩基で処理してメタルアルキニル化合物とし、最後に保護基を導入することにより実施できる。
増炭反応は、ジクロロメタン、ジクロロエタンなどの有機溶媒中、必要によりアルゴン、窒素などの不活性ガス雰囲気下、先に得られたアルデヒド化合物1モルに対して四臭化炭素とトリフェニルホスフィンをそれぞれ1〜5モル、2〜10モル用い、0〜50℃で15分から3時間程度反応させればよい。
【0029】
強塩基処理は、テトラヒドロフラン、1,4−ジオキサン、ジメトキシエタンなどの有機溶媒中、必要によりアルゴン、窒素などの不活性ガス雰囲気下、増炭反応により得られた化合物1モルに対してn−ブチルリチウム、t−ブチルリチウムなどのリチウム化合物2〜4モル用い、−100〜−20℃で5〜60分程度反応させることにより実施できる。
さらに、得られた化合物のアルキニル基にR3で表されるシリル系保護基を導入する場合、上記強塩基処理に続けてクロロトリエチルシランなどのシリル化剤を添加し、反応させる。また、水酸基への保護基の導入は、常法により行うことができ、たとえば、アセチル基の導入は、無水酢酸などのアセチル化剤と反応させることにより実施することができる。
【0030】
こうして得られた式[III]の化合物の単離精製は、通常の保護された糖類の分離精製手段を適宜選択して用いればよく、例えば酢酸エチルと飽和炭酸水素ナトリウム水で分配後、シリカゲルカラムクロマトグラフィーに付すことにより行うことができる。
【0031】
第2工程;
第2工程は、式[III]で表される化合物とBで表される塩基類とを縮合反応に付し、次に2’位水酸基をデオキシ化してデオキシ体とし、糖部の保護基を除去し、必要により5’位水酸基をリン酸化して式[I]で表される化合物を得る工程である。
【0032】
【化4】
Figure 0004076114
Figure 0004076114
(式中、Bは、ピリミジン、プリン(アザプリンまたはデアザプリンをも含む)もしくはそれらの誘導体からなる群より選ばれた塩基を示し(ただし、チミンは除く)、Rは水素原子またはリン酸残基を示し、R1〜R2は保護基を示し、R3は水素原子または保護基を示し、Bnはベンジル基を示す。)
【0033】
式[III]で表される化合物とBで表される塩基類との縮合は、ルイス酸存在下、式[III]の化合物をBで表される塩基類と反応させることによって行うことができる。
Bで表される塩基類はシリル化したものを用いてもよく、このようなシリル化した塩基類は公知の方法、たとえばヘキサメチルジシラザンとトリメチルクロロシラン中で加熱還流する方法により得ることができる。
使用するルイス酸としては、トリフルオロメタンスルホン酸トリメチルシリル、四塩化すず、塩化亜鉛、ヨウ化亜鉛、無水塩化アルミニウムなどが例示される。
【0034】
縮合反応は、ジクロロメタン、1,2−ジクロロエタン、アセトニトリル、トルエン等の有機溶媒中、必要によりアルゴン、窒素などの不活性ガス雰囲気下、式[III]の化合物1モルに対しBで表される塩基類1〜10モルおよびルイス酸0.1〜10モルとを用い、−20〜150℃で30分〜3時間程度反応させることにより実施することができる。
【0035】
2’位水酸基のデオキシ化は、2’位水酸基をハロゲン化体(ヨウ素体、臭素体、塩素体)、フェノキシチオカルボニル体、チオカルボニルイミダゾール体、メチルジチオカルボネート体等に変換した後、ラジカル開始剤存在下、ラジカル還元剤により還元することによって行うことができる。
【0036】
例えば、フェノキシチオカルボニル体に導いてデオキシ化する場合、フェノキシチオカルボニル化反応は、必要によりアルゴン、窒素等の不活性ガス雰囲気下、テトラヒドロフラン、アセトニトリル、ジクロロメタン等の有機溶媒中、ジメチルアミノピリジン、ピリジン等の塩基共存下、2’位水酸基の保護基のみ除去された上記縮合物1モルに対してクロロチオノギ酸フェニル誘導体1〜10モル、好ましくは1.1〜2モル用い、0〜50℃で0.5〜5時間程度撹拌反応させることにより実施することができる。また、ブロモ体に導いてデオキシ化する場合、ブロモ化反応は、必要によりアルゴン、窒素等の不活性ガス雰囲気下、テトラヒドロフラン、アセトニトリル、ジクロロメタン等の有機溶媒中、脱保護された上記縮合物1モルに対して臭化アセチル等のブロモ化剤1〜50モル、好ましくは5〜20モル用い、0〜150℃で0.5〜5時間程度撹拌反応させることにより実施することができる。
【0037】
続けて行う還元反応は、トルエン、ベンゼン等の有機溶媒中、必要によりアルゴン、窒素等の不活性ガス雰囲気下、アゾビスイソブチロニトリル等のラジカル開始剤存在下、上記フェノキシチオカルボニル体またはブロモ体1モルに対して水素化トリブチルスズ等のラジカル還元剤1〜10モル、好ましくは2〜5モル用い、50〜150℃で1〜5時間程度撹拌反応させることにより実施される。
【0038】
また、本発明化合物のうち、Xが水酸基であるアラビノ体は、以下に説明する工程により製造することができる。
第1工程;
第1工程は、式[III]で表される化合物とBで表される塩基類とを縮合反応に付し、次に2’位水酸基を立体反転してアラビノ体とし、糖部の保護基を除去し、必要により5’位水酸基をリン酸化して式[I]で表される化合物を得る工程である。
【0039】
【化5】
Figure 0004076114
Figure 0004076114
(式中、Bは、ピリミジン、プリン(アザプリンまたはデアザプリンも含む)もしくはそれらの誘導体からなる群より選ばれた塩基を示し、Rは水素原子またはリン酸残基を示し、R1とR2は保護基を示し、Bnはベンジル基を示す。)
【0040】
式[III]で表される化合物とBで表される塩基類との縮合は、ルイス酸存在下、式[III]の化合物をBで表される塩基類と反応させることによって行うことができる。
Bで表される塩基類はシリル化したものを用いてもよく、このようなシリル化した塩基類は公知の方法、たとえばヘキサメチルジシラザンとトリメチルクロロシラン中で加熱還流する方法により得ることができる。
使用するルイス酸としては、トリフルオロメタンスルホン酸トリメチルシリル、四塩化すず、塩化亜鉛、ヨウ化亜鉛、無水塩化アルミニウムなどが例示される。
【0041】
縮合反応は、ジクロロメタン、1,2−ジクロロエタン、アセトニトリル、トルエン等の有機溶媒中、必要によりアルゴン、窒素などの不活性ガス雰囲気下、式[III]の化合物1モルに対しBで表される塩基類1〜10モルおよびルイス酸0.1〜10モルとを用い、−20〜150℃で30分〜3時間程度反応させることにより実施することができる。
【0042】
2’位水酸基の立体反転は、2,2’−アンヒドロシクロヌクレオシドに変換後、加水分解することによって行うことができる。アンヒドロシクロ化反応は、塩化メタンスルホニル等のスルホン化剤を用いて処理するか、三フッ化ジエチルアミノ硫黄等のフッ素化剤で処理することによって行うことができる。
【0043】
例えば、三フッ化ジエチルアミノ硫黄によりアンヒドロシクロ化する場合、ジクロロメタン、トルエン等の有機溶媒中、必要によりアルゴン、窒素等の不活性ガス雰囲気下、2’位水酸基の保護基のみ除去された上記縮合物1モルに対して三フッ化ジエチルアミノ硫黄1.1〜5モル、好ましくは1.5〜2モル用い、0℃〜室温で5分〜2時間程度反応させることにより実施することができる。また、塩化メタンスルホニルによりアンヒドロシクロ化する場合、ピリジン等の有機溶媒中、必要によりアルゴン、窒素等の不活性ガス雰囲気下、2’位水酸基の保護基のみ除去された上記縮合物1モルに対して塩化メタンスルホニル1.1〜5モル、好ましくは1.5〜2モル用い、0〜50℃で5分〜10時間程度反応させることにより実施することができる。
【0044】
続けて行う加水分解反応は、適当な塩基または酸触媒を用いて行うことができ、例えば塩基触媒を用いる場合、エタノール等のアルコール系溶媒と水との混合溶媒中、水酸化ナトリウム、水酸化カリウム等の塩基存在下、室温〜100℃で30分〜5時間程度反応させることにより実施できる。
【0045】
さらに、目的化合物のBがアミノ基を有する塩基である化合物の場合には、水酸基を有する塩基である化合物から公知の方法により変換することも可能である。たとえば、ピリミジン塩基の4位をアミノ化したい場合には、ピリミジン塩基の4位の水酸基をクロル体、シリルオキシ体、アルキルオキシ体、スルホニルオキシ体、チオ体、アルキルチオ体、トリアゾール体等に変換した後、アンモニアと反応させればよい。例えばトリアゾール体を経由して変換する場合、トリエチルアミン等の塩基およびオキシ塩化リン、4ークロロフェニルホスホロジクロリデート等のリン酸化剤の存在下、ジクロロメタン、アセトニトリル、ジメチルホルムアミド、ピリジン等の有機溶媒中(ただし、ピリジンを使用する場合には必ずしもトリエチルアミン等の塩基を共存させなくてもよい)、必要によりアルゴン、窒素等の不活性ガス雰囲気下、上記縮合物1モルに対して1,2,4−トリアゾール1〜20モル、好ましくは2〜10モルを用い、0℃〜室温で12〜72時間程度撹拌反応させた後、反応混合物にアンモニア水を適量加え、0℃〜室温で1〜12時間程度撹拌反応させることによって実施できる。
【0046】
さらに、塩基中のアミノ基を脱アミノしたい場合には、アデノシンデアミナーゼ、シチジンデアミナーゼなどの各種デアミナーゼを用いて常法により脱アミノすることも可能である。
【0047】
このようにして得られた化合物の保護基を除去し、Rが水素である本発明化合物を得る。
保護基の除去は、使用した保護基に応じ、酸性加水分解、アルカリ性加水分解、フッ化テトラブチルアンモニウム処理、接触還元などの通常の処理方法から適宜選択して行えばよい。
【0048】
また、Rがモノリン酸残基、ジリン酸残基などのリン酸残基である化合物を得る場合には、Rが水素原子である化合物をオキシ塩化リン、テトラクロロピロリン酸などのヌクレオシドの5’位の選択的なリン酸化に使用されるリン酸化剤と反応させることにより、遊離酸型または塩型の目的化合物を得ることができる。
【0049】
本発明化合物は、一般のヌクレオシド、ヌクレオチドの単離精製に使用されている方法(例えば、再結晶法、イオン交換カラムクロマトグラフィー、吸着カラムクロマトグラフィーなど)を適宜組み合せて分離精製することができる。このようにして得られた化合物は、必要に応じて塩型とすることもできる。
【0050】
(3)用途
本発明化合物は、後述の試験例に示すようにヘルペスウイルスまたはレトロウイルスに対して優れた抗ウイルス作用を有することから、これらを有効成分とする本発明組成物は医薬として使用、具体的にはヘルペスウイルスまたはレトロウイルスの感染症の処置、特にHIV感染に起因するエイズの治療に有用である。
対象のウイルスとしては、たとえばヘルペスウイルス科に属する単純ヘルペスウイルス1型(HSV−1)、単純ヘルペスウイルス2型(HSV−2)および水痘帯状疱疹ウイルス(VZV)、レトロウイルス科に属するヒト免疫不全ウイルス(HIV)などを挙げることができる。
【0051】
本発明化合物の投与量は、患者の年齢、体重、疾病、患者の重篤度、薬物による忍容性、投与方法などにより異なり、これらの条件を総合した上で適宜決定されるものであるが、通常1日当たり0.00001〜1000mg/kg体重、好ましくは0.0001〜100mg/kg体重の範囲内から選ばれ、一回または複数回に分けて投与される。
投与方法は、経口、非経口、経腸、局所投与などのいずれの経路によっても投与することができる。
【0052】
本発明化合物の製剤化に際しては、通常使用される製剤用担体、賦形剤、その他の添加剤を含む組成物として使用するのが普通である。担体としては、乳糖、カオリン、ショ糖、結晶セルロース、コーンスターチ、タルク、寒天、ペクチン、ステアリン酸、ステアリン酸マグネシウム、レシチン、塩化ナトリウムなどの個体状担体、グリセリン、落花生油、ポリビニルピロリドン、オリーブ油、エタノール、ベンジルアルコール、プロピレングリコール、水などの液状担体を例示することができる。
【0053】
剤型としては任意の形態を採ることができ、たとえば個体状担体を使用する場合には錠剤、散剤、顆粒剤、カプセル化剤、座剤、トローチ剤などを、液状担体を使用する場合にはシロップ、乳液、軟ゼラチンカプセル、クリーム、ゲル、ペースト、スプレー、注射などをそれぞれ例示することができる。
【0054】
【発明の効果】
本発明化合物は、後述試験例にも示すように、優れた抗HIV作用、特にAZT、DDI、DDC、D4T、3TCなどの抗HIV剤の複数の薬剤に耐性を有する多剤耐性HIV株にも有効で、細胞毒性も問題となるほど強くないことから、医薬品、特にエイズ治療薬としての開発が期待されるものである。
【0055】
【実施例】
以下、本発明を合成例、試験例、製剤例などをあげて具体的に説明するが、本発明はこれらによって何等限定されるものではない。
参考合成例1
(1)4−C−formyl−3,5−di−O−benzyl−1,2−O−isopropylidene−α−D−ribo−pentofuranose(化合物2)の合成
【化2】
Figure 0004076114
塩化オキサリル(3.38ml、38.7mmol)をジクロロメタン(80.0ml)に溶解し、アルゴン雰囲気下、−78℃でジメチルスルホキシド(5.50ml、77.5mmol)を滴下、同温度で15分間撹拌した。−78℃で4−C−hydroxymethyl−3,5−di−O−benzyl−1,2−O−isopropylidene−α−D−ribo−pentofuranose 1(10.3g、25.7mmol)のジクロロメタン溶液(100ml)を滴下し、30分間撹拌した。トリエチルアミン(10.9ml、77.6mmol)を加えた後、反応液を室温に戻し、30分間撹拌した。水を加え撹拌した後、有機層を無水硫酸マグネシウム上で乾燥した。有機層を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル1500ml、n−ヘキサン:酢酸エチル=2:1にて溶出)により精製し、無色透明アメ状の化合物2(9.68g、24.3mmol、94.1%)を得た。
【0056】
1H−NMR(CDCl3)δ 9.92(1H,s,formyl),7.33−7.24(10H,m,aromatic),5.84(1H,d,H−1 J1,2=3.30),4.71,4.59(each 1H,d,benzyl,Jgem=12.00),4.60(1H,br.t,H−2),4.52,4.46(each 1H,d,benzyl,Jgem=12.00),4.37(1H,d,H−3,J2,3=4.50),3.68,3.61(each1H,d,H−5,Jgem=10.95),1.60,1.35(each 3H,s,acetonide)
EIMS m/z:398(M+).
HRMS m/z(M+):Calcd. for C23266:398.1729,Found:398.1732
[α]D+24.5°(c=1.03,CHCl3
【0057】
(2)4−C−(2,2−dibromoethenyl)−3,5−di−O−benzyl−1,2−O−isopropylidene−α−D−ribo−pentofuranose(化合物3)の合成
【化7】
Figure 0004076114
化合物2(9.50g、23.8mmol)をジクロロメタン(200ml)に溶解し、氷冷下、四臭化炭素(15.8g、47.6mmol)、トリフェニルホスフィン(25.0g、95.3mmol)を加え、室温で1時間撹拌した。トリエチルアミン(20.0ml、142mmol)を加え、10分間撹拌した後、反応溶液をn−ヘキサン(1000ml)に注ぎ、生成した沈殿を濾別した。濾液を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル1500ml、n−ヘキサン:酢酸エチル=3:1にて溶出)により精製し、無色透明アメ状の化合物3(12.6g、22.7mmol、95.4%)を得た。
【0058】
1H−NMR(CDCl3)δ 7.34−7.24(10H,m,aromatic),7.16(1H,s,Br2C=CH−),5.76(1H,d,H−1 J1,2=3.90),4.72,4.60(each 1H,d,benzyl,Jgem=12.00),4.53(1H,br.t,H−2),4.60,4.42(each 1H,d,benzyl,Jgem=12.00),4.21(1H,d,H−3,J2,3=4.80),3.83,3.39(each 1H,d,H−5,Jgem=11.40),1.59,1.30(each 3H,s,acetonide)
EIMS m/z:473,475(M−Br).
[α]D +6.20°(c=1.00,CHCl3
【0059】
(3)4−C−ethynyl−3,5−di−O−benzyl−1,2−O−isopropylidene−α−D−ribo−pentofuranose(化合物4)の合成
【化8】
Figure 0004076114
化合物 3(12.4g、22.4mmol)を乾燥テトラヒドロフラン(160ml)に溶解し、アルゴン雰囲気下、−78℃で1.6M n−ブチルリチウムn−ヘキサン溶液(30.7ml、49.1mmol)を加え、同温度で30分間撹拌した。水を加え撹拌した後、有機層を無水硫酸マグネシウム上で乾燥した。有機層を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル1500ml、n−ヘキサン:酢酸エチル=3:1にて溶出)により精製し、無色透明アメ状の化合物4(7.95g、20.2mmol、90.3%)を得た。
【0060】
1H−NMR(CDCl3)δ7.39−7.22(10H,m,aromatic),5.70(1H,d,H−1 J1,2=3.60),4.78,4.69(each 1H,d,benzyl,Jgem=12.60),4.55(1H,br.t,H−2),4.53,4.44(each 1H,d,benzyl,Jgem=12.30),4.16(1H,d,H−3,J2,3=4.50),3.71,3.56(each 1H,d,H−5,Jgem=11.40),1.73,1.33(each 3H,s,acetonide)
EIMS m/z:394(M+).
HRMS m/z(M+): Calcd. for C24265:394.1780, Found:394.1777
[α]D +22.6°(c=1.00,CHCl3
【0061】
(4)4−C−triethylsilylethynyl−3,5−di−O−benzyl−1,2−O−isopropylidene−α−D−ribo−pentofuranose(化合物5)の合成
【化9】
Figure 0004076114
化合物4(5.00g、12.7mmol)を乾燥テトラヒドロフラン(100ml)に溶解し、アルゴン雰囲気下、−78℃で1.6M n−ブチルリチウムn−ヘキサン溶液(9.50ml、15.2mmol)を加え、同温度で5分間撹拌した。同条件下、クロロトリエチルシラン(2.55ml、15.2mmol)を加え、30分間撹拌した。水を加え撹拌した後、有機層を無水硫酸マグネシウム上で乾燥した。有機層を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル1000ml、n−ヘキサン:酢酸エチル=3:1)により精製し、無色透明油状の化合物 5(6.32g、12.4mmol、97.6%)を得た。
【0062】
1H−NMR(CDCl3)δ 7.41−7.22(10H,m,aromatic),5.71(1H,d,H−1,J1,2=3.85),4.77,4.65(each 1H,d,benzyl,Jgem=12.09),4.63(1H,br.t,H−2),4.57,4.48(each 1H,d,benzyl,Jgem=12.09),4.23(1H,d,H−3,J2,3=4.67),1.73,1.33(each 3H,s,acetonide),0.98(9H,t,Si−CH2−CH3,J=7.83),0.60(6H,Si−CH2−CH3,J=7.97)
EIMS m/z:508(M+).
HRMS m/z(M+):Calcd. for C30405Si:508,2645, Found:508,2642
[α]D −27.27°(c=1.045,CHCl3
【0063】
(5)4−C−triethylsilylethynyl−1,2−di−O−acetyl−3,5−di−O−benzyl−D−ribo−pentofuranose(化合物6)の合成
【化10】
Figure 0004076114
化合物 5(5.55g、10.9mmol)を酢酸(70.0ml)に溶解し、トリフルオロ酢酸(10.0ml)、水(30.0ml)を加え、室温で終夜撹拌した。シリカゲル薄層クロマトグラフィー上で化合物5の消失を確認し、反応溶液を減圧下留去した。残渣をトルエンで3回共沸したのち、ピリジン(50.0ml)に溶解し、無水酢酸(10.3ml、0.11mol)を加え、室温で終夜撹拌した。反応溶液を減圧下留去し、残渣を酢酸エチルに溶解、有機層を水洗し、無水硫酸マグネシウム上で乾燥した。有機層を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル1000ml、n−ヘキサン:酢酸エチル=5:1にて溶出)により精製し、無色透明アメ状の化合物 6(4.80g、8.68mmol、79.6%)をアノマー混合物(α:β =1 : 6.6)として得た。
【0064】
1H−NMR for α anomer(CDCl3)δ 7.38−7.28(10H,m,aromatic),6.39(1H,d,H−1,J1,2=4.67),5.13(1H,dd,H−2,J1,2=4.67,J2,3=6.87),4.80,4.55(each 1H,benzyl,d,Jgem=12.09),4.61,4.52(each 1H,d,benzyl,Jgem=12.09),4.30(1H,d,H−3,J2,3=6.87),3.62(2H,d,H−5,J=0.55),2.12,2.07(each 3H,s.acetyl),0.94(9H,t,Si−CH2−CH3,J=7.97),0.55(6H,Si−CH2−CH3,J=7.97)
[α]D −21.8°(c=1.00,CHCl3
【0065】
1H−NMR for β anomer(CDCl3)δ 7.35−7.24(10H,m,aromatic),6.20(1H,d,H−1,J1,2=0.82),5.33(1H,dd,H−2,J1,2=0.82,J2,3=4.67),4.66,4.61(each 1H,benzyl,d,Jgem=11.81),4.56,4.47(each 1H,benzyl,d,Jgem=11.81),4.48(1H,d,H−3,J2,3=4.67),3.69,3.62(each 1H,d,H−5,Jgem=10.99),2.09,1.84(each 3H,s.acetyl),0.96(9H,t,Si−CH2−CH3,J=7.97),0.58(6H,Si−CH2−CH3,J=7.97)
[α]D −58.0°(c=1.00,CHCl3
EIMS m/z:552(M+).
HRMS m/z(M+):Calcd. for C31407Si:552.2543, Found:552.2551
【0066】
(6)4'−C−triethylsilylethynyl−2'−O−acetyl−3',5'−di−O−benzyluridine(化合物7)の合成
【化11】
Figure 0004076114
化合物 6(3.00g、5.43mmol)を1,2−ジクロロエタン(100ml)に溶解し、ウラシル(1.52g、13.6mmol)、N,O−ビス(トリメチルシリル)アセトアミド(9.40ml、38.0mmol)を加え、1時間加熱環流した。反応液を室温に戻した後、トリフルオロメタンスルホン酸トリメチルシリル(1.97ml、10.9mmol)を加え、50℃で終夜撹拌した。飽和炭酸水素ナトリウム水溶液を加え撹拌した後、不溶の沈殿を濾別し、有機層を無水硫酸マグネシウム上で乾燥した。有機層を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル300ml、n−ヘキサン:酢酸エチル=1:1にて溶出)により精製し、無色透明アメ状の化合物7(2.50g、4.13mmol、76.1%)を得た。
【0067】
1H−NMR(CDCl3)δ 8.63(1H,br.s,3−NH),7.59(1H,d,6−H,J5,6=8.24),7.41−7.24(10H,m,aromatic),6.31(1H,d,H−1',J1',2'=4.95),5.34(1H,d,H−5,J5,6=8.24),5.21(1H,dd,H−2',J1',2'=4.95,J2',3'=6.04),4.71,4.58(each 1H,d,benzyl,Jgem=11.81),4.48(2H,s,benzyl),4.34(1H,d,H−3',J2',3'=6.04),3.86,3.67(each 1H,d,H−5',Jgem=10.50),2.05(3H,s,acetyl),0.97(9H,t,Si−CH2−CH3,J=7.95),0.60(6H,Si−CH2−CH3,J=7.95).
FABMS m/z:605(MH+).
HRMS m/z(MH+):Calcd.forC334127Si:605.2683, Found:605.2683.
[α]D −21.97°(c=1.015,CHCl3).
【0068】
(7)4'−C−triethylsilylethynyl−3',5'−di−O−benzyluridine(化合物8)の合成
【化12】
Figure 0004076114
化合物 7(2.00g、3.3mmol)をメタノール(90.0ml)に溶解し、トリエチルアミン(10.0ml)を加え、室温で48時間撹拌した。反応溶液を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル200ml、n−ヘキサン:酢酸エチル=1:1にて溶出)により精製し、白色粉末状の化合物8(1.72g、3.06mmol、92.4%)を得た。
【0069】
1H−NMR(CDCl3)δ 8.43(1H,br.s,3−NH),7.55(1H,d,H−6,J5,6=8.24),7.41−7.25(10H,m,aromatic),6.10(1H,d,H−1',J1',2'=5.22),5.37(1H,dd,H−5,J5,6=8.24),4.96,4.66(each 1H,d,benzyl,Jgem=11.54),4.56,4.50(each 1H,d,benzyl,Jgem=11.00),4.21(1H,m,H−2'),4.17(1H,d,H−3',J2',3'=5.77),3.87,3.74(each 1H,d,H−5',Jgem=10.44),3.02(1H,br.d,2'−OH),0.97(9H,t,Si−CH2−CH3,J=7.69),0.60(6H,Si−CH2−CH3,J=7.69).
FABMS m/z:563(MH+).
HRMS m/z(MH+):Calcd.forC313926Si:563.2577, Found:563.2586.
[α]D −21.56°(c=1.025,CHCl3
m.p. 119−120℃
【0070】
(8)4'−C−triethylsilylethynyluridine(化合物9)の合成
【化13】
Figure 0004076114
化合物 8(1.50g、2.67mmol)をジクロロメタン(75.0ml)に溶解し、アルゴン雰囲気下、−78℃で1.0M 三塩化ホウ素ジクロロメタン溶液(26.7ml、26.7mmol)を加え、同温度で3時間撹拌した。−78℃でピリジン(10.0ml)、メタノール(20.0ml)混合溶液を加え、10分間撹拌した後、反応溶液を減圧下留去した。残渣を酢酸エチルと水で分配し、有機層を無水硫酸マグネシウム上で乾燥した。反応溶液を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル200ml、クロロホルム:メタノール=9:1にて溶出)により精製し、白色粉末状の化合物9(0.95g、2.48mmol、92.9%)を得た。
【0071】
1H−NMR(CDCl3)δ 11.36(1H,d,3−NH),7.81(1H,d,H−6,J5,6=8.24),5.92(1H,d,H−1',J1',2'=6.32),5.68(1H,dd,J5,6=8.24),5.55(1H,t,5'−OH),5.33(1H,d,2'−OH),5.16(1H,d,3'−OH),4.13(1H,dd,H−2',J1',2'=6.32,J2',3'=5.77),4.07(1H,t,H−3',J2',3'=5.77),3.58(1H,d,H−5'),0.96(9H,t,Si−CH2−CH3,J=7.97),0.57(6H,Si−CH2−CH3,J=7.97).
FABMS m/z:383(MH+).
HRMS m/z(MH+):Calcd.forC172726Si:383,1638, Found:383.1645.
[α]D −4.50°(c=1.00,CH3OH)
m.p. 183−186℃
【0072】
(9)4'−C−triethylsilylethynyl−3',5'−di−O−acetyl−2'−deoxyuridine(化合物11)の合成
【化14】
Figure 0004076114
Figure 0004076114
化合物 9(0.80g、2.09mmol)をアセトニトリル(20.0ml)に懸濁し、85℃で、臭化アセチル(1.55ml、21.0mmol)アセトニトリル溶液(20.0ml)を30分間かけて滴下し、さらに1時間加熱環流した。反応溶液を減圧下留去した後、残渣を酢酸エチルに溶解し、飽和炭酸水素ナトリウム水溶液、飽和塩化ナトリウム水溶液で洗浄した。有機層を無水硫酸マグネシウム上で乾燥した後、減圧下留去し、4'−C−triethylsilylethynyl−3',5'−di−O−acetyl−2'−bromo−2'−deoxyuridine 10を得た。粗精製の化合物10を乾燥トルエンで3回共沸した後、乾燥トルエン(50.0ml)に溶解し、85℃で水素化トリn−ブチルスズ(1.08ml、4.19mmol)、2,2'−アゾビス(イソブチロニトリル)(0.01g)を加え、アルゴン雰囲気下、1時間加熱撹拌した。反応溶液を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル300ml、トルエン:酢酸エチルにて溶出)により精製し、無色透明アメ状の化合物11(0.40g、42.6%)を得た。
【0073】
1H−NMR(CDCl3)δ 7.49(1H,d,H−6,J5,6=8.24),6.34(1H,t,H−1',J1',2'=6.46),5.77(1H,dd,H−5,J5,6=8.24),5.37(1H,dd,H−3',J2',3'=4.95,7.42),4.42,4.37(each 1H,d,H−5',Jgem=11.81),2.62,2.32(each 1H,m,H−2'),2.13(6H,s,acetyl),1.00(9H,t,Si−CH2−CH3,J=7.82),0.63(6H,Si−CH2−CH3,J=7.82).
FABMS m/z:451(MH+).
HRMS m/z(MH+):Calcd.forC213127Si:451.1900, Found:451.1934.
[α]D −11.7°(c=1.04,CHCl3
【0074】
(10)4'−C−ethynyl−2'−deoxycytidine(化合物13)の合成
【化15】
Figure 0004076114
Figure 0004076114
化合物 11(0.30g、0.67mmol)をピリジン(15.0ml)に溶解し、氷冷下、p−クロロフェニルホスホロジクロリダート(0.33ml、2.00mmol)を加え、2分間撹拌後、1,2,4−トリアゾール(0.46g、6.66mmol)を加え、室温で7日間撹拌した。シリカゲル薄層クロマトグラフィー上で原料の消失を確認後、反応溶液を減圧下留去し、残渣を酢酸エチルと水で分配、有機層を無水硫酸マグネシウム上で乾燥した。有機層を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル50ml、n−ヘキサン:酢酸エチル=1:3にて溶出)により精製し、無色透明アメ状の4−(1,2,4−triazolo)−4'−C−ethynyl−2'−deoxyuridine 12を得た。化合物12をジオキサン(30.0ml)に溶解し、25%アンモニア水(10.0ml)を加え、室温で終夜撹拌した。シリカゲル薄層クロマトグラフィー上で12が消失したのを確認した後、反応溶液を減圧下留去した。残渣をメタノール(45.0ml)に溶解し、1N水酸化ナトリウム水溶液(5.00ml、5.00mmol)を加え、室温で2時間撹拌した。酢酸(0.29ml、5.00mmol)を加え、反応溶液を減圧下留去した後、残渣を逆相中圧カラムクロマトグラフィー(Wakosil 40C18 50g、5%アセトニトリル水溶液にて溶出)により精製した。化合物13を含む分画を減圧下乾固し、残渣をメタノール−エーテルから結晶化し、白色結晶状の化合物13(0.12g、0.48mmol、71.6%)を得た。
【0075】
1H−NMR(DMSO−d6)δ 7.78(1H,d,H−6,J5,6=7.50),7.17(2H,br.d,NH2),6.14(1H,dd,H−1',J1',2'=4.76,7.20),5.72(1H,d,H−5,J5,6=7.50),5.49(1H,d,3'−OH),5.42(1H,t,5'−OH),4.30(1H,t,H−3',J2',3'=7.20),3.64,3.58(each 1H,m,H−5'),3.48(1H,s,ethynyl),2,25,2.07(each 1H,m,H−2')
[α]D +75.0°(c=1.00,CH3OH)
FABMS m/z:252(MH+).
HRMS m/z(MH+):Calcd.forC111434:252.0984, Found:252.0979.
UV λmax(CH3OH)nm(ε):271(9227)
m.p. 220℃ (Dec)
【0076】
参考合成例2
参考合成例1の(6)のウラシルの代わりに5−フルオロウラシル、5−エチルウラシル、5−ブロモビニルウラシル、5−エチニルウラシルを用いて以下同様に反応させ〔ただし、必要により(10)のトリアゾールを用いたアミノ化反応は省略〕、以下の化合物を合成する。
4’−C−エチニル−2’−デオキシ−5−フルオロウリジン
4’−C−エチニル−2’−デオキシ−5−エチルウリジン
4’−C−エチニル−2’−デオキシ−5−ブロモビニルウリジン
4’−C−エチニル−2’−デオキシ−5−エチニルウリジン
4’−C−エチニル−2’−デオキシ−5−エチルシチジン
4’−C−エチニル−2’−デオキシ−5−ブロモビニルシチジン
4’−C−エチニル−2’−デオキシ−5−エチニルシチジン
【0077】
参考合成例3
(1)4−C−ethynyl−1,2−di−O−acetyl−3,5−di−O−benzyl−D−ribo−pentofuranose(化合物14)の合成
【化3】
Figure 0004076114
化合物4(6.00g、15.2mmol)を酢酸(70.0ml)に溶解し、トリフルオロ酢酸(10.0ml)、水(30.0ml)を加え、室温で終夜撹拌した。シリカゲル薄層クロマトグラフィー上で化合物4の消失を確認し、反応溶液を減圧下留去した。残渣をトルエンで3回共沸したのち、ピリジン(50.0ml)に溶解し、無水酢酸(14.3ml、0.15mol)を加え、室温で終夜撹拌した。反応溶液を減圧下留去し、残渣を酢酸エチルに溶解、有機層を水洗し、無水硫酸マグネシウム上で乾燥した。有機層を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル1000ml、n−ヘキサン:酢酸エチル=2:1にて溶出)により精製し、無色透明アメ状の化合物14(5.40g、12.3mmol、80.9%)をアノマー混合物(α:β=1:3.0)として得た。
【0078】
1H−NMR for α anomer(CDCl3)δ 7.39−7.25(10H,m,aromatic),6.42(1H,d,H−1,J1,2=4.67),5.13(1H,dd,H−2,J1,2=4.67,J2,3=6.87),4.81,4.60(each1H,benzyl,d,Jgem=12.09),4.59,4.51(each1H,d,benzyl,Jgem=12.09),4.30(1H,d,H−3,J2,3=6.87),3.63(2H,d,H−5,J=0.55),2.73(1H,s,ethynyl),2.10,2.02(each3H,s.acetyl).
【0079】
1H−NMR for β anomer(CDCl3)δ 7.35−7.20(10H,m,aromatic),6.21(1H,d,H−1,J1,2=0.82),5.40(1H,dd,H−2,J1,2=0.82,J2,3=4.67),4.66,4.60(each1H,benzyl,d,Jgem=11.81),4.50,4.47(each1H,benzyl,d,Jgem=11.81),4.42(1H,d,H−3,J2,3=4.67),3.70,3.66(each1H,d,H−5,Jgem=10.99),2.80(1H,s,ethynyl),2.08,1.81(each3H,s.acetyl).
EIMS m/z:438(M+).
HRMS m/z(M+):Calcd. for C25267:438.1679,Found:438.1681
【0080】
(2)4'−C−ethynyl−2'−O−acetyl−3',5'−di−O−benzyluridine(化合物15)の合成
【化17】
Figure 0004076114
化合物14(2.50g、5.70mmol)を1,2−ジクロロエタン(80.0ml)に溶解し、ウラシル(1.60g、14.27mmol)、N,O−ビス(トリメチルシリル)アセトアミド(9.86ml、39.74mmol)を加え、1時間加熱環流した。反応液を室温に戻した後、トリフルオロメタンスルホン酸トリメチルシリル(2.06ml、11.40mmol)を加え、50℃で終夜撹拌した。飽和炭酸水素ナトリウム水溶液を加え撹拌した後、不溶の沈殿を濾別し、有機層を無水硫酸マグネシウム上で乾燥した。有機層を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル300ml、n−ヘキサン:酢酸エチル=2:3にて溶出)により精製し、無色透明アメ状の化合物15(2.44g、4.97mmol、87.2%)を得た。
【0081】
1H−NMR(CDCl3)δ 8.52(1H,br.s,3−NH),7.55(1H,d,6−H,J5,6=8.24),7.40−7.22(10H,m,aromatic),6.25(1H,d,H−1',J1',2'=4.40),5.33(1H,d,H−5,J5,6=8.24),5.22(1H,dd,H−2',J1',2'=4.40,J2',3'=5,77),4.63(2H,s,benzyl),4.45,4.40(each1H,d,benzyl,Jge m=10.99),4.34(1H,d,H−3',J2',3'=5.77),3.84,3.62(each1H,d,H−5',Jgem=10.58),2.69(1H,s,ethynyl),2.11(3H,s,acetyl).
FABMS m/z:491(MH+).
HRMS m/z(MH+):Calcd.for C272727: 491.1818, Found:491.1821.
[α]D 29.0°(c=1.00,CHCl3).
【0082】
(3)1−(4−C−ethynyl−2−O−acetyl−3,5−di−O−benzyl−β−D−arabino−pentofuranosyl)uracil(化合物16)の合成
【化18】
Figure 0004076114
化合物15(2.30g、4.69mmol)をメタノール(90.0ml)に溶解し、1N水酸化ナトリウム水溶液(10.0ml)を加え、室温で2時間撹拌した。反応液を酢酸で中和した後、減圧下乾固し、残渣を酢酸エチルに溶解した。有機層を水洗後、無水硫酸マグネシウム上で乾燥し、有機層を減圧下乾固した。残渣をピリジン少量で3回共沸し、残渣をピリジン(50.0ml)に溶解し、氷冷下、塩化メタンスルホニル(0.73ml、9.41mmol)を加え、3時間撹拌した。反応溶液へ水少量を加え減圧下乾固した後、残渣を酢酸エチルに溶解し、水洗した。有機層を無水硫酸マグネシウム上で乾燥した後、減圧下乾固した。残渣をテトラヒドロフラン(30.0ml)に溶解し、1N水酸化ナトリウム水溶液(50.0ml)を加え、1時間加熱環流した。反応溶液を酢酸で中和した後、目的物を酢酸エチルにより抽出し、有機層を合わせ無水硫酸マグネシウム上で乾燥した。有機層を減圧下乾固した後、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル250ml、n−ヘキサン:酢酸エチル=1:2にて溶出)により精製し、白色粉末状の化合物16(1.54g、3.43mmol、73.1%)を得た。
【0083】
1H−NMR(CDCl3)δ 9.82(1H,br.s,3−NH),7.73(1H,d,6−H,J5,6=8.06),7.41−7.19(10H,m,aromatic),6.24(1H,d,H−1',J1',2'=5,86),5.25(1H,d,H−5,J5,6=8.06),4.88,4.76(each1H,d,benzyl,Jgem=12.21),4.78(1H,H−2'),4.52(1H,2'−OH),4.46,4.39(each1H,d,benzyl,Jgem=11.11),4.19(1H,d,H−3',J2',3'=6.59),3.834,3.64(each1H,d,H−5',Jgem=10.62),2.67(1H,s,ethynyl).
FABMS m/z:449(MH+).
HRMS m/z(MH+):Calcd.for C252526: 449.1712, Found:449.1713.
[α]D 40.7°(c=1.00,CHCl3).
m.p. 105−106℃
【0084】
(4)1−(4−C−ethynyl−2,3,5−tri−O−acetyl−β−D−arabino−pentofuranosyl)uracil(化合物17)の合成
【化19】
Figure 0004076114
化合物16(1.40g、3.12mmol)をジクロロメタン(40.0ml)に溶解し、アルゴン雰囲気下、−78℃で1.0M三臭化ホウ素ジクロロメタン溶液(15.6ml、15.6mmol)を加え、同温度で3時間撹拌した。−78℃でピリジン(5.00ml)、メタノール(10.0ml)混合溶液を加え、10分間撹拌した後、反応溶液を減圧下留去した。残渣をメタノール少量で3回、ピリジン少量で3回共沸した後、残渣をピリジン(50.0ml)に溶解し、無水酢酸(4.42ml、46.7mmol)を加え、室温で終夜撹拌した。反応溶液を減圧下乾固し、残渣をトルエン少量で3回共沸した後、残渣を酢酸エチルと水で分配し、有機層を無水硫酸マグネシウム上で乾燥した。反応溶液を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル150ml、クロロホルム:メタノール=20:1にて溶出)により精製し、白色粉末状の化合物17(1.15g、2.92mmol、93.6%)を得た。
【0085】
1H−NMR(CDCl3)δ 8.99(1H,br.s,3−NH),7.42(1H,d,6−H,J5,6=8.24),6.45(1H,d,H−1',J1',2'=4.95),5.76(1H,dd,H−5,J5,6=8.24),5.55(1H,dd,H−2',J1',2'=4.95,J2',3'=3.57),5.34(1H,d,H−3',J2',3'=3.57),4.51,4.42(each1H,d,H−5',Jgem=11.81),2.73(1H,s,ethynyl).
FABMS m/z:395(MH+).
HRMS m/z(MH+):Calcd.for C171929:395.1090, Found:395.1092.
[α]D 18.2°(c=1.00,CHCl3).
m.p. 160−162℃
【0086】
(5)1−(4−C−ethynyl−β−D−arabino−pentofuranosyl)cytosine(化合物19)の合成
【化20】
Figure 0004076114
Figure 0004076114
化合物17(1.00g、2.54mmol)をピリジン(50.0ml)に溶解し、氷冷下、p−クロロフェニルホスホロジクロリダート(1.05ml、6.38mmol)を加え、5分間撹拌後、1,2,4−トリアゾール(1.75g、25.3mmol)を加え、室温で7日間撹拌した。シリカゲル薄層クロマトグラフィー上で原料の消失を確認後、反応溶液を減圧下留去し、残渣を酢酸エチルと水で分配、有機層を無水硫酸マグネシウム上で乾燥した。有機層を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル50ml、n−ヘキサン:酢酸エチル=1:3にて溶出)により精製し、無色透明アメ状の1−(4−C−ethynyl−2,3,5−tri−O−acetyl−β−D−arabino−pentofuranosyl)−4−(1,2,4−triazolo)uracil 18を得た。化合物18をジオキサン(60.0ml)に溶解し、25%アンモニア水(20.0ml)を加え、室温で終夜撹拌した。シリカゲル薄層クロマトグラフィー上で化合物18が消失したのを確認した後、反応溶液を減圧下留去した。残渣を逆相中圧カラムクロマトグラフィー(Wakosil 40C18 50g、3%アセトニトリル水溶液にて溶出)により精製した。化合物19を含む分画を減圧下乾固し、残渣をメタノール−エーテルから結晶化し、白色結晶状の化合物19(0.51g、1.91mmol、75.2%)を得た。
【0087】
1H−NMR(DMSO−d6)δ 7.52(1H,d,H−6,J5,6=7.42),7.10(2H,br.d,NH2),6.17(1H,dd,H−1',J1',2'=6.04),5.66(1H,d,H−5,J5,6=7.42),5.62,5.49(each1H,d,2'−OH,3'−OH),5.42(1H,t,5'−OH),4.16(1H,q,H−2',J1',2'=J2',3'=6.04),3.97(1H,t,H−3',J2',3'=6.04),3.58(2H,m,H−5'),3.48(1H,s,ethynyl).
[α]D +95.7°(c=1.00,CH3OH)
FABMS m/z:268(MH+).
HRMS m/z(MH+):Calcd.for C111435:268.0933, Found:268.0965.
UV λmax(CH3OH)nm(ε):271(9350)
m.p. 〜200℃(Dec)
【0088】
参考合成例4
参考合成例3の(2)のウラシルの代わりに5−フルオロウラシル、5−エチルウラシル、5−ブロモビニルウラシル、5−エチニルウラシルを用いて以下同様に反応させ〔ただし、必要により(5)のトリアゾールを用いたアミノ化反応は省略〕、以下の化合物を合成する。
【0089】
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−フルオロウラシル
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−エチルウラシル
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−ブロモビニルウラシル
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−エチニルウラシル
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−フルオロシトシン
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−エチルシトシン
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−ブロモビニルシトシン
1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−5−エチニルシトシン
【0090】
合成例1
(1)2'−O−acetyl−3',5'−di−O−benzyl−4'−C−triethylsilylethynyladenosine(化合物20)の合成
【化4】
Figure 0004076114
化合物6(1.1g,2mmol)の1,2−ジクロロエタン(16.5ml)溶液にアデニン(0.405g,3mmol)、N,O−ビス(トリメチルシリル)アセトアミド(2.7ml,11mmol)を加え、1.5時間加熱還流した。室温まで冷却した後、0℃、アルゴン雰囲気撹拌下、トリフルオロメタンスルホン酸トリメチルシリル(0.77ml,4mmol)を滴下した。室温で15分間撹拌した後、24時間加熱還流させ、室温まで冷却した。飽和炭酸水素ナトリウム水を0℃下で加え、室温にて15分間撹拌した。セライトろ過を行い不溶物をろ別した後、ろ液の有機層を分取し、水層をクロロホルムで1回抽出した後、有機層を飽和塩化ナトリウム水で1回洗浄し、無水硫酸ナトリウムで乾燥させた。減圧下溶媒を留去し、残留物をシリカゲルカラム(15g)に付し、酢酸エチル:n−ヘキサン:エタノール(20:20:1)で溶出し、化合物20を0.69g(55%)得た。
【0091】
1H−NMR(CDCl3)δ 8.32(1H,s,purine−H),8.01(1H,s,purine−H),7.27−7.37(10H,m,2xPh),6.37(1H,d,J=5.1Hz,H−1’),5.60(1H,t,J=5.6Hz,H−2’),5.59(2H,br s,NH2),4.75(1H,d,J=11.0Hz,CH’Ph),4.69(1H,d,J=5.6Hz,H−3’),4.60(1H,d,J=11.0Hz,CH Ph),4.58(1H,d,J=11.2Hz,CH’Ph),4.51(1H,d,J=11.0Hz,CH 'Ph),3.84(1H,d,J=11.1Hz,H−5’),3.69(1H,d,J=11.1Hz,H−5’)2.03(3H,s,Ac),0.98(9H,t,J=8.7Hz,3xC 3 CH2),0.61(6H,q,J=8.7Hz,3xCH3 2 ).
【0092】
(2)3',5'−di−O−benzyl−4'−C−triethylsilylethynyladenosine(化合物21)の合成
【化22】
Figure 0004076114
化合物20(0.354g,0.565mmol)のメタノ−ル(14ml)溶液にトリエチルアミン(3.3ml)を加え、密栓して室温下で1日間撹拌した。減圧下濃縮し、残留物をシリカゲルカラム(10g)に付し、酢酸エチル:n−ヘキサン:エタノール(20:10:1)で溶出し、化合物21を0.283g(86%)得た。
【0093】
1H−NMR(CDCl3)δ 8.30(1H,s,purine−H),8.00(1H,s,purine−H),7.30−7.42(10H,m,2xPh),6.17(1H,d,J=5.6Hz,H−1’),5.55(2H,br s,NH2),4.97(1H,d,J=11.1Hz,CH’Ph),4.75−4.80(1H,m,H−2’),4.72(1H,d,J=11.1Hz,CH 'Ph),4.59(1H,d,J=11.6Hz,CH’Ph),4.54(1H,d,J=11.6Hz,CH 'Ph),4.50(1H,d,J=5.6Hz,H−3’),3.84(1H,d,J=11.1Hz,H−5’),3.74(1H,d,J=11.1Hz,H−5’),3.50(1H,d,J=8.3Hz,OH),0.98(9H,t,J=7.9Hz,3xC 3 CH2),0.62(6H,q,J=7.9Hz,3xCH3 2 ).
【0094】
(3)3',5'−di−O−benzyl−2'−deoxy−4'−C−triethylsilylethynyladenosine(化合物22)の合成
【化23】
Figure 0004076114
化合物21(0.18g,0.308mmol)、DMAP(0.113g,0.924mmol)のアセトニトリル(10.6ml)溶液に室温、アルゴン雰囲気撹拌下、4−フルオロフェニルクロロチオノホルメート(0.065ml,0.462mmol)を滴下し、室温にて1時間撹拌した後、減圧下濃縮した。水を加えて酢酸エチルで抽出し、有機層を水で1回、飽和食塩水で1回洗浄し、無水硫酸ナトリウムで乾燥させた後、減圧下溶媒を留去し、残留物をショートシリカゲルカラムに付し、酢酸エチル:n−ヘキサン:エタノール(20:20:1)で溶出し、粗製のチオカーボネート体を得た。
このチオカ−ボネ−ト体をトルエン(9ml)に溶解し、水素化トリブチルスズ(0.41ml,1.85mmol)と2,2'−アゾビス(イソブチロニトリル)(0.013g,0.077mmol)を加え、反応混合物を85℃、アルゴン雰囲気下、1時間撹拌し、室温まで冷却した。減圧下溶媒を留去し、残留物をシリカゲルカラム(20g)に付し、酢酸エチル:n−ヘキサン:エタノール(20:10:1)で溶出し、化合物22を0.10g(57%)得た。
【0095】
1H−NMR(CDCl3)δ 8.32(1H,s,purine−H),8.11(1H,s,purine−H),7.26−7.37(10H,m,2xPh),6.51(1H,t,J=6.0Hz,H−1’),5.54(2H,br s,NH2),4.72(1H,d,J=12.0Hz,CH’Ph),4.61(2H,d,J=10.5Hz,CH2Ph),4.60(1H,t,J=6.6Hz,H−3’),4.55(1H,d,J=12.0Hz,CH 'Ph),3.88(1H,d,J=10.7Hz,H−5’),3.76(1H,d,J=10.7Hz,H−5’),2.71−2.76(2H,m,H−2’),0.99(9H,t,J=7.8Hz,3xC 3 CH2),0.62(6H,q,J=7.5Hz,3xCH3 2 ).
【0096】
(4)2'−deoxy−4'−C−ethynyladenosine(化合物23),および9−(2−deoxy−4−C−ethynyl−β−D−ribofuranosyl)purine(化合物24)の合成
【化24】
Figure 0004076114
化合物22(0.23g,0.404mmol)のテトラヒドロフラン(9.4ml)溶液に室温撹拌下1.0Mテトラブチルアンモニウムフロリド(0.44ml,0.44mmol)を加え、同温度にて30分間撹拌した後、減圧下溶媒を留去した。残留物をショートシリカゲルカラムに付し、酢酸エチルで溶出し、粗精製の脱トリエチルシリル体を0.186g得た。
フラスコに上記脱トリエチルシリル体のテトラヒドロフラン(1.8ml)溶液と無水エタノール(0.18ml)を加え、−78℃下でアンモニアガスを用いて約18ml凝縮させ、アルゴン雰囲気下、金属ナトリウム(0.047g,2.02mmol)を速やかに加え、同温度で15分間撹拌した。また、金属ナトリウム(0.023g)を加え、さらに10分間撹拌した後、塩化アンモニウムを加え、室温下で1.5時間撹拌した後、残留物にエタノ−ルを加え、不溶物をセライトでろ別した。不溶物をエタノールで2回洗浄した後、ろ液と洗液を減圧下濃縮し、残留物をシリカゲルカラム(10g)に付し、酢酸エチル:メタノール(20:1)で溶出し、化合物23と24の混合物0.079gを得た。続いて、混合物を逆相ODSシリカゲルカラムに付し、5%エタノール水溶液で溶出して化合物24を0.028g(27%)得、さらに、7.5%エタノール水溶液で溶出して化合物23を0.021g(19%)得た。
【0097】
(化合物23)
1H−NMR(DMSO−d6) δ 8.33(1H,s,purine−H),8.15(1H,s,purine−H),7.30(2H,br s,NH2),6.36(1H,t,J=6.4Hz,H−1’),5.54(1H,d,J=5.4Hz,OH),5.53(1H,t,J=5.4Hz,OH),4.58(1H,q,J=5.9Hz,H−3’),3.66(1H,dd,J=12.2,5.4Hz,H−5’),3.56(1H,dd,J=11.7,7.3Hz,H−5’),3.50(1H,s,ethynyl−H),2.76(1H,dt,J=13.2,6.4Hz,H−2’),2.41(1H,dt,J=13.2,6.8Hz,H−2’).
【0098】
(化合物24)
1H−NMR(DMSO−d6)δ 9.18(1H,s,purine−H),8.96(1H,s,purine−H),8.79(1H,s,purine−H),6.50(1H,t,J=7.3,4.9Hz,H−1’),5.60(1H,d,J=5.9Hz,OH),5.29(1H,t,J=5.4Hz,OH),4.67(1H,q,J=5.9Hz,H−3’),3.67(1H,dd,J=11.7,5.9Hz,H−5’),3.58(1H,dd,J=11.7,6.8Hz,H−5’),3.53(1H,s,ethynyl−H),2.85(1H,ddd,J=13.2,6.8,4.9Hz,H−2’),2.48−2.56(1H,m,H−2’).
【0099】
合成例2
(1)9−(2−O−acetyl−3,5−di−O−benzyl−4−C−triethylsilylethynyl−β−D−ribofuranosyl)−2,6−diaminopurine(化合物25)の合成
【化5】
Figure 0004076114
化合物6(1.1g,2mmol)の1,2−ジクロロエタン(16.5ml)溶液にジアミノプリン(0.45g,3mmol)、N,O−ビス(トリメチルシリル)アセトアミド(4.4ml,18mmol)を加え、3時間加熱還流し、室温まで冷却後、0℃、アルゴン雰囲気撹拌下、トリフルオロメタンスルホン酸トリメチルシリル(0.77ml,4mmol)を滴下した。室温で15分間撹拌した後、24時間加熱還流させ、室温まで冷却した。飽和炭酸水素ナトリウム水を0℃下で加え、室温にて15分間撹拌し、セライトろ過を行い不溶物をろ別した後、ろ液の有機層を分取した。水層をクロロホルムで1回抽出した後、有機層を飽和塩化ナトリウム水で1回洗浄し、無水硫酸ナトリウムで乾燥させ、減圧下溶媒を留去し、残留物をシリカゲルカラム(20g)に付し、酢酸エチル:n−ヘキサン:エタノール(20:10:1)で溶出し、化合物25を0.85g(66%)得た。
【0100】
1H−NMR (CDCl3)δ 7.68(1H,s,H−8),7.26−7.37(10H,m,2xPh),6.17(1H,d,J=6.5Hz,H−1’),5.78(1H,dd,J=6.5,6.0Hz,H−2’),5.34(2H,br s,NH2),4.76(1H,d,J=11.4Hz,CH’Ph),4.69(1H,d,J=6.0Hz,H−3’),4.61(1H,d,J=11.4Hz,CHH’Ph),4.60(1H,d,J=11.9Hz,CH’Ph),4.55(2H,br s,NH2),4.52(1H,d,J=11.9Hz,CH 'Ph),3.83(1H,d,J=10.7Hz,H−5’),3.70(1H,d,J=10.7Hz,H−5’),2.04(3H,s,Ac),0.99(9H,t,J=8.3Hz,3xC 3 CH2),0.61(6H,q,J=8.3Hz,3xCH3 2 ).
【0101】
(2)2,6−diamino−9−(3,5−di−O−benzyl−4−C−triethylsilylethynyl−β−D−ribofuranosyl)purine(化合物26)の合成
【化26】
Figure 0004076114
化合物25(0.85g,1.32mmol)を化合物21の合成と同様に処理して、残留物をシリカゲルカラム(15g)に付し、酢酸エチル:n−ヘキサン:エタノール(30:10:1)で溶出し、化合物26を0.74g(93%)得た。
【0102】
1H−NMR(CDCl3)δ 7.70(1H,s,H−8),7.29−7.42(10H,m,2xPh),6.00(1H,d,J=4.9Hz,H−1’),5.35(2H,br s,NH2),4.93(1H,d,J=11.5Hz,CH’Ph),4.74(1H,d,J=11.5Hz,CH 'Ph),4.73(1H,t,J=5.8Hz,H−2’),4.60(1H,d,J=12.0Hz,CH’Ph),4.55(2H,br s,NH2),4.54(1H,d,J=12.0Hz,CHH’Ph),4.49(1H,d,J=5.9Hz,H−3’),3.81(1H,d,J=10.7Hz,H−5’),3.72(1H,d,J=10.7Hz,H−5’),3.62(1H,br s,OH),0.99(9H,t,J=7.8Hz,3xC 3 CH2),0.62(6H,q,J=7.8Hz,3xCH3 2 ).
【0103】
(3)2,6−diamino−9−(3,5−di−O−benzyl−2−deoxy−4−C−triethylsilylethynyl−β−D−ribofuranosyl)purine(化合物27)の合成
【化27】
Figure 0004076114
化合物26(0.103g,0.171mmol)を化合物22の合成と同様に処理して、残留物をシリカゲルカラム(10g)に付し、酢酸エチル:n−ヘキサン:エタノール(30:10:1)で溶出し、化合物27を0.055g(55%)得た。
【0104】
1H−NMR(CDCl3)δ 7.79(1H,s,H−8),7.26−7.37(10H,m,2xPh),6.34(1H,dd,J=6.6,5.5Hz,H−1’),5.36(2H,br s,NH2),4.72(1H,d,J=11.7Hz,CH’Ph),4.56−4.63(5H,m,CH2Ph,H−3’),4.57(1H,d,J=11.7Hz,CH 'Ph),3.85(1H,d,J=10.1Hz,H−5’),3.75(1H,d,J=10.6Hz,H−5’),2.62−2.73(2H,m,H−2’),0.99(9H,t,J=7.9Hz,3xC 3 CH2),0.62(6H,q,J=7.9Hz,3xCH3 2 ).
【0105】
(4)2,6−diamino−9−(2−deoxy−4−C−ethynyl−β−D−ribofuranosyl)purine(化合物28)の合成
【化28】
Figure 0004076114
化合物27(0.263g,0.45mmol)のテトラヒドロフラン(10.3ml)溶液に室温撹拌下1.0Mテトラブチルアンモニウムフロリド(0.5ml,0.5mmol)を加え、同温度にて30分間撹拌した後、減圧下溶媒を留去した。残留物をショートシリカゲルカラムに付し、酢酸エチル:エタノール(30:1)で溶出し、粗製の脱トリエチルシリル体を0.214g得た。
フラスコに上記脱トリエチルシリル体のテトラヒドロフラン(2ml)溶液と無水エタノール(0.1ml)を加え、−78℃下、アンモニアガスを用いて約20ml凝縮させ、アルゴン雰囲気下、金属ナトリウム(0.062g,2.7mmol)を速やかに加え、同温度で30分間撹拌した。塩化アンモニウムを加えた後、室温下で2時間撹拌し、残留物にエタノ−ルを加え、不溶物をセライトでろ別した。不溶物をエタノールで2回洗浄した後、ろ液と洗液を減圧下濃縮し、残留物をシリカゲルカラム(13g)に付し、酢酸エチル:メタノール(10:1)で溶出し、化合物28を0.099g(76%)得た。
【0106】
1H−NMR(DMSO−d6) δ 7.89(1H,s,H−8),6.71(2H,br s,NH2),6.20(1H,t,J=6.3Hz,H−1’),5.74(2H,br s,NH2),5.59(1H,t,J=5.9Hz,OH),5.47(1H,d,J=4.9Hz,OH),4.50(1H,q,J=5.9Hz,H−3'),3.65(1H,dd,J=11.7,5.4Hz,H−5’),3.56(1H,dd,J=11.7,7.3Hz,H−5’),3.46(1H,s,ethynyl−H),2.64(1H,dt,J=12.7,6.4Hz,H−2'),2.32(1H,dt,J=13.2,6.4Hz,H−2').
【0107】
合成例3
2'−deoxy−4'−C−ethynylinosine(化合物29)の合成
【化6】
Figure 0004076114
化合物23(0.022g,0.08mmol)のトリス塩酸緩衝液(6ml,pH7.5)溶液にアデノシンデアミナーゼ(0.044ml,20unit)を加え、40℃下で2.5時間撹拌した。室温まで冷ました後、反応液を逆相ODSシリカゲルカラム(50g)に付し、水(500ml)を流して脱塩した後、2.5%エタノール水溶液を流して化合物29を溶出させた。さらに、イソプロパノールにより粉末化を行い、化合物29を0.016g(72%)得た。
【0108】
1H−NMR (DMSO−d6) δ 12.28(1H,brs,NH),8.29(1H,s,purine−H),8.06(1H,s,purine−H),6.32(1H,dd,J=6.8,4.9Hz,H−1’),5.57(1H,d,J=5.4Hz,OH),5.32(1H,t,J=5.9Hz,OH),4.56(1H,dt,J=6.4,5.4Hz,H−3'),3.65(1H,dd,J=12.2,5.9Hz,H−5’),3.57(1H,dd,J=11.7,6.4Hz,H−5’),3.50(1H,s,ethynyl−H),2.66(1H,dt,J=12.2,5.9Hz,H−2'),2.46(1H,dt,J=13.2,6.9Hz,H−2').
【0109】
合成例4
2'−deoxy−4'−C−ethynylguanosine(化合物30)の合成
【化7】
Figure 0004076114
化合物28(0.03g,0.103mmol)のトリス塩酸緩衝液(7.8ml,pH7.5)溶液にアデノシンデアミナーゼ(0.057ml,20unit)を加え、40℃下で2時間撹拌した。室温まで冷ました後、反応液を逆相ODSシリカゲルカラム(50g)に付し、水(500ml)を流して脱塩した後、2.5%エタノール水溶液を流して化合物30を溶出させた。さらに、水より再結晶を行い、化合物30を0.015g(50%)得た。
【0110】
1H−NMR(DMSO−d6) δ 10.61(1H,br s,NH),7.90(1H,s,H−8),6.48(2H,br s,NH2),6.13(1H,dd,J=7.3,5.9Hz,H−1’),5.51(1H,d,J=4.9Hz,OH),5.30(1H,t,J=5.9Hz,OH),4.47(1H,dt,J=6.4,5.4Hz,H−3'),3.62(1H,dd,J=12.2,6.4Hz,H−5’),3.54(1H,dd,J=12.2,6.4Hz,H−5’),3.47(1H,s,ethynyl−H),2.56(1H,dt,J=12.2,6.4Hz,H−2'),2.36(1H,dt,J=12.7,6.8Hz,H−2').
【0111】
合成例5
参考合成例3の(2)のウラシルの代わりにアデニン、グアニン、2,6−ジアミノプリンを用いて以下同様に反応させ〔ただし、(5)のトリアゾールを用いたアミノ化反応は省略〕、以下の化合物を合成する。
9−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)アデニン
9−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)グアニン
9−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)−2,6−ジアミノプリン
【0112】
参考合成例5
(1)2'−O−acetyl−3',5'−di−O−benzyl−4'−C−triethylsilylethynyl−5−fluorouridine(化合物31)の合成
【化8】
Figure 0004076114
化合物 6(2.00g、3.62mmol)を1,2−ジクロロエタン(60.0ml)に溶解し、5−フルオロウラシル(0.71g、5.46mmol)、N,O−ビス(トリメチルシリル)アセトアミド(5.37ml、21.7mmol)を加え、1時間加熱環流した。反応液を室温に戻した後、トリフルオロメタンスルホン酸トリメチルシリル(0.85ml、4.70mmol)を加え、50℃で終夜撹拌した。飽和炭酸水素ナトリウム水溶液を加え撹拌した後、有機層を無水硫酸マグネシウム上で乾燥した。有機層を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル300ml、n−ヘキサン:酢酸エチル=3:1にて溶出)により精製し、無色透明アメ状の化合物31(0.80g、1.28mmol、35.4%)を得た。
【0113】
1H−NMR(CDCl3)δ 7.86(1H,d,H−6,J6,F=6.35),7.37−7.29(10H,m,aromatic),6.32(1H,dd,H−1',J=5.62,1.47),5.17(1H,t,H−2',J2',3'=5.62),4.73,4.55(each 1H,d,benzyl,Jgem=11.72),4.55,4.50(each 1H,d,benzyl,Jgem=11.72),4.32(1H,d,H−3’,J2',3'=5.86),3.87,3.63(each 1H,d,H−5’,Jgem=10.50),2.04(3H,s,acetyl),0.96(9H,t,Si−CH2−CH3,J=8.06),0.59(6H,Si−CH2−CH3,J=7.81).
FABMS m/z:623(MH+).
HRMS m/z(MH+):Calcd.forC3340FN27Si:623.2589, Found:623.2589.
[α]D −23.3°(c=0.18,CHCl3).
【0114】
(2)3',5'−di−O−benzyl−4'−C−triethylsilylethynyl−5−fluorouridine(化合物32)の合成
【化32】
Figure 0004076114
化合物 31(0.77g、1.24mmol)をメタノール(45.0ml)に溶解し、トリエチルアミン(5.00ml)を加え、30℃で48時間撹拌した。反応溶液を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル100ml、n−ヘキサン:酢酸エチル=2:1にて溶出)により精製し、白色粉末状の化合物32(0.68g、1.17mmol、94.4%)を得た。
【0115】
1H−NMR(CDCl3)δ 8.42(1H,br.s,3−NH),7.80(1H,d,J6,F=6.10),7.38−7.29(10H,m,aromatic),6.10(1H,dd,H−1',J=5.98,1.47),5.00,4.63(each 1H,d,benzyl,Jgem=11.23),4.58,4.54(each 1H,d,benzyl,Jgem=10.99),4.20(1H,m,H−2’),4.13(1H,d,H−3',J2',3'=5.86),3.88,3.70(each 1H,d,H−5',Jgem=10.25),2.99(1H,d,2'−OH,J=9.77),0.96(9H,t,Si−CH2−CH3,J=8.06),0.58(6H,Si−CH2−CH3,J=7.82).
FABMS m/z:581(MH+).
HRMS m/z(MH+):Calcd.forC3138FN26Si:581.2483, Found:581.2484.
[α]D −16.3°(c=1.05,CHCl3
m.p. 138−139℃
【0116】
(3)4'−C−triethylsilylethynyl−5−fluorouridine(化合物33)の合成
【化33】
Figure 0004076114
化合物 32(1.00g、1.72mmol)をジクロロメタン(50.0ml)に溶解し、アルゴン雰囲気下、−78℃で1.0M 三塩化ホウ素ジクロロメタン溶液(17.2ml、17.2mmol)を加え、同温度で3時間撹拌した。−78℃でピリジン(10.0ml)、メタノール(20.0ml)混合溶液を加え、30分間撹拌した後、反応溶液を減圧下留去した。残渣を酢酸エチルと水で分配し、有機層を無水硫酸マグネシウム上で乾燥した。反応溶液を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル150ml、クロロホルム:メタノール=10:1にて溶出)により精製し、白色粉末状の化合物33(0.64g、1.60mmol、93.0%)を得た。
【0117】
1H−NMR(DMSO−d6)δ 11.93(1H,d,3−NH,J=5.13),8.13(1H,d,H−6,J6,F=7.08),5.89(1H,dd,H−1',J=6.35,1.95),5.71(1H,t,5'−OH,J=5.37),5.37,5.23(each 1H,d,2'−OH,3'−OH,J=6.35),4.12(1H,q,H−2’,J=6.35),4.05(1H,t,H−3’,J=5.61),3.61−3.57(2H,m,H−5’),3.35(1H,s,ethynyl),0.95(9H,t,Si−CH2−CH3,J=7.81),0.55(6H,Si−CH2−CH3,J=7.81).
FABMS m/z:401(MH+).
HRMS m/z(MH+):Calcd.forC1726FN26Si:401.1544, Found:401.1550.
[α]D −2.30°(c=1.00,CH3OH)
m.p. 180−183℃
【0118】
(4)3',5'−di−O−acetyl−2'−deoxy−4'−C−triethylsilylethynyl−5−fluorouridine(化合物34)の合成
【化34】
Figure 0004076114
Figure 0004076114
化合物 33(0.54g、1.35mmol)をアセトニトリル(30.0ml)に懸濁し、85℃で、臭化アセチル(1.00ml、13.5mmol)アセトニトリル溶液(20.0ml)を1時間かけて滴下し、さらに3時間加熱環流した。反応溶液を減圧下留去した後、残渣を酢酸エチルに溶解し、飽和炭酸水素ナトリウム水溶液、飽和塩化ナトリウム水溶液で洗浄した。有機層を無水硫酸マグネシウム上で乾燥した後、減圧下留去し、粗製の3',5'−di−O−acetyl−2'−bromo−2'−deoxy−4'−C−triethylsilylethynyl−5−fluorouridine 34を得た。粗精製の化合物34を乾燥トルエンで3回共沸した後、乾燥トルエン(20.0ml)に溶解し、85℃で水素化トリn−ブチルスズ(0.75ml、2.91mmol)、2,2'−アゾビス(イソブチロニトリル)(0.01g)を加え、アルゴン雰囲気下、30分間加熱撹拌した。反応溶液を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル200ml、n−ヘキサン:酢酸エチル=2:1にて溶出)により精製し、白色粉末状の化合物35(0.41g、0.88mmol、65.2%)を得た。
【0119】
1H−NMR(CDCl3)δ 9.23(1H,br.s,3−NH),7.70(1H,d,H−6,J6,F=6.10),6.35(1H,t,H−1’,J1',2'=7.08),5.36(1H,t,H−3',J2',3'=7.57),4.43,4.39(each 1H,d,H−5',Jgem=12.21),2.65,2.33(each 1H,m,H−2'),2.17,2.13(each 3H,s,acetyl),1.00(9H,t,Si−CH2−CH3,J=7.82),0.63(6H,Si−CH2−CH3,J=7.82).
FABMS m/z:469(MH+).
HRMS m/z(MH+):Calcd.forC2130FN27Si:469.1806, Found:469.1810.
[α]D −12.9°(c=1.00,CHCl3
m.p. 111−112℃
【0120】
(5)4'−C−ethynyl−2'−deoxy−5−fluorocytidine(化合物37)の合成
【化35】
Figure 0004076114
Figure 0004076114
化合物 35(0.35g、0.75mmol)をピリジン(5.00ml)に溶解し、氷冷下、p−クロロフェニルホスホロジクロリダート(0.62ml、3.77mmol)を加え、5分間撹拌後、1,2,4−トリアゾール(0.78g、11.3mmol)を加え、30℃で24時間撹拌した。反応溶液を減圧下留去し、残渣を酢酸エチルと水で分配、有機層を無水硫酸マグネシウム上で乾燥した。有機層を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル50ml、酢酸エチルにて溶出)により精製し、無色透明アメ状の4'−C−triethylsilylethynyl−2'−deoxy−5−fluoro−4−(1,2,4−triazolo)uridine 36を得た。化合物36をジオキサン(15.0ml)に溶解し、25%アンモニア水(5.00ml)を加え、室温で終夜撹拌した。シリカゲル薄層クロマトグラフィー上(クロロホルム:メタノール=10:1)で化合物36が消失したのを確認した後、反応溶液を減圧下留去した。残渣をメタノール(45.0ml)に溶解し、1N水酸化ナトリウム水溶液(5.00ml、5.00mmol)を加え、室温で24時間撹拌した。酢酸(0.29ml、5.00mmol)を加え、反応溶液を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(シリカゲル50ml、クロロホルム:エタノール=4:1にて溶出)により精製した。化合物37を含む分画を減圧下乾固し、残渣をメタノール−エーテルから結晶化し、白色結晶状の化合物37(0.12g、0.45mmol、60.0%)を得た。
【0121】
1H−NMR(DMSO−d6)δ 8.06(1H,d,H−6,J6,F=7.08),7.79,7.54(each 1H,br.s,NH2),6.05(1H,m,H−1'),5.57,5.50(each 1H,br,3'−OH,5'−OH),4.31(1H,br.q,H−3’),3.66,3.60(each 1H,d,H−5’Jgem=11.72),3.51(1H,s,ethynyl),2.25,2.12(each 1H,m,H−2')
[α]D +77.9°(c=1.00,CH3OH)
FABMS m/z:270(MH+).
HRMS m/z(MH+):Calcd.forC1113FN34:270.0890, Found:270.0888.
m.p. 〜225℃ (Dec)
【0122】
製剤例1:錠剤
本発明化合物 30.0mg
微粉末セルロース 25.0mg
乳糖 39.5mg
スターチ 40.0mg
タルク 5.0mg
ステアリン酸マグネシウム 0.5mg
上記組成から常法によって錠剤を調製する。
【0123】
製剤例2:カプセル剤
本発明化合物 30.0mg
乳糖 40.0mg
スターチ 15.0mg
タルク 5.0mg
上記組成から常法によってカプセル剤を調製する。
【0124】
製剤例3:注射剤
本発明化合物 30.0mg
グルコース 100.0mg
上記組成を注射用精製水に溶解して注射剤を調製する。
【0125】
以下に試験例を示す。試験においては薬剤として以下の7つの本発明化合物と2つの公知化合物を使用した。
本発明化合物:
化合物13:4’−C−エチニル−2’−デオキシシチジン
化合物19:1−(4−C−エチニル−β−D−アラビノ−ペントフラノシル)シトシン
化合物23:9−(2−デオキシ−4−C−エチニル−β−D−リボ−ペントフラノシル)アデニン〔4’−C−エチニル−2’−デオキシアデノシン〕
化合物28:9−(2−デオキシ−4−C−エチニル−β−D−リボ−ペントフラノシル)−2,6−ジアミノプリン
化合物29:9−(2−デオキシ−4−C−エチニル−β−D−リボ−ペントフラノシル)ヒポキサンチン〔4’−C−エチニル−2’−デオキシイノシン〕
化合物30:9−(2−デオキシ−4−C−エチニル−β−D−リボ−ペントフラノシル)グアニン〔4’−C−エチニル−2’−デオキシグアノシン〕
化合物37:4’−C−エチニル−2'−デオキシ−5−フルオロシチジン
公知化合物:
4’−C−エチニルチミジン
AZT
【0126】
試験例
<方法>
(1)抗HSV1活性
1.ヒト胎児肺由来線維芽細胞を10%準胎児牛血清(三菱化学)含有イ−グルMEMで4〜5日毎に1:2〜4スプリット継代培養する。
2.親細胞から1:2スプリットで得た細胞懸濁液を200μl/ウエルの割合で 96穴マイクロプレ−トに播種し、炭酸ガスインキュベ−タ−内で、37℃, 4日間培養する。
3.培養液を捨て、各ウエルが所定の被験薬剤濃度になるように、各薬剤の最大試験濃度の2倍濃度の被験薬剤を含むMEMハンクスを用いて96穴マイクロプレ−ト上で段階希釈する。
4.100〜320TCID50の1型単純ヘルペスウイルス(HSV-1)VR-3株を含む5%準胎児牛血清含有イ−グルMEMを100μl/ウエル加え、ウイルスを接種し、炭酸ガスインキュベ−タ−内にて37℃で培養する。
5.2〜3日間培養後、被験薬剤を含まない対照がウイルス感染により完全に細胞変性を起こした時点で(CPEスコア=4)、顕微鏡下で各ウエルのCPEの程度を観察し、スコア(0〜4)をつける。
6.CPEを50%以上阻止(CPEスコア2以下)する被験薬剤の最小濃度を最小有効濃度(ED50)とする。
【0127】
(2)ヒト免疫不全ウイルス(HIV)活性
1)MT−4細胞を用いたMTT法
1.96ウエルプレートを用いて被験薬剤を希釈する(100μl)。ここに1ウエルあたり10000個になるようにHIV−1(IIIb strain;100 TCID50)感染および非感染MT−4細胞を加えて、37℃で5日間培養する。
2.MTT(20μl、7.5mg/ml)を加えてさらに2〜3時間培養する。
3.培養終了後、120μlをとり、MTT停止液(Triton X−100 4%、HCl 0.04Nを加えたイソプロパノール(Isopropanol))を加え、撹拌して生成したホルマザン(formazam)を溶解し、540nmにおける吸光度を測定する。この測定値は生細胞数に比例するため、感染MT−4細胞を用いた試験の測定値が50%になった被験薬剤の濃度をEC50、また非感染MT−4細胞を用いた試験の測定値が50%になった被験薬剤の濃度をCC50とする。
【0128】
2)HeLa CD4/LTR-beta-Gal細胞を用いたMAGIアッセイ
1.HeLa CD4/LTR-beta-Gal細胞を1ウエルあたり10000個の割合で96ウエルに加える。12〜24時間後に培養液を捨て、希釈した被験薬剤(100μlを加える。
2.各種HIV株(野生株:WT、耐性株:MDR、M184V、NL4−3、104pre及びC;各50 TCID50相当)を加えて48時間培養する。
3.培養終了後、1%ホルムアルデヒド(formaldehyde)、0.2% グルタールアルデヒド(glutaraldehyde)を加えたPBSで細胞を5分間固定する。
4.PBSで3回洗浄後、0.4mg/ml X−Galで1時間染色し、青く染色された細胞の数を透過型実体顕微鏡下で各ウエルのプラーク数を数え、青染された細胞を50%減少させる被験薬剤の濃度をEC50、90%減少させる被薬剤の濃度をEC90とする。
5.細胞毒性は、ウイルスに非感染のHeLa CD4/LTR-beta-Gal細胞を用いてMTT法と同様に測定する。
【0129】
<結果>(1)抗HSV−1活性
【表1】
Figure 0004076114
【0130】
(2)ヒト免疫不全ウイルス(HIV)活性および細胞毒性
表2〜表7は2〜5回の測定値の平均を示したものである。
▲1▼MT−4細胞を用いたMTT法
【表2】
Figure 0004076114
【表3】
Figure 0004076114
【表4】
Figure 0004076114
【0131】
▲2▼HeLa CD4/LTR-beta-Gal細胞を用いたMAGIアッセイ
【表5】
Figure 0004076114
【表6】
Figure 0004076114
【表7】
Figure 0004076114
[0001]
[Industrial application fields]
The present invention relates to 4'-C-ethynyl nucleoside and its pharmaceutical use, in particular the therapeutic use for AIDS.
[0002]
[Prior art]
Protease inhibitors (PIs) to nucleoside reverse transcriptase inhibitors (NRTIs) such as AZT (zidovudine), ddI (didanocin), ddC (zarcitabine), d4T (stavudine), and 3TC (lamivudine) The combination of so-called "highly active antiretroviral therapy (HAART)" has changed the clinical picture of AIDS, and the number of AIDS deaths has drastically decreased in each country. (Textbook of AIDS Medicine, p751 (Williams & Wilkins, Baltimore, 1999)).
[0003]
However, while the number of AIDS deaths has been drastically reduced by HAART, a multi-drug resistant HIV-1 (human immunodeficiency virus-1) strain that exhibits cross-resistance to a plurality of drugs has emerged, for example, in both AZT and 3TC It has been reported that the number of patients infected with resistant HIV was rare in early 1990, compared to 42% in 1995-1996 (AIDS, 11, 1184 (1997)). ).
[0004]
With the emergence of such multi-drug resistant virus strains, “drug failure: once the viremia level was below the detection limit, viremia continued again. It has been reported that it has reached 30-60% (AIDS, 12, 1631 (1998)).
[0005]
[Problems to be solved by the invention]
Conventionally, as a compound showing antiviral activity against a multidrug resistant virus strain, a protease inhibitor showing antiviral activity against many PIs-resistant HIV-1 strains (multi-PI resistant HIV-1): Only JE-2147 is known (Proc. Natl. Acad. Sci. USA, 96,8675 (1999)). Among nucleoside compounds, compounds exhibiting antiviral activity against multidrug resistant virus strains are: Not reported.
[0006]
One of the inventors, the great class, synthesized 1- (4-C-ethynyl-β-D-ribo-pentofuranosyl) thymine, 4′-C-ethynyluridine and 4′-C-ethynylcytidine, Although biological activities such as antiviral activity and antitumor activity were measured, no biological activity was observed for these compounds (Biosci. Biotechnol. Biochem., 63 (4), 736-742, 1999).
[0007]
Matsuda et al. Synthesized 4'-C-ethynylthymidine and measured anti-HIV activity, but the anti-HIV activity of the compound was weaker than that of AZT. The measurement of anti-HIV activity in Matsuda et al.'S paper is a normal method for measuring anti-HIV activity using MT-4 cells and HIV-1 IIIb strains, and not using multidrug resistant virus strains ( Bioorg. Med. Chem. Lett., 9 (1999), 385-388).
[0008]
[Means for Solving the Problems]
The present inventors synthesized various 4′-C-ethynyl nucleosides in order to find a compound having antiviral activity higher than AZT and measured antiviral activity. As a result, (1) 4 ′ having a specific structure -C-ethynyl nucleoside has an anti-HIV activity equivalent to or superior to AZT, and (2) a multidrug resistant virus strain having resistance to a plurality of anti-HIV agents such as AZT, ddI, ddC, d4T, 3TC, etc. (3) It was confirmed that the cytotoxicity was not so strong as to be a problem, and the present invention was completed.
[0009]
That is, the present invention contains 4′-C-ethynyl nucleoside represented by the formula [I] (excluding 4′-C-ethynylthymidine) and the compound and a pharmaceutically acceptable carrier. The pharmaceutical composition.
[Chemical formula 2]
Figure 0004076114
Figure 0004076114
(In the formula, B represents a base selected from the group consisting of pyrimidine, purine or derivatives thereof, X represents a hydrogen atom or a hydroxyl group, and R represents a hydrogen atom or a phosphate residue.)
The present invention also relates to the use of the compound of the above formula [I] as a medicament.
Furthermore, the present invention relates to a method for treating AIDS, which comprises administering the compound of the above formula [I] to animals including humans.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
(1) Compound
The compound of the present invention is represented by the formula [I], and examples of the base represented by B in the formula include pyrimidine, purine (including azapurine and deazapurine), and derivatives of these bases. Can do.
[0011]
Base derivatives include halogen atoms, alkyl groups, haloalkyl groups, alkenyl groups, haloalkenyl groups, alkynyl groups, amino groups, alkylamino groups, hydroxyl groups, hydroxyamino groups, aminoxy groups, alkoxy groups, mercapto groups, alkyl mercapto groups. , Aryl groups, aryloxy groups, cyano groups and the like, and the number and position of the substituents are not particularly limited.
[0012]
Examples of the halogen atom as a substituent include chlorine, fluorine, iodine and bromine. Examples of the alkyl group include lower alkyl groups having 1 to 7 carbon atoms such as methyl, ethyl, and propyl. Examples of the haloalkyl group include haloalkyl groups having 1 to 7 carbon atoms such as fluoromethyl, difluoromethyl, trifluoromethyl, bromomethyl, bromoethyl and the like. Examples of the alkenyl group include C2-C7 alkenyl groups such as vinyl and allyl. Examples of the haloalkenyl group include haloalkenyl groups having 2 to 7 carbon atoms such as bromovinyl and chlorovinyl. Examples of the alkynyl group include alkynyl groups having 2 to 7 carbon atoms such as ethynyl and propynyl. Examples of the alkylamino group include alkylamino groups having 1 to 7 carbon atoms such as methylamino and ethylamino.
[0013]
Examples of the alkoxy group include C1-C7 alkoxy groups such as methoxy and ethoxy. Examples of the alkyl mercapto group include alkyl mercapto groups having 1 to 7 carbon atoms such as methyl mercapto and ethyl mercapto. The aryl group includes a phenyl group; an alkylphenyl group having 1 to 5 carbon atoms such as methylphenyl and ethylphenyl; an alkoxyphenyl group having 1 to 5 carbon atoms such as methoxyphenyl and ethoxyphenyl; dimethylamino Examples thereof include alkylaminophenyl groups having 1 to 5 carbon atoms such as phenyl and diethylaminophenyl; halogenophenyl groups such as chlorophenyl and bromophenyl.
[0014]
Specific examples of pyrimidine bases and derivatives thereof include cytosine, uracil, 5-fluorocytosine, 5-fluorouracil, 5-chlorocytosine, 5-chlorouracil, 5-bromocytosine, 5-bromouracil, 5-iodocytosine, 5-iodouracil, 5-methylcytosine, 5 -Ethylcytosine, 5-methyluracil (thymine), 5-ethyluracil, 5-fluoromethylcytosine, 5-fluorouracil, 5-trifluorocytosine, 5-trifluorouracil, 5-vinyluracil, 5-bromovinyluracil, 5-chlorovinyluracil, 5-ethynyl Cytosine, 5-ethynyluracil, 5-propynyluracil, pyrimidine-2-one, 4-hydroxyaminopyrimidine-2-one, 4-aminooxypyrimidine-2 One, 4-methoxypyrimidine-2 On, 4-acetoxy pyrimidin-2 On, 4-fluoropyrimidine-2 On, and the like 5 over fluoropyrimidine-2 On.
[0015]
Specific examples of purine bases and derivatives thereof include purine, 6-aminopurine (adenine), 6-hydroxypurine, 6-fluoropurine, 6-chloropurine, 6-methylaminopurine, 6-dimethylaminopurine, 6-trifluoro. Methylaminopurine, 6-benzoylaminopurine, 6-acetylaminopurine, 6-hydroxyaminopurine, 6-aminooxypurine, 6-methoxypurine, 6-acetoxypurine, 6-benzoyloxypurine, 6-methylpurine, 6-ethylpurine, 6- Trifluoromethylpurine, 6-phenylpurine, 6-mercaptopurine, 6-methylmercaptopurine, 6-aminopurine-1-oxide, 6-hydroxypurine-1-oxide, 2-amino-6-hydroxypurine (guanine), 2, -Diaminopurine, 2-amino-6-chloropurine, 2-amino-6-iodopurine, 2-aminopurine, 2-amino-6-mercaptopurine, 2-amino-6-methylmercaptopurine, 2-amino-6-hydroxyaminopurine, 2-amino-6-methoxypurine, 2-amino-6-benzoyl Oxypurine, 2-amino-6-acetoxypurine, 2-amino-6-methylpurine, 2-amino-6-cyclopropylaminomethylpurine, 2-amino-6-phenylpurine, 2-amino-8-bromopurine, 6-cyanopurine, 6-amino-2-chloropurine (2-chloroadenine), 6-amino-2 -Fluoropurine (2-fluoroadenine), 6-amino-3-deazapurine, 6-amino-8-azapurine, 2-amino-6-hydride Kishi 8 Azapurin, 6-amino-7 Deazapurin, 6-amino-1 Deazapurin, like 6-amino-2 Azapurin.
[0016]
Examples of the compound in which B is a pyrimidine base and X is a hydrogen atom include the following compounds or 5'-phosphate esters thereof.
4'-C-ethynyl-2'-deoxycytidine
4'-C-ethynyl-2'-deoxy-5-halocytidine
4'-C-ethynyl-2'-deoxy-5-alkylcytidine
4'-C-ethynyl-2'-deoxy-5-haloalkylcytidine
4'-C-ethynyl-2'-deoxy-5-alkenylcytidine
4'-C-ethynyl-2'-deoxy-5-haloalkenylcytidine
4'-C-ethynyl-2'-deoxy-5-alkynylcytidine
4'-C-ethynyl-2'-deoxy-5-halogenouridine
4'-C-ethynyl-2'-deoxy-5-alkyluridine (except 4'-C-ethynylthymidine)
4'-C-ethynyl-2'-deoxy-5-haloalkyluridine
4'-C-ethynyl-2'-deoxy-5-alkenyluridine
4'-C-ethynyl-2'-deoxy-5-haloalkenyluridine
4'-C-ethynyl-2'-deoxy-5-alkynyluridine
[0017]
Examples of the compound in which B is a pyrimidine base and X is a hydroxyl group include the following compounds or 5'-phosphate esters thereof.
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) cytosine
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-halogenocytosine
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-alkylcytosine
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-haloalkylcytosine
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-alkenylcytosine
1- (4-C-ethynyl-β-D-arabino-pentofuranosi) -5-haloalkenylcytosine
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-alkynylcytosine
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-halogenouracil
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-alkyluracil
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-haloalkyluracil
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-alkenyluracil
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-haloalkenyluracil
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-alkynyluracil
[0018]
Examples of the compound in which B is a purine base and X is a hydrogen atom include the following compounds or 5'-phosphate esters thereof.
4'-C-ethynyl-2'-deoxyadenosine
4'-C-ethynyl-2'-deoxyguanosine
4'-C-ethynyl-2'-deoxyinosine
9- (4-C-ethynyl-2-deoxy-β-D-ribo-furanosyl) purine
9- (4-C-ethynyl-2-deoxy-β-D-ribo-furanosyl) -2,6-diaminopurine
[0019]
Examples of the compound in which B is a purine base and X is a hydroxyl group include the following compounds and 5'-phosphate esters thereof.
9- (4-C-ethynyl-β-D-arabino-pentofuranosyl) adenine
9- (4-C-ethynyl-β-D-arabino-pentofuranosyl) guanine
9- (4-C-ethynyl-β-D-arabino-pentofuranosyl) hypoxanthine
9- (4-C-ethynyl-β-D-arabino-pentofuranosyl) purine
9- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -2,6-diaminopurine
[0020]
Among the compounds of the present invention, the following compounds can be exemplified as preferable compounds.
(1) 4'-C-ethynylpyrimidine nucleoside
1) Compound in which X in formula [I] is a hydrogen atom
2) Compound in which X in formula [I] is a hydroxyl group
3) Compound in which B in formula [I] is cytosine or a derivative thereof
4) A compound in which B in the formula [I] is cytosine or a derivative thereof, and X is a hydrogen atom
5) A compound in which B in the formula [I] is cytosine or a derivative thereof, and X is a hydroxyl group
6) 4'-C-ethynyl-2'-deoxycytidine
7) 4'-C-ethynyl-2'-deoxy-5-fluorocytidine
8) 1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) cytosine
[0021]
(2) 4'-C-ethynylpurine nucleoside
1) Compound in which X in formula [I] is a hydrogen atom
2) Compound in which X in formula [I] is a hydroxyl group
3) A compound in which B in the formula [I] is selected from the group consisting of adenine, guanine, hypoxanthine, diaminopurine or derivatives thereof
4) A compound in which B in the formula [I] is selected from the group consisting of adenine, guanine, hypoxanthine, diaminopurine or derivatives thereof, and X is a hydrogen atom
5) A compound in which B in the formula [I] is selected from the group consisting of adenine, guanine, hypoxanthine, diaminopurine or derivatives thereof, and X is a hydroxyl group
6) 4'-C-ethynyl-2'-deoxyadenosine
7) 4'-C-ethynyl-2'-deoxyguanosine
8) 4'-C-ethynyl-2'-deoxyinosine
9) 9- (4-C-ethynyl-2-deoxy-β-D-ribo-pentofuranosyl) -2,6-diaminopurine
10) 9- (4-C-ethynyl-β-D-arabino-pentofuranosyl) adenine
[0022]
The compound of the present invention may be in the form of a salt, hydrate or solvate. Such a salt includes an acid adduct such as hydrochloride or sulfate when R is a hydrogen atom, and an alkali metal such as sodium salt, potassium salt or lithium salt when R is a phosphoric acid residue. Illustrative are pharmaceutically acceptable salts such as salts, alkaline earth metal salts such as calcium salts, or ammonium salts.
Examples of the hydrate or solvate include those in which 0.1 to 3.0 molecules of water or solvent are attached to one molecule of the compound of the present invention or a salt thereof. Furthermore, the compound of the present invention may include various isomers such as tautomers.
[0023]
(2) Manufacturing method
Among the compounds of the present invention, a 2'-deoxy compound in which X is a hydrogen atom can be produced by the steps described below.
First step;
The first step is a step of obtaining a compound represented by the formula [III] by oxidizing the hydroxymethyl group at the 4-position of the compound represented by the formula [II] into an aldehyde compound and further converting it to an alkyne compound. is there.
[0024]
[Chemical Formula 3]
Figure 0004076114
Figure 0004076114
(Wherein R1 to R2 each represent a protecting group, R3 represents a hydrogen atom or a protecting group, and Bn represents a benzyl group.)
[0025]
The raw material compound is a known compound represented by the formula [II] (Biosci. Biotech. Biochem., 57, 1433-1438 (1993)).
The protecting group represented by R1 to R2 may be any group that is usually used as a hydroxyl group, and examples thereof include an ether protecting group, an acyl protecting group, a silyl protecting group, and an acetal protecting group. it can. More specifically, ether protecting groups include methyl ether, tertiary butyl ether, benzyl ether, methoxybenzyl ether, trityl ether, and acyl protecting groups include acetyl, benzoyl, pivaloyl, and silyl protecting. T-butyldimethylsilyl, t-butyldiphenylsilyl, trimethylsilyl, triethylsilyl, etc. can be used as groups, and isopropylidene, ethylidene, methylidene, benzylidene, tetrahydropyranyl, methoxymethyl, etc. can be used as acetal-based protecting groups. it can.
[0026]
When converting the hydroxymethyl group at the 4-position of the compound represented by the formula [II] to an aldehyde, the oxidizing agent used includes chromic anhydride, a complex reagent of pyridine and acetic anhydride, pyridine chlorochromate, pyridine dichromate, etc. Examples thereof include high-valent iodine oxidizers such as Dess-Martin reagent; dimethyl sulfoxide-based oxidants using a combination of dimethyl sulfoxide and acetic anhydride, oxalyl chloride or dicyclohexylcarbodiimide.
[0027]
The reaction conditions vary depending on the oxidizing agent used. For example, when oxidizing using oxalyl chloride and dimethyl sulfoxide, 1 mol of the compound of formula [II] in an organic solvent such as dichloromethane and optionally in an inert gas atmosphere such as argon or nitrogen. Oxalyl chloride and dimethyl sulfoxide were used at 0.5 to 5 mol and 1.5 to 6 mol, respectively, and reacted at −100 to 0 ° C. for 15 minutes to 2 hours, and 2 to 10 mol of a base such as triethylamine was added. Further, the reaction can be carried out by reacting at room temperature for about 15 minutes to 2 hours.
[0028]
Next, conversion of the obtained aldehyde compound to an alkyne compound involves subjecting the aldehyde compound to a carbon increase reaction (C—C bond formation reaction), treating with a strong base to form a metal alkynyl compound, and finally a protecting group. It can be implemented by introducing.
The carbon increase reaction is carried out by adding carbon tetrabromide and triphenylphosphine to 1 mol of the aldehyde compound obtained in an organic solvent such as dichloromethane and dichloroethane under an inert gas atmosphere such as argon and nitrogen as necessary. What is necessary is just to make it react for 15 minutes to 3 hours at 0-50 degreeC using -5 mol, 2-10 mol.
[0029]
The strong base treatment is carried out in an organic solvent such as tetrahydrofuran, 1,4-dioxane, dimethoxyethane, or the like in an inert gas atmosphere such as argon or nitrogen as necessary, with respect to 1 mol of the compound obtained by the carbon addition reaction, n-butyl. The reaction can be performed by using 2 to 4 moles of lithium compounds such as lithium and t-butyllithium and reacting at −100 to −20 ° C. for about 5 to 60 minutes.
Further, when a silyl protecting group represented by R3 is introduced into the alkynyl group of the obtained compound, a silylating agent such as chlorotriethylsilane is added and reacted after the strong base treatment. In addition, the introduction of a protecting group into a hydroxyl group can be carried out by a conventional method. For example, the introduction of an acetyl group can be carried out by reacting with an acetylating agent such as acetic anhydride.
[0030]
Isolation and purification of the thus obtained compound of the formula [III] may be performed by appropriately selecting and using usual means for separating and purifying protected sugars. For example, after partitioning with ethyl acetate and saturated aqueous sodium hydrogen carbonate, a silica gel column It can be performed by subjecting to chromatography.
[0031]
Second step;
In the second step, the compound represented by the formula [III] and the base represented by B are subjected to a condensation reaction, and then the hydroxyl group at the 2 ′ position is deoxygenated to form a deoxy form, and a protecting group for the sugar moiety is formed. In this step, the compound represented by the formula [I] is obtained by removing and optionally phosphorylating the 5′-position hydroxyl group.
[0032]
[Formula 4]
Figure 0004076114
Figure 0004076114
(In the formula, B represents a base selected from the group consisting of pyrimidine, purine (including azapurine or deazapurine) or derivatives thereof (excluding thymine), and R represents a hydrogen atom or a phosphate residue. R1-R2 represents a protecting group, R3 represents a hydrogen atom or a protecting group, and Bn represents a benzyl group.)
[0033]
The condensation of the compound represented by the formula [III] with the base represented by B can be carried out by reacting the compound of the formula [III] with the base represented by B in the presence of a Lewis acid. .
The base represented by B may be a silylated base, and such a silylated base can be obtained by a known method, for example, a method of heating to reflux in hexamethyldisilazane and trimethylchlorosilane. .
Examples of the Lewis acid used include trimethylsilyl trifluoromethanesulfonate, tin tetrachloride, zinc chloride, zinc iodide, and anhydrous aluminum chloride.
[0034]
The condensation reaction is a base represented by B with respect to 1 mol of the compound of the formula [III] in an organic solvent such as dichloromethane, 1,2-dichloroethane, acetonitrile, toluene or the like, and in an inert gas atmosphere such as argon or nitrogen as necessary. The reaction can be carried out by reacting at a temperature of -20 to 150 ° C. for about 30 minutes to 3 hours using 1 to 10 mol of the compound and 0.1 to 10 mol of Lewis acid.
[0035]
The deoxylation of the 2′-position hydroxyl group involves converting the 2′-position hydroxyl group into a halogenated form (iodine form, bromine form, chlorine form), phenoxythiocarbonyl form, thiocarbonylimidazole form, methyl dithiocarbonate form, etc. It can be carried out by reduction with a radical reducing agent in the presence of an initiator.
[0036]
For example, in the case of deoxygenation by leading to a phenoxythiocarbonyl compound, the phenoxythiocarbonylation reaction is carried out in an organic solvent such as tetrahydrofuran, acetonitrile, dichloromethane, or the like in an inert gas atmosphere such as argon or nitrogen, if necessary. In the presence of a base such as 1 to 10 mol, preferably 1.1 to 2 mol of phenyl chlorothionoformate derivative per mol of the condensate from which only the protecting group at the 2′-position has been removed, and 0 to 50 ° C. It can be carried out by stirring reaction for about 5 to 5 hours. In addition, when deoxygenating by introducing into a bromo compound, the bromination reaction is carried out in an inert gas atmosphere such as argon or nitrogen, if necessary, in an organic solvent such as tetrahydrofuran, acetonitrile, dichloromethane, etc. The brominating agent such as acetyl bromide is used in an amount of 1 to 50 mol, preferably 5 to 20 mol, and stirred at 0 to 150 ° C. for about 0.5 to 5 hours.
[0037]
The subsequent reduction reaction is carried out in an organic solvent such as toluene or benzene, if necessary under an inert gas atmosphere such as argon or nitrogen, in the presence of a radical initiator such as azobisisobutyronitrile, or the phenoxythiocarbonyl compound or bromo The reaction is carried out by using 1 to 10 moles, preferably 2 to 5 moles of a radical reducing agent such as tributyltin hydride, and stirring and reacting at 50 to 150 ° C. for about 1 to 5 hours per mole of the body.
[0038]
Moreover, among this invention compounds, the arabino body whose X is a hydroxyl group can be manufactured according to the process demonstrated below.
First step;
In the first step, a compound represented by the formula [III] and a base represented by B are subjected to a condensation reaction, and then the 2′-position hydroxyl group is sterically inverted to form an arabino form, thereby protecting the sugar moiety. And, if necessary, phosphorylating the 5′-position hydroxyl group to obtain a compound represented by the formula [I].
[0039]
[Chemical formula 5]
Figure 0004076114
Figure 0004076114
(In the formula, B represents a base selected from the group consisting of pyrimidine, purine (including azapurine or deazapurine) or derivatives thereof, R represents a hydrogen atom or a phosphate residue, and R1 and R2 represent protecting groups. And Bn represents a benzyl group.)
[0040]
The condensation of the compound represented by the formula [III] with the base represented by B can be carried out by reacting the compound of the formula [III] with the base represented by B in the presence of a Lewis acid. .
The base represented by B may be a silylated base, and such a silylated base can be obtained by a known method, for example, a method of heating to reflux in hexamethyldisilazane and trimethylchlorosilane. .
Examples of the Lewis acid used include trimethylsilyl trifluoromethanesulfonate, tin tetrachloride, zinc chloride, zinc iodide, and anhydrous aluminum chloride.
[0041]
The condensation reaction is a base represented by B with respect to 1 mol of the compound of the formula [III] in an organic solvent such as dichloromethane, 1,2-dichloroethane, acetonitrile, toluene or the like, and in an inert gas atmosphere such as argon or nitrogen as necessary. The reaction can be carried out by reacting at a temperature of -20 to 150 ° C. for about 30 minutes to 3 hours using 1 to 10 mol of the compound and 0.1 to 10 mol of Lewis acid.
[0042]
The steric inversion of the 2'-position hydroxyl group can be carried out by hydrolysis after conversion to 2,2'-anhydrocyclonucleoside. The anhydrocyclization reaction can be carried out by treatment with a sulfonating agent such as methanesulfonyl chloride or by treatment with a fluorinating agent such as diethylaminosulfur trifluoride.
[0043]
For example, in the case of anhydrocyclization with diethylaminosulfur trifluoride, in the organic solvent such as dichloromethane and toluene, the above condensation in which only the protecting group at the 2′-position hydroxyl group is removed under an inert gas atmosphere such as argon and nitrogen as necessary. The reaction can be carried out by using 1.1 to 5 mol, preferably 1.5 to 2 mol, of diethylaminosulfur trifluoride to 1 mol of the product and reacting at 0 ° C. to room temperature for about 5 minutes to 2 hours. In addition, when anhydrocyclizing with methanesulfonyl chloride, in an organic solvent such as pyridine, 1 mol of the condensate in which only the protecting group of the 2′-position hydroxyl group is removed under an inert gas atmosphere such as argon and nitrogen as necessary. On the other hand, the reaction can be carried out by using 1.1 to 5 mol, preferably 1.5 to 2 mol of methanesulfonyl chloride and reacting at 0 to 50 ° C. for about 5 minutes to 10 hours.
[0044]
The subsequent hydrolysis reaction can be carried out using an appropriate base or acid catalyst. For example, when using a base catalyst, sodium hydroxide, potassium hydroxide in a mixed solvent of an alcohol solvent such as ethanol and water. In the presence of a base such as from room temperature to 100 ° C. for about 30 minutes to 5 hours.
[0045]
Further, in the case where the target compound B is a compound having a base having an amino group, the compound which is a base having a hydroxyl group can be converted by a known method. For example, when it is desired to aminate the 4-position of a pyrimidine base, the hydroxyl group at the 4-position of the pyrimidine base is converted to a chloro, silyloxy, alkyloxy, sulfonyloxy, thio, alkylthio, triazole, etc. And react with ammonia. For example, when converting via a triazole compound, in the presence of a base such as triethylamine and a phosphorylating agent such as phosphorus oxychloride, 4-chlorophenyl phosphorodichloridate, in an organic solvent such as dichloromethane, acetonitrile, dimethylformamide, pyridine ( However, when pyridine is used, a base such as triethylamine is not necessarily present). If necessary, 1,2,4- with respect to 1 mol of the condensate in an inert gas atmosphere such as argon or nitrogen. Triazole 1-20 mol, preferably 2-10 mol is used, and after stirring reaction at 0 ° C. to room temperature for about 12 to 72 hours, an appropriate amount of aqueous ammonia is added to the reaction mixture, and 0 ° C. to room temperature for about 1 to 12 hours. It can be carried out by stirring reaction.
[0046]
Furthermore, when the amino group in the base is to be deaminated, it can be deaminated by a conventional method using various deaminases such as adenosine deaminase and cytidine deaminase.
[0047]
The protecting group of the compound thus obtained is removed to obtain the compound of the present invention in which R is hydrogen.
The removal of the protecting group may be appropriately selected from ordinary treatment methods such as acidic hydrolysis, alkaline hydrolysis, tetrabutylammonium fluoride treatment and catalytic reduction according to the used protecting group.
[0048]
In addition, when obtaining a compound in which R is a phosphate residue such as a monophosphate residue or a diphosphate residue, a compound in which R is a hydrogen atom is converted to a 5 ′ of a nucleoside such as phosphorus oxychloride or tetrachloropyrophosphate. By reacting with a phosphorylating agent used for selective phosphorylation of the target, the desired compound in free acid form or salt form can be obtained.
[0049]
The compound of the present invention can be separated and purified by appropriately combining methods used for isolation and purification of general nucleosides and nucleotides (for example, recrystallization method, ion exchange column chromatography, adsorption column chromatography, etc.). The compound thus obtained can be converted into a salt form as necessary.
[0050]
(3) Applications
Since the compound of the present invention has an excellent antiviral activity against herpes virus or retrovirus as shown in the following test examples, the composition of the present invention comprising these as active ingredients is used as a pharmaceutical, specifically It is useful for the treatment of herpesvirus or retrovirus infections, particularly for the treatment of AIDS resulting from HIV infection.
Examples of target viruses include herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2) and varicella-zoster virus (VZV) belonging to the herpesviridae, and human immunodeficiency belonging to the retroviridae family A virus (HIV) etc. can be mentioned.
[0051]
The dose of the compound of the present invention varies depending on the patient's age, weight, disease, patient severity, drug tolerability, administration method, etc., and may be appropriately determined based on these conditions. In general, the dose is selected from the range of 0.00001 to 1000 mg / kg body weight, preferably 0.0001 to 100 mg / kg body weight per day, and administered in one or more divided doses.
The administration method can be administered by any route such as oral, parenteral, enteral or topical administration.
[0052]
When the compound of the present invention is formulated, it is usually used as a composition containing a commonly used pharmaceutical carrier, excipient, and other additives. Carriers include lactose, kaolin, sucrose, crystalline cellulose, corn starch, talc, agar, pectin, stearic acid, magnesium stearate, lecithin, sodium chloride and other solid carriers, glycerin, peanut oil, polyvinylpyrrolidone, olive oil, ethanol And liquid carriers such as benzyl alcohol, propylene glycol, and water.
[0053]
The dosage form can take any form. For example, when using a solid carrier, tablets, powders, granules, capsules, suppositories, lozenges, etc., when using a liquid carrier. Examples include syrup, emulsion, soft gelatin capsule, cream, gel, paste, spray, injection and the like.
[0054]
【The invention's effect】
The compound of the present invention has excellent anti-HIV activity, especially multi-drug resistant HIV strains having resistance to a plurality of anti-HIV agents such as AZT, DDI, DDC, D4T, 3TC, etc. Since it is effective and cytotoxicity is not so strong as to be a problem, it is expected to be developed as a pharmaceutical, particularly as an AIDS therapeutic agent.
[0055]
【Example】
  Hereinafter, the present invention will be specifically described with reference to synthesis examples, test examples, formulation examples, etc., but the present invention is not limited to these.
Reference synthesis example 1
(1) Synthesis of 4-C-formyl-3,5-di-O-benzoyl-1,2-O-isopropylidene-α-D-ribo-pentofuranose (Compound 2)
[Chemical formula 2]
Figure 0004076114
  Oxalyl chloride (3.38 ml, 38.7 mmol) was dissolved in dichloromethane (80.0 ml), and dimethyl sulfoxide (5.50 ml, 77.5 mmol) was added dropwise at −78 ° C. under an argon atmosphere, followed by stirring at the same temperature for 15 minutes. did. 4-C-hydroxymethyl-3,5-di-O-benzoyl-1,2-O-isopropylidene-α-D-ribo-pentofuranose 1 (10.3 g, 25.7 mmol) in dichloromethane (100 ml) at −78 ° C. ) Was added dropwise and stirred for 30 minutes. After adding triethylamine (10.9 ml, 77.6 mmol), the reaction solution was returned to room temperature and stirred for 30 minutes. After adding water and stirring, the organic layer was dried over anhydrous magnesium sulfate. The organic layer was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel 1500 ml, eluted with n-hexane: ethyl acetate = 2: 1) to give colorless and transparent candy-like compound 2 (9.68 g, 24 .3 mmol, 94.1%).
[0056]
1H-NMR (CDClThree) Δ 9.92 (1H, s, formyl), 7.33-7.24 (10H, m, aromatic), 5.84 (1H, d, H-1 J1,2= 3.30), 4.71, 4.59 (each 1H, d, benzyl, Jgem= 12.00), 4.60 (1H, br.t, H-2), 4.52, 4.46 (each 1H, d, benzyl, Jgem= 12.00), 4.37 (1H, d, H-3, J2,3= 4.50), 3.68, 3.61 (each 1H, d, H-5, Jgem= 10.95), 1.60, 1.35 (each 3H, s, acetonide)
EIMS m / z: 398 (M+).
HRMS m / z (M+): Calcd. for Ctwenty threeH26O6: 398.1729, Found: 398.1732
[Α]D+ 24.5 ° (c = 1.03, CHClThree)
[0057]
(2) Synthesis of 4-C- (2,2-dibromoethylene) -3,5-di-O-benzoyl-1,2-O-isopropylidene-α-D-ribo-pentofuranose (Compound 3)
[Chemical 7]
Figure 0004076114
Compound 2 (9.50 g, 23.8 mmol) was dissolved in dichloromethane (200 ml), and carbon tetrabromide (15.8 g, 47.6 mmol), triphenylphosphine (25.0 g, 95.3 mmol) was cooled with ice. And stirred at room temperature for 1 hour. After adding triethylamine (20.0 ml, 142 mmol) and stirring for 10 minutes, the reaction solution was poured into n-hexane (1000 ml), and the produced precipitate was separated by filtration. After the filtrate was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (elution with silica gel 1500 ml, n-hexane: ethyl acetate = 3: 1), and colorless and transparent candy-like compound 3 (12.6 g, 22 0.7 mmol, 95.4%).
[0058]
1H-NMR (CDClThree) Δ 7.34-7.24 (10H, m, aromatic), 7.16 (1H, s, Br)2C = CH-), 5.76 (1H, d, H-1 J1,2= 3.90), 4.72, 4.60 (each 1H, d, benzyl, Jgem= 12.00), 4.53 (1H, br.t, H-2), 4.60, 4.42 (each 1H, d, benzyl, Jgem= 12.00), 4.21 (1H, d, H-3, J2,3= 4.80), 3.83, 3.39 (each 1H, d, H-5, Jgem= 11.40), 1.59, 1.30 (each 3H, s, acetonide)
EIMS m / z: 473,475 (M-Br).
[Α]D  + 6.20 ° (c = 1.00, CHClThree)
[0059]
(3) Synthesis of 4-C-ethyl-3,5-di-O-benzoyl-1,2-O-isopropylidene-α-D-ribo-pentofuranose (Compound 4)
[Chemical 8]
Figure 0004076114
Compound 3 (12.4 g, 22.4 mmol) was dissolved in dry tetrahydrofuran (160 ml), and 1.6 M n-butyllithium n-hexane solution (30.7 ml, 49.1 mmol) was added at −78 ° C. under an argon atmosphere. In addition, the mixture was stirred at the same temperature for 30 minutes. After adding water and stirring, the organic layer was dried over anhydrous magnesium sulfate. The organic layer was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel 1500 ml, eluted with n-hexane: ethyl acetate = 3: 1) to give colorless and transparent candy-like compound 4 (7.95 g, 20 .2 mmol, 90.3%).
[0060]
1H-NMR (CDClThree) Δ 7.39-7.22 (10H, m, aromatic), 5.70 (1H, d, H-1 J1,2= 3.60), 4.78, 4.69 (each 1H, d, benzyl, Jgem= 12.60), 4.55 (1H, br.t, H-2), 4.53, 4.44 (each 1H, d, benzyl, Jgem= 12.30), 4.16 (1H, d, H-3, J2,3= 4.50), 3.71, 3.56 (each 1H, d, H-5, Jgem= 11.40), 1.73, 1.33 (each 3H, s, acetonide)
EIMS m / z: 394 (M+).
HRMS m / z (M+): Calcd. for Ctwenty fourH26OFive: 394.1780, Found: 394.1777
[Α]D  + 22.6 ° (c = 1.00, CHClThree)
[0061]
(4) Synthesis of 4-C-triethylsilylethyl-3,5-di-O-benzyl-1,2-O-isopropylidene-α-D-ribo-pentofuranose (Compound 5)
[Chemical 9]
Figure 0004076114
Compound 4 (5.00 g, 12.7 mmol) was dissolved in dry tetrahydrofuran (100 ml), and 1.6M n-butyllithium n-hexane solution (9.50 ml, 15.2 mmol) was added at −78 ° C. under an argon atmosphere. In addition, the mixture was stirred at the same temperature for 5 minutes. Under the same conditions, chlorotriethylsilane (2.55 ml, 15.2 mmol) was added and stirred for 30 minutes. After adding water and stirring, the organic layer was dried over anhydrous magnesium sulfate. The organic layer was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel 1000 ml, n-hexane: ethyl acetate = 3: 1) to give colorless transparent oily compound 5 (6.32 g, 12.4 mmol, 97 .6%).
[0062]
1H-NMR (CDClThree) Δ 7.41-7.22 (10H, m, aromatic), 5.71 (1H, d, H-1, J1,2= 3.85), 4.77, 4.65 (each 1H, d, benzyl, Jgem= 12.09), 4.63 (1H, br.t, H-2), 4.57, 4.48 (each 1H, d, benzyl, Jgem= 12.09), 4.23 (1H, d, H-3, J2,3= 4.67), 1.73, 1.33 (each 3H, s, acetonide), 0.98 (9H, t, Si-CH)2-CHThree, J = 7.83), 0.60 (6H, Si-CH2-CHThree, J = 7.97)
EIMS m / z: 508 (M+).
HRMS m / z (M+): Calcd. for C30H40OFiveSi: 508, 2645, Found: 508, 2642
[Α]D  −27.27 ° (c = 1.445, CHClThree)
[0063]
(5) Synthesis of 4-C-triethylsilylethyl-1,2-di-O-acetyl-3,5-di-O-benzyl-D-ribo-pentofuranose (Compound 6)
[Chemical Formula 10]
Figure 0004076114
Compound 5 (5.55 g, 10.9 mmol) was dissolved in acetic acid (70.0 ml), trifluoroacetic acid (10.0 ml) and water (30.0 ml) were added, and the mixture was stirred at room temperature overnight. The disappearance of compound 5 was confirmed on silica gel thin layer chromatography, and the reaction solution was evaporated under reduced pressure. The residue was azeotroped three times with toluene, dissolved in pyridine (50.0 ml), acetic anhydride (10.3 ml, 0.11 mol) was added, and the mixture was stirred at room temperature overnight. The reaction solution was evaporated under reduced pressure, the residue was dissolved in ethyl acetate, the organic layer was washed with water and dried over anhydrous magnesium sulfate. After the organic layer was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (elution with silica gel 1000 ml, n-hexane: ethyl acetate = 5: 1) to give colorless and transparent candy-like compound 6 (4.80 g, 8.68 mmol, 79.6%) was obtained as an anomeric mixture (α: β = 1: 6.6).
[0064]
1H-NMR for α anomer (CDClThree) Δ 7.38-7.28 (10H, m, aromatic), 6.39 (1H, d, H-1, J1,2= 4.67), 5.13 (1H, dd, H-2, J1,2= 4.67, J2,3= 6.87), 4.80, 4.55 (each 1H, benzyl, d, Jgem= 12.09), 4.61, 4.52 (each 1H, d, benzyl, Jgem= 12.09), 4.30 (1H, d, H-3, J2,3= 6.87), 3.62 (2H, d, H-5, J = 0.55), 2.12, 2.07 (each 3H, s.acetyl), 0.94 (9H, t, Si) -CH2-CHThree, J = 7.97), 0.55 (6H, Si-CH2-CHThree, J = 7.97)
[Α]D  -21.8 ° (c = 1.00, CHClThree)
[0065]
1H-NMR for β anomer (CDClThree) Δ 7.35-7.24 (10H, m, aromatic), 6.20 (1H, d, H-1, J1,2= 0.82), 5.33 (1H, dd, H-2, J1,2= 0.82, J2,3= 4.67), 4.66, 4.61 (each 1H, benzyl, d, Jgem= 11.81), 4.56, 4.47 (each 1H, benzyl, d, Jgem= 11.81), 4.48 (1H, d, H-3, J2,3= 4.67), 3.69, 3.62 (each 1H, d, H-5, Jgem= 10.99), 2.09, 1.84 (each 3H, s.acetyl), 0.96 (9H, t, Si-CH)2-CHThree, J = 7.97), 0.58 (6H, Si—CH2-CHThree, J = 7.97)
[Α]D  -58.0 ° (c = 1.00, CHClThree)
EIMS m / z: 552 (M+).
HRMS m / z (M+): Calcd. for C31H40O7Si: 552.2543, Found: 552.2551
[0066]
(6) Synthesis of 4'-C-triethylsilylyl-2'-O-acetyl-3 ', 5'-di-O-benzyluridine (Compound 7)
Embedded image
Figure 0004076114
Compound 6 (3.00 g, 5.43 mmol) was dissolved in 1,2-dichloroethane (100 ml), uracil (1.52 g, 13.6 mmol), N, O-bis (trimethylsilyl) acetamide (9.40 ml, 38 ml). 0.0 mmol) was added and heated to reflux for 1 hour. After returning the reaction solution to room temperature, trimethylsilyl trifluoromethanesulfonate (1.97 ml, 10.9 mmol) was added, and the mixture was stirred at 50 ° C. overnight. After adding a saturated aqueous sodium hydrogen carbonate solution and stirring, the insoluble precipitate was filtered off and the organic layer was dried over anhydrous magnesium sulfate. The organic layer was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel 300 ml, eluted with n-hexane: ethyl acetate = 1: 1) to give colorless and transparent candy-like compound 7 (2.50 g, 4 .13 mmol, 76.1%).
[0067]
1H-NMR (CDClThree) Δ 8.63 (1H, br.s, 3-NH), 7.59 (1H, d, 6-H, J5,6= 8.24), 7.41-7.24 (10H, m, aromatic), 6.31 (1H, d, H-1 ', J1 ', 2'= 4.95), 5.34 (1H, d, H-5, J5,6= 8.24), 5.21 (1H, dd, H-2 ', J1 ', 2'= 4.95, J2 ', 3'= 6.04), 4.71, 4.58 (each 1H, d, benzyl, Jgem= 11.81), 4.48 (2H, s, benzyl), 4.34 (1H, d, H-3 ', J2 ', 3'= 6.04), 3.86, 3.67 (each 1H, d, H-5 ', Jgem= 10.50), 2.05 (3H, s, acetate), 0.97 (9H, t, Si-CH)2-CHThree, J = 7.95), 0.60 (6H, Si-CH2-CHThree, J = 7.95).
FABMS m / z: 605 (MH+).
HRMS m / z (MH+): Calcd. forC33H41N2O7Si: 605.2683, Found: 605.2683.
[Α]D  -21.97 ° (c = 1.015, CHClThree).
[0068]
(7) Synthesis of 4′-C-triethylsilylethyl-3 ′, 5′-di-O-benzyluridine (Compound 8)
Embedded image
Figure 0004076114
Compound 7 (2.00 g, 3.3 mmol) was dissolved in methanol (90.0 ml), triethylamine (10.0 ml) was added, and the mixture was stirred at room temperature for 48 hours. The reaction solution was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel 200 ml, eluted with n-hexane: ethyl acetate = 1: 1) to give white powdered compound 8 (1.72 g, 3. 06 mmol, 92.4%).
[0069]
1H-NMR (CDClThree) Δ 8.43 (1H, br.s, 3-NH), 7.55 (1H, d, H-6, J5,6= 8.24), 7.41-7.25 (10H, m, aromatic), 6.10 (1H, d, H-1 ', J1 ', 2'= 5.22), 5.37 (1H, dd, H-5, J5,6= 8.24), 4.96, 4.66 (each 1H, d, benzyl, Jgem= 11.54), 4.56, 4.50 (each 1H, d, benzyl, Jgem= 11.00), 4.21 (1H, m, H-2 '), 4.17 (1H, d, H-3', J2 ', 3'= 5.77), 3.87, 3.74 (each 1H, d, H-5 ', Jgem= 10.44), 3.02 (1H, br.d, 2'-OH), 0.97 (9H, t, Si-CH)2-CHThree, J = 7.69), 0.60 (6H, Si-CH2-CHThree, J = 7.69).
FABMS m / z: 563 (MH+).
HRMS m / z (MH+): Calcd. forC31H39N2O6Si: 563.2577, Found: 563.2586.
[Α]D  -21.56 ° (c = 1.025, CHClThree)
m. p. 119-120 ° C
[0070]
(8) Synthesis of 4′-C-triethylsilylyluridine (Compound 9)
Embedded image
Figure 0004076114
Compound 8 (1.50 g, 2.67 mmol) was dissolved in dichloromethane (75.0 ml), and 1.0 M boron trichloride dichloromethane solution (26.7 ml, 26.7 mmol) was added at −78 ° C. under an argon atmosphere. Stir at the same temperature for 3 hours. After adding a mixed solution of pyridine (10.0 ml) and methanol (20.0 ml) at −78 ° C. and stirring for 10 minutes, the reaction solution was distilled off under reduced pressure. The residue was partitioned between ethyl acetate and water, and the organic layer was dried over anhydrous magnesium sulfate. The reaction solution was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel 200 ml, eluted with chloroform: methanol = 9: 1) to give white powdered compound 9 (0.95 g, 2.48 mmol, 92 0.9%).
[0071]
1H-NMR (CDClThree) Δ 11.36 (1H, d, 3-NH), 7.81 (1H, d, H-6, J5,6= 8.24), 5.92 (1H, d, H-1 ', J1 ', 2'= 6.32), 5.68 (1H, dd, J5,6= 8.24), 5.55 (1H, t, 5'-OH), 5.33 (1H, d, 2'-OH), 5.16 (1H, d, 3'-OH), 4. 13 (1H, dd, H-2 ′, J1 ', 2'= 6.32, J2 ', 3'= 5.77), 4.07 (1H, t, H-3 ', J2 ', 3'= 5.77), 3.58 (1H, d, H-5 '), 0.96 (9H, t, Si-CH)2-CHThree, J = 7.97), 0.57 (6H, Si-CH2-CHThree, J = 7.97).
FABMS m / z: 383 (MH+).
HRMS m / z (MH+): Calcd. forC17H27N2O6Si: 383, 1638, Found: 383.1645.
[Α]D  −4.50 ° (c = 1.00, CHThreeOH)
m. p. 183-186 ° C
[0072]
(9) Synthesis of 4′-C-triethylsilylyl-3 ′, 5′-di-O-acetyl-2′-deoxyuridine (Compound 11)
Embedded image
Figure 0004076114
Figure 0004076114
Compound 9 (0.80 g, 2.09 mmol) was suspended in acetonitrile (20.0 ml), and at 85 ° C., an acetyl bromide (1.55 ml, 21.0 mmol) acetonitrile solution (20.0 ml) was added over 30 minutes. The solution was added dropwise and heated to reflux for an additional hour. After the reaction solution was distilled off under reduced pressure, the residue was dissolved in ethyl acetate and washed with a saturated aqueous sodium bicarbonate solution and a saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous magnesium sulfate and evaporated under reduced pressure to obtain 4′-C-triethylsilylethyl-3 ′, 5′-di-O-acetyl-2′-bromo-2′-deoxyuridine 10 . Crude compound 10 was azeotroped three times with dry toluene, then dissolved in dry toluene (50.0 ml), and tri-n-butyltin hydride (1.08 ml, 4.19 mmol), 2,2 ′ at 85 ° C. -Azobis (isobutyronitrile) (0.01 g) was added, and the mixture was heated and stirred for 1 hour in an argon atmosphere. After the reaction solution was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (silica gel 300 ml, eluted with toluene: ethyl acetate) to give colorless and transparent candy-like compound 11 (0.40 g, 42.6%). Obtained.
[0073]
1H-NMR (CDClThree) Δ 7.49 (1H, d, H-6, J5,6= 8.24), 6.34 (1H, t, H-1 ', J1 ', 2'= 6.46), 5.77 (1H, dd, H-5, J5,6= 8.24), 5.37 (1H, dd, H-3 ', J2 ', 3'= 4.95, 7.42), 4.42, 4.37 (each 1H, d, H-5 ', Jgem= 11.81), 2.62, 2.32 (each 1H, m, H-2 '), 2.13 (6H, s, acetate), 1.00 (9H, t, Si-CH)2-CHThree, J = 7.82), 0.63 (6H, Si-CH2-CHThree, J = 7.82).
FABMS m / z: 451 (MH+).
HRMS m / z (MH+): Calcd. forCtwenty oneH31N2O7Si: 451.1900, Found: 451.1934.
[Α]D  −11.7 ° (c = 1.04, CHClThree)
[0074]
(10) Synthesis of 4′-C-ethynyl-2′-deoxycytidine (Compound 13)
Embedded image
Figure 0004076114
Figure 0004076114
Compound 11 (0.30 g, 0.67 mmol) was dissolved in pyridine (15.0 ml), p-chlorophenyl phosphorodichloridate (0.33 ml, 2.00 mmol) was added under ice cooling, and the mixture was stirred for 2 minutes. 1,2,4-Triazole (0.46 g, 6.66 mmol) was added and stirred at room temperature for 7 days. After confirming the disappearance of the raw materials on silica gel thin layer chromatography, the reaction solution was evaporated under reduced pressure, the residue was partitioned between ethyl acetate and water, and the organic layer was dried over anhydrous magnesium sulfate. The organic layer was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel 50 ml, eluted with n-hexane: ethyl acetate = 1: 3) to give colorless and transparent candy-like 4- (1,2,4 -Triazolo) -4′-C-ethyl-2′-deoxyuridine 12 was obtained. Compound 12 was dissolved in dioxane (30.0 ml), 25% aqueous ammonia (10.0 ml) was added, and the mixture was stirred at room temperature overnight. After confirming the disappearance of 12 on silica gel thin layer chromatography, the reaction solution was evaporated under reduced pressure. The residue was dissolved in methanol (45.0 ml), 1N aqueous sodium hydroxide solution (5.00 ml, 5.00 mmol) was added, and the mixture was stirred at room temperature for 2 hr. Acetic acid (0.29 ml, 5.00 mmol) was added, the reaction solution was evaporated under reduced pressure, and the residue was purified by reverse-phase medium pressure column chromatography (elution with 50 g of Wakosil 40C18, 5% aqueous acetonitrile). The fraction containing Compound 13 was dried under reduced pressure, and the residue was crystallized from methanol-ether to obtain Compound 13 (0.12 g, 0.48 mmol, 71.6%) as white crystals.
[0075]
1H-NMR (DMSO-d6) Δ 7.78 (1H, d, H-6, J5,6= 7.50), 7.17 (2H, br.d, NH2), 6.14 (1H, dd, H-1 ′, J1 ', 2'= 4.76, 7.20), 5.72 (1H, d, H-5, J5,6= 7.50), 5.49 (1H, d, 3'-OH), 5.42 (1H, t, 5'-OH), 4.30 (1H, t, H-3 ', J2 ', 3'= 7.20), 3.64, 3.58 (each 1H, m, H-5 ′), 3.48 (1H, s, ethyl), 2, 25, 2.07 (each 1H, m, H) -2 ')
[Α]D  + 75.0 ° (c = 1.00, CHThreeOH)
FABMS m / z: 252 (MH+).
HRMS m / z (MH+): Calcd. forC11H14NThreeOFour: 252.0984, Found: 252.0979.
UV λmax (CHThreeOH) nm (ε): 271 (9227)
m. p. 220 ° C (Dec)
[0076]
Reference synthesis example 2
  Reference synthesis example 1In the same manner, using 5-fluorouracil, 5-ethyluracil, 5-bromovinyluracil, and 5-ethynyluracil instead of uracil of (6) in the above, the reaction is carried out in the same manner. The following compounds are synthesized.
  4'-C-ethynyl-2'-deoxy-5-fluorouridine
  4'-C-ethynyl-2'-deoxy-5-ethyluridine
  4'-C-ethynyl-2'-deoxy-5-bromovinyluridine
  4'-C-ethynyl-2'-deoxy-5-ethynyluridine
  4'-C-ethynyl-2'-deoxy-5-ethylcytidine
  4'-C-ethynyl-2'-deoxy-5-bromovinylcytidine
  4'-C-ethynyl-2'-deoxy-5-ethynylcytidine
[0077]
Reference synthesis example 3
(1) Synthesis of 4-C-ethynyl-1,2-di-O-acetyl-3,5-di-O-benzyl-D-ribo-pentofuranose (Compound 14)
[Chemical Formula 3]
Figure 0004076114
  Compound 4 (6.00 g, 15.2 mmol) was dissolved in acetic acid (70.0 ml), trifluoroacetic acid (10.0 ml) and water (30.0 ml) were added, and the mixture was stirred at room temperature overnight. The disappearance of compound 4 was confirmed on silica gel thin layer chromatography, and the reaction solution was evaporated under reduced pressure. The residue was azeotroped three times with toluene, dissolved in pyridine (50.0 ml), acetic anhydride (14.3 ml, 0.15 mol) was added, and the mixture was stirred at room temperature overnight. The reaction solution was evaporated under reduced pressure, the residue was dissolved in ethyl acetate, the organic layer was washed with water and dried over anhydrous magnesium sulfate. After the organic layer was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (elution with silica gel 1000 ml, n-hexane: ethyl acetate = 2: 1) to give colorless and transparent candy-like compound 14 (5.40 g, 12.3 mmol, 80.9%) was obtained as an anomeric mixture (α: β = 1: 3.0).
[0078]
1H-NMR for α anomer (CDClThree) Δ 7.39-7.25 (10H, m, aromatic), 6.42 (1H, d, H-1, J1,2= 4.67), 5.13 (1H, dd, H-2, J1,2= 4.67, J2,3= 6.87), 4.81, 4.60 (each1H, benzyl, d, Jgem= 12.009), 4.59, 4.51 (each1H, d, benzyl, Jgem= 12.09), 4.30 (1H, d, H-3, J2,3= 6.87), 3.63 (2H, d, H-5, J = 0.55), 2.73 (1H, s, ethyl), 2.10, 2.02 (each 3H, s. Acetate) .
[0079]
1H-NMR for β anomer (CDClThree) Δ 7.35-7.20 (10H, m, aromatic), 6.21 (1H, d, H-1, J1,2= 0.82), 5.40 (1H, dd, H-2, J1,2= 0.82, J2,3= 4.67), 4.66, 4.60 (each1H, benzyl, d, Jgem= 11.81), 4.50, 4.47 (each1H, benzyl, d, Jgem= 11.81), 4.42 (1H, d, H-3, J2,3= 4.67), 3.70, 3.66 (each 1H, d, H-5, Jgem= 10.99), 2.80 (1H, s, ethylyl), 2.08, 1.81 (each 3H, s. Acethyl).
EIMS m / z: 438 (M+).
HRMS m / z (M+): Calcd. for Ctwenty fiveH26O7: 438.1679, Found: 438.1681
[0080]
(2) Synthesis of 4′-C-ethynyl-2′-O-acetyl-3 ′, 5′-di-O-benzyluridine (Compound 15)
Embedded image
Figure 0004076114
Compound 14 (2.50 g, 5.70 mmol) was dissolved in 1,2-dichloroethane (80.0 ml), uracil (1.60 g, 14.27 mmol), N, O-bis (trimethylsilyl) acetamide (9.86 ml). , 39.74 mmol) was added and heated to reflux for 1 hour. After returning the reaction solution to room temperature, trimethylsilyl trifluoromethanesulfonate (2.06 ml, 11.40 mmol) was added, and the mixture was stirred at 50 ° C. overnight. After adding a saturated aqueous sodium hydrogen carbonate solution and stirring, the insoluble precipitate was filtered off and the organic layer was dried over anhydrous magnesium sulfate. The organic layer was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel 300 ml, eluted with n-hexane: ethyl acetate = 2: 3) to give colorless and transparent candy-like compound 15 (2.44 g, 4 97 mmol, 87.2%).
[0081]
1H-NMR (CDClThree) 8.55 (1H, br.s, 3-NH), 7.55 (1H, d, 6-H, J5,6= 8.24), 7.40-7.22 (10H, m, aromatic), 6.25 (1H, d, H-1 ', J1 ', 2'= 4.40), 5.33 (1H, d, H-5, J5,6= 8.24), 5.22 (1H, dd, H-2 ', J1 ', 2'= 4.40, J2 ', 3'= 5,77), 4.63 (2H, s, benzyl), 4.45, 4.40 (each 1H, d, benzyl, Jge m= 10.99), 4.34 (1H, d, H-3 ', J2 ', 3'= 5.77), 3.84, 3.62 (each 1H, d, H-5 ', Jgem= 10.58), 2.69 (1H, s, ethylyl), 2.11 (3H, s, etheryl).
FABMS m / z: 491 (MH+).
HRMS m / z (MH+): Calcd. for C27H27N2O7: 491.1818, Found: 491.1821.
[Α]D  29.0 ° (c = 1.00, CHClThree).
[0082]
(3) Synthesis of 1- (4-C-ethyl-2-O-acetyl-3,5-di-O-benzyl-β-D-arabino-pentofuranosyl) uracil (Compound 16)
Embedded image
Figure 0004076114
Compound 15 (2.30 g, 4.69 mmol) was dissolved in methanol (90.0 ml), 1N aqueous sodium hydroxide solution (10.0 ml) was added, and the mixture was stirred at room temperature for 2 hr. The reaction solution was neutralized with acetic acid and then dried under reduced pressure, and the residue was dissolved in ethyl acetate. The organic layer was washed with water and dried over anhydrous magnesium sulfate, and the organic layer was dried under reduced pressure. The residue was azeotroped three times with a small amount of pyridine, the residue was dissolved in pyridine (50.0 ml), methanesulfonyl chloride (0.73 ml, 9.41 mmol) was added under ice cooling, and the mixture was stirred for 3 hours. After adding a small amount of water to the reaction solution and drying to dryness under reduced pressure, the residue was dissolved in ethyl acetate and washed with water. The organic layer was dried over anhydrous magnesium sulfate and then dried under reduced pressure. The residue was dissolved in tetrahydrofuran (30.0 ml), 1N aqueous sodium hydroxide solution (50.0 ml) was added, and the mixture was heated to reflux for 1 hour. The reaction solution was neutralized with acetic acid, and the target product was extracted with ethyl acetate. The organic layers were combined and dried over anhydrous magnesium sulfate. The organic layer was dried under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel 250 ml, eluted with n-hexane: ethyl acetate = 1: 2) to give white powdered compound 16 (1.54 g, 3 .43 mmol, 73.1%).
[0083]
1H-NMR (CDClThree) Δ 9.82 (1H, br.s, 3-NH), 7.73 (1H, d, 6-H, J5,6= 8.06), 7.41-7.19 (10H, m, aromatic), 6.24 (1H, d, H-1 ', J1 ', 2'= 5,86), 5.25 (1H, d, H-5, J5,6= 8.06), 4.88, 4.76 (each1H, d, benzyl, Jgem= 12.21), 4.78 (1H, H-2 '), 4.52 (1H, 2'-OH), 4.46, 4.39 (each 1H, d, benzyl, Jgem= 11.11), 4.19 (1H, d, H-3 ', J2 ', 3'= 6.59), 3.834, 3.64 (each 1H, d, H-5 ', Jgem= 10.62), 2.67 (1H, s, ethylyl).
FABMS m / z: 449 (MH+).
HRMS m / z (MH+): Calcd. for Ctwenty fiveHtwenty fiveN2O6: 449.1712, Found: 449.1713.
[Α]D  40.7 ° (c = 1.00, CHClThree).
m. p. 105-106 ° C
[0084]
(4) Synthesis of 1- (4-C-ethyl-2,3,5-tri-O-acetyl-β-D-arabino-pentofuranosyl) uracil (Compound 17)
Embedded image
Figure 0004076114
Compound 16 (1.40 g, 3.12 mmol) was dissolved in dichloromethane (40.0 ml), and 1.0 M boron tribromide dichloromethane solution (15.6 ml, 15.6 mmol) was added at −78 ° C. under an argon atmosphere. The mixture was stirred at the same temperature for 3 hours. After adding a mixed solution of pyridine (5.00 ml) and methanol (10.0 ml) at −78 ° C. and stirring for 10 minutes, the reaction solution was distilled off under reduced pressure. The residue was azeotroped three times with a small amount of methanol and three times with a small amount of pyridine, then the residue was dissolved in pyridine (50.0 ml), acetic anhydride (4.42 ml, 46.7 mmol) was added, and the mixture was stirred at room temperature overnight. The reaction solution was dried under reduced pressure, the residue was azeotroped three times with a small amount of toluene, the residue was partitioned between ethyl acetate and water, and the organic layer was dried over anhydrous magnesium sulfate. The reaction solution was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel 150 ml, eluted with chloroform: methanol = 20: 1) to give white powdered compound 17 (1.15 g, 2.92 mmol, 93). .6%).
[0085]
1H-NMR (CDClThree) Δ 8.99 (1H, br.s, 3-NH), 7.42 (1H, d, 6-H, J5,6= 8.24), 6.45 (1H, d, H-1 ', J1 ', 2'= 4.95), 5.76 (1H, dd, H-5, J5,6= 8.24), 5.55 (1H, dd, H-2 ', J1 ', 2'= 4.95, J2 ', 3'= 3.57), 5.34 (1H, d, H-3 ', J2 ', 3'= 3.57), 4.51, 4.42 (each 1H, d, H-5 ', Jgem= 11.81), 2.73 (1H, s, ethyl).
FABMS m / z: 395 (MH+).
HRMS m / z (MH+): Calcd. for C17H19N2O9: 395.1090, Found: 395.1092.
[Α]D  18.2 ° (c = 1.00, CHClThree).
m. p. 160-162 ° C
[0086]
(5) Synthesis of 1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) cytosine (Compound 19)
Embedded image
Figure 0004076114
Figure 0004076114
Compound 17 (1.00 g, 2.54 mmol) was dissolved in pyridine (50.0 ml), p-chlorophenylphosphorodichloridate (1.05 ml, 6.38 mmol) was added under ice cooling, and the mixture was stirred for 5 minutes. 1,2,4-Triazole (1.75 g, 25.3 mmol) was added and stirred at room temperature for 7 days. After confirming the disappearance of the raw materials on silica gel thin layer chromatography, the reaction solution was evaporated under reduced pressure, the residue was partitioned between ethyl acetate and water, and the organic layer was dried over anhydrous magnesium sulfate. The organic layer was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel 50 ml, eluted with n-hexane: ethyl acetate = 1: 3) to give colorless and transparent candy-like 1- (4-C-ethylnyl). -2,3,5-tri-O-acetyl-β-D-arabino-pentofuranosyl) -4- (1,2,4-triazolo) uracil 18 was obtained. Compound 18 was dissolved in dioxane (60.0 ml), 25% aqueous ammonia (20.0 ml) was added, and the mixture was stirred at room temperature overnight. After confirming the disappearance of compound 18 on silica gel thin layer chromatography, the reaction solution was evaporated under reduced pressure. The residue was purified by reverse phase medium pressure column chromatography (Wakosil 40C18 50 g, eluted with 3% aqueous acetonitrile). The fraction containing Compound 19 was dried under reduced pressure, and the residue was crystallized from methanol-ether to obtain Compound 19 (0.51 g, 1.91 mmol, 75.2%) as white crystals.
[0087]
1H-NMR (DMSO-d6) Δ 7.52 (1H, d, H-6, J5,6= 7.42), 7.10 (2H, br.d, NH2), 6.17 (1H, dd, H-1 ′, J1 ', 2'= 6.04), 5.66 (1H, d, H-5, J5,6= 7.42), 5.62, 5.49 (each 1H, d, 2'-OH, 3'-OH), 5.42 (1H, t, 5'-OH), 4.16 (1H, q , H-2 ', J1 ', 2'= J2 ', 3'= 6.04), 3.97 (1H, t, H-3 ', J2 ', 3'= 6.04), 3.58 (2H, m, H-5 '), 3.48 (1H, s, ethyl).
[Α]D  + 95.7 ° (c = 1.00, CHThreeOH)
FABMS m / z: 268 (MH+).
HRMS m / z (MH+): Calcd. for C11H14NThreeOFive: 268.0933, Found: 268.0965.
UV λmax(CHThreeOH) nm (ε): 271 (9350)
m. p. ~ 200 ° C (Dec)
[0088]
Reference synthesis example 4
  Reference synthesis example 3In the same manner, using 5-fluorouracil, 5-ethyluracil, 5-bromovinyluracil and 5-ethynyluracil instead of uracil of (2) in the above, the reaction is carried out in the same manner. The following compounds are synthesized.
[0089]
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-fluorouracil
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-ethyluracil
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-bromovinyluracil
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-ethynyluracil
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-fluorocytosine
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-ethylcytosine
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-bromovinylcytosine
1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -5-ethynylcytosine
[0090]
Synthesis example 1
(1) Synthesis of 2′-O-acetyl-3 ′, 5′-di-O-benzyl-4′-C-triethylsilylthyladenosine (Compound 20)
[Formula 4]
Figure 0004076114
  Adenine (0.405 g, 3 mmol), N, O-bis (trimethylsilyl) acetamide (2.7 ml, 11 mmol) were added to a solution of compound 6 (1.1 g, 2 mmol) in 1,2-dichloroethane (16.5 ml), Heated to reflux for 1.5 hours. After cooling to room temperature, trimethylsilyl trifluoromethanesulfonate (0.77 ml, 4 mmol) was added dropwise with stirring at 0 ° C. under an argon atmosphere. After stirring at room temperature for 15 minutes, the mixture was heated to reflux for 24 hours and cooled to room temperature. Saturated aqueous sodium hydrogen carbonate was added at 0 ° C., and the mixture was stirred at room temperature for 15 minutes. Celite filtration is performed to remove insoluble matter, and the organic layer of the filtrate is separated. The aqueous layer is extracted once with chloroform, and then the organic layer is washed once with saturated aqueous sodium chloride and then with anhydrous sodium sulfate. Dried. The solvent was distilled off under reduced pressure, and the residue was applied to a silica gel column (15 g) and eluted with ethyl acetate: n-hexane: ethanol (20: 20: 1) to obtain 0.69 g (55%) of compound 20. It was.
[0091]
1H-NMR (CDClThree) Δ 8.32 (1H, s, purine-H), 8.01 (1H, s, purine-H), 7.27-7.37 (10H, m, 2 × Ph), 6.37 (1H, d) , J = 5.1 Hz, H-1 ′), 5.60 (1H, t, J = 5.6 Hz, H-2 ′), 5.59 (2H, br s, NH)2), 4.75 (1H, d, J = 11.0 Hz, CHH′Ph), 4.69 (1H, d, J = 5.6 Hz, H-3 ′), 4.60 (1H, d, J = 11.0 Hz, CHH 'Ph), 4.58 (1H, d, J = 11.2 Hz, CHH′Ph), 4.51 (1H, d, J = 11.0 Hz, CHH 'Ph), 3.84 (1H, d, J = 11.1 Hz, H-5 ′), 3.69 (1H, d, J = 11.1 Hz, H-5 ′) 2.03 (3H, s, Ac), 0.98 (9H, t, J = 8.7 Hz, 3 × CH Three CH2), 0.61 (6H, q, J = 8.7 Hz, 3 × CHThreeCH 2 ).
[0092]
(2) Synthesis of 3 ′, 5′-di-O-benzoyl-4′-C-triethylsilylthyladenosine (Compound 21)
Embedded image
Figure 0004076114
Triethylamine (3.3 ml) was added to a solution of compound 20 (0.354 g, 0.565 mmol) in methanol (14 ml), sealed, and stirred at room temperature for 1 day. The residue was applied to a silica gel column (10 g) and eluted with ethyl acetate: n-hexane: ethanol (20: 10: 1) to obtain 0.283 g (86%) of compound 21.
[0093]
1H-NMR (CDClThree) Δ 8.30 (1H, s, purine-H), 8.00 (1H, s, purine-H), 7.30-7.42 (10H, m, 2 × Ph), 6.17 (1H, d) , J = 5.6 Hz, H-1 ′), 5.55 (2H, br s, NH2), 4.97 (1H, d, J = 11.1 Hz, CHH'Ph), 4.75-4.80 (1H, m, H-2 '), 4.72 (1H, d, J = 11.1 Hz, CHH 'Ph), 4.59 (1H, d, J = 11.6 Hz, CHH′Ph), 4.54 (1H, d, J = 11.6 Hz, CHH 'Ph), 4.50 (1H, d, J = 5.6 Hz, H-3 ′), 3.84 (1H, d, J = 11.1 Hz, H-5 ′), 3.74 (1H, d , J = 11.1 Hz, H-5 ′), 3.50 (1H, d, J = 8.3 Hz, OH), 0.98 (9H, t, J = 7.9 Hz, 3 × CH Three CH2), 0.62 (6H, q, J = 7.9 Hz, 3xCHThreeCH 2 ).
[0094]
(3) Synthesis of 3 ′, 5′-di-O-benzyl-2′-deoxy-4′-C-triethylsilylthyladenosine (Compound 22)
Embedded image
Figure 0004076114
To a solution of compound 21 (0.18 g, 0.308 mmol) and DMAP (0.113 g, 0.924 mmol) in acetonitrile (10.6 ml) under stirring at room temperature under an argon atmosphere, 4-fluorophenylchlorothionoformate (0. 065 ml, 0.462 mmol) was added dropwise, and the mixture was stirred at room temperature for 1 hour and then concentrated under reduced pressure. Water was added and the mixture was extracted with ethyl acetate. The organic layer was washed once with water and once with saturated brine, dried over anhydrous sodium sulfate, the solvent was evaporated under reduced pressure, and the residue was short silica gel column. And eluted with ethyl acetate: n-hexane: ethanol (20: 20: 1) to obtain a crude thiocarbonate.
This thiocarbonate was dissolved in toluene (9 ml), tributyltin hydride (0.41 ml, 1.85 mmol) and 2,2′-azobis (isobutyronitrile) (0.013 g, 0.077 mmol). The reaction mixture was stirred at 85 ° C. under an argon atmosphere for 1 hour and cooled to room temperature. The solvent was distilled off under reduced pressure, and the residue was applied to a silica gel column (20 g) and eluted with ethyl acetate: n-hexane: ethanol (20: 10: 1) to obtain 0.10 g (57%) of compound 22. It was.
[0095]
1H-NMR (CDClThree) Δ 8.32 (1H, s, purine-H), 8.11 (1H, s, purine-H), 7.26-7.37 (10H, m, 2 × Ph), 6.51 (1H, t) , J = 6.0 Hz, H-1 ′), 5.54 (2H, br s, NH2), 4.72 (1H, d, J = 12.0 Hz, CHH′Ph), 4.61 (2H, d, J = 10.5 Hz, CH2Ph), 4.60 (1H, t, J = 6.6 Hz, H-3 '), 4.55 (1H, d, J = 12.0 Hz, CHH 'Ph), 3.88 (1H, d, J = 10.7 Hz, H-5 ′), 3.76 (1H, d, J = 10.7 Hz, H-5 ′), 2.71-2.76. (2H, m, H-2 ′), 0.99 (9H, t, J = 7.8 Hz, 3 × CH Three CH2), 0.62 (6H, q, J = 7.5 Hz, 3 × CHThreeCH 2 ).
[0096]
(4) Synthesis of 2′-deoxy-4′-C-ethylladenosine (Compound 23) and 9- (2-deoxy-4-C-ethylyl-β-D-ribofuranosyl) purine (Compound 24)
Embedded image
Figure 0004076114
To a solution of compound 22 (0.23 g, 0.404 mmol) in tetrahydrofuran (9.4 ml) was added 1.0 M tetrabutylammonium fluoride (0.44 ml, 0.44 mmol) with stirring at room temperature, and stirring was continued for 30 minutes at the same temperature. After that, the solvent was distilled off under reduced pressure. The residue was applied to a short silica gel column and eluted with ethyl acetate to obtain 0.186 g of a crude detriethylsilyl derivative.
A tetrahydrofuran (1.8 ml) solution of the above detriethylsilyl compound and absolute ethanol (0.18 ml) were added to the flask, and condensed with about 18 ml using ammonia gas at −78 ° C., and metal sodium (0. 047 g, 2.02 mmol) was quickly added and stirred at the same temperature for 15 minutes. Also, sodium metal (0.023 g) was added, and the mixture was further stirred for 10 minutes, then ammonium chloride was added, and the mixture was stirred at room temperature for 1.5 hours. Ethanol was then added to the residue, and insolubles were filtered off with Celite. did. The insoluble material was washed twice with ethanol, and the filtrate and the washing solution were concentrated under reduced pressure. The residue was applied to a silica gel column (10 g) and eluted with ethyl acetate: methanol (20: 1). 0.079 g of 24 mixture was obtained. Subsequently, the mixture was applied to a reverse phase ODS silica gel column and eluted with a 5% aqueous ethanol solution to obtain 0.028 g (27%) of compound 24, and further eluted with a 7.5% aqueous ethanol solution to reduce compound 23 to 0. 0.021 g (19%) was obtained.
[0097]
(Compound 23)
1H-NMR (DMSO-d6) Δ 8.33 (1H, s, purine-H), 8.15 (1H, s, purine-H), 7.30 (2H, brs, NH)2), 6.36 (1H, t, J = 6.4 Hz, H-1 ′), 5.54 (1H, d, J = 5.4 Hz, OH), 5.53 (1H, t, J = 5) .4 Hz, OH), 4.58 (1H, q, J = 5.9 Hz, H-3 ′), 3.66 (1H, dd, J = 12.2, 5.4 Hz, H-5 ′), 3.56 (1H, dd, J = 11.7, 7.3 Hz, H-5 ′), 3.50 (1H, s, ethylyl-H), 2.76 (1H, dt, J = 13.2) , 6.4 Hz, H-2 ′), 2.41 (1H, dt, J = 13.2, 6.8 Hz, H-2 ′).
[0098]
(Compound 24)
1H-NMR (DMSO-d6) Δ 9.18 (1H, s, purine-H), 8.96 (1H, s, purine-H), 8.79 (1H, s, purine-H), 6.50 (1H, t, J) = 7.3, 4.9 Hz, H-1 ′), 5.60 (1H, d, J = 5.9 Hz, OH), 5.29 (1H, t, J = 5.4 Hz, OH), 4 .67 (1H, q, J = 5.9 Hz, H-3 ′), 3.67 (1H, dd, J = 11.7, 5.9 Hz, H-5 ′), 3.58 (1H, dd) , J = 11.7, 6.8 Hz, H-5 ′), 3.53 (1H, s, ethylyl-H), 2.85 (1H, ddd, J = 13.2, 6.8, 4. 9 Hz, H-2 ′), 2.48-2.56 (1H, m, H-2 ′).
[0099]
Synthesis example 2
(1) Synthesis of 9- (2-O-acetyl-3,5-di-O-benzoyl-4-C-triethylsilylethyl-β-D-ribofuranosyl) -2,6-diaminopurine (Compound 25)
[Chemical formula 5]
Figure 0004076114
  Diaminopurine (0.45 g, 3 mmol) and N, O-bis (trimethylsilyl) acetamide (4.4 ml, 18 mmol) were added to a solution of compound 6 (1.1 g, 2 mmol) in 1,2-dichloroethane (16.5 ml). After heating to reflux for 3 hours and cooling to room temperature, trimethylsilyl trifluoromethanesulfonate (0.77 ml, 4 mmol) was added dropwise with stirring at 0 ° C. under an argon atmosphere. After stirring at room temperature for 15 minutes, the mixture was heated to reflux for 24 hours and cooled to room temperature. Saturated aqueous sodium hydrogen carbonate was added at 0 ° C., and the mixture was stirred at room temperature for 15 minutes, filtered through Celite to separate insoluble matters, and the organic layer of the filtrate was separated. The aqueous layer was extracted once with chloroform, then the organic layer was washed once with saturated aqueous sodium chloride, dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the residue was applied to a silica gel column (20 g). Elution with ethyl acetate: n-hexane: ethanol (20: 10: 1) gave 0.85 g (66%) of compound 25.
[0100]
1H-NMR (CDClThree) Δ 7.68 (1H, s, H-8), 7.26-7.37 (10H, m, 2 × Ph), 6.17 (1H, d, J = 6.5 Hz, H-1 ′), 5.78 (1H, dd, J = 6.5, 6.0 Hz, H-2 ′), 5.34 (2H, br s, NH2), 4.76 (1H, d, J = 11.4 Hz, CHH′Ph), 4.69 (1H, d, J = 6.0 Hz, H-3 ′), 4.61 (1H, d, J = 11.4 Hz, CHH 'Ph), 4.60 (1H, d, J = 11.9 Hz, CHH'Ph), 4.55 (2H, brs, NH2), 4.52 (1H, d, J = 11.9 Hz, CHH 'Ph), 3.83 (1H, d, J = 10.7 Hz, H-5 ′), 3.70 (1H, d, J = 10.7 Hz, H-5 ′), 2.04 (3H, s) , Ac), 0.99 (9H, t, J = 8.3 Hz, 3 × CH Three CH2), 0.61 (6H, q, J = 8.3 Hz, 3 × CHThreeCH 2 ).
[0101]
(2) Synthesis of 2,6-diamino-9- (3,5-di-O-benzoyl-4-C-triethylsilylethyl-β-D-ribofuranosyl) purine (Compound 26)
Embedded image
Figure 0004076114
Compound 25 (0.85 g, 1.32 mmol) was treated in the same manner as the synthesis of Compound 21, and the residue was applied to a silica gel column (15 g). Ethyl acetate: n-hexane: ethanol (30: 10: 1) To obtain 0.74 g (93%) of Compound 26.
[0102]
1H-NMR (CDClThree) Δ 7.70 (1H, s, H-8), 7.29-7.42 (10H, m, 2 × Ph), 6.00 (1H, d, J = 4.9 Hz, H-1 ′), 5.35 (2H, br s, NH2), 4.93 (1H, d, J = 11.5 Hz, CHH′Ph), 4.74 (1H, d, J = 11.5 Hz, CHH 'Ph), 4.73 (1H, t, J = 5.8 Hz, H-2 '), 4.60 (1H, d, J = 12.0 Hz, CHH'Ph), 4.55 (2H, brs, NH2), 4.54 (1H, d, J = 12.0 Hz, CHH 'Ph), 4.49 (1H, d, J = 5.9 Hz, H-3 ′), 3.81 (1H, d, J = 10.7 Hz, H-5 ′), 3.72 (1H, d , J = 10.7 Hz, H-5 ′), 3.62 (1H, brs, OH), 0.99 (9H, t, J = 7.8 Hz, 3 × CH Three CH2), 0.62 (6H, q, J = 7.8 Hz, 3xCHThreeCH 2 ).
[0103]
(3) Synthesis of 2,6-diamino-9- (3,5-di-O-benzoyl-2-deoxy-4-C-triethylsilylethyl-β-D-ribofuranosyl) purine (Compound 27)
Embedded image
Figure 0004076114
Compound 26 (0.103 g, 0.171 mmol) was treated in the same manner as the synthesis of Compound 22, and the residue was applied to a silica gel column (10 g). Ethyl acetate: n-hexane: ethanol (30: 10: 1) To give 0.055 g (55%) of compound 27.
[0104]
1H-NMR (CDClThree) Δ 7.79 (1H, s, H-8), 7.26-7.37 (10H, m, 2xPh), 6.34 (1H, dd, J = 6.6, 5.5 Hz, H- 1 ′), 5.36 (2H, br s, NH2), 4.72 (1H, d, J = 11.7 Hz, CHH'Ph), 4.56-4.63 (5H, m, CH2Ph, H-3 '), 4.57 (1H, d, J = 11.7Hz, CHH 'Ph), 3.85 (1H, d, J = 10.1 Hz, H-5 ′), 3.75 (1H, d, J = 10.6 Hz, H-5 ′), 2.62-2.73. (2H, m, H-2 ′), 0.99 (9H, t, J = 7.9 Hz, 3 × CH Three CH2), 0.62 (6H, q, J = 7.9 Hz, 3xCHThreeCH 2 ).
[0105]
(4) Synthesis of 2,6-diamino-9- (2-deoxy-4-C-ethylyl-β-D-ribofuranosyl) purine (Compound 28)
Embedded image
Figure 0004076114
To a solution of compound 27 (0.263 g, 0.45 mmol) in tetrahydrofuran (10.3 ml) was added 1.0 M tetrabutylammonium fluoride (0.5 ml, 0.5 mmol) with stirring at room temperature, and the mixture was stirred at the same temperature for 30 minutes. After that, the solvent was distilled off under reduced pressure. The residue was applied to a short silica gel column and eluted with ethyl acetate: ethanol (30: 1) to obtain 0.214 g of a crude detriethylsilyl compound.
A tetrahydrofuran (2 ml) solution of the above detriethylsilyl compound and absolute ethanol (0.1 ml) were added to the flask, and condensed with ammonia gas at −78 ° C. using about 20 ml, and sodium metal (0.062 g, 0.062 g, 2.7 mmol) was quickly added and stirred at the same temperature for 30 minutes. After adding ammonium chloride, the mixture was stirred at room temperature for 2 hours, ethanol was added to the residue, and the insoluble material was filtered off through celite. The insoluble material was washed twice with ethanol, and the filtrate and the washing solution were concentrated under reduced pressure. The residue was applied to a silica gel column (13 g) and eluted with ethyl acetate: methanol (10: 1). 0.099 g (76%) was obtained.
[0106]
1H-NMR (DMSO-d6) Δ 7.89 (1H, s, H-8), 6.71 (2H, br s, NH)2), 6.20 (1H, t, J = 6.3 Hz, H-1 '), 5.74 (2H, brs, NH)2), 5.59 (1H, t, J = 5.9 Hz, OH), 5.47 (1H, d, J = 4.9 Hz, OH), 4.50 (1H, q, J = 5.9 Hz, H-3 ′), 3.65 (1H, dd, J = 11.7, 5.4 Hz, H-5 ′), 3.56 (1H, dd, J = 11.7, 7.3 Hz, H− 5 ′), 3.46 (1H, s, ethyl-H), 2.64 (1H, dt, J = 12.7, 6.4 Hz, H-2 ′), 2.32 (1H, dt, J = 13.2, 6.4 Hz, H-2 ').
[0107]
Synthesis example 3
Synthesis of 2′-deoxy-4′-C-ethylinosine (Compound 29)
[Chemical 6]
Figure 0004076114
  Adenosine deaminase (0.044 ml, 20 units) was added to a solution of compound 23 (0.022 g, 0.08 mmol) in Tris-HCl buffer (6 ml, pH 7.5), and the mixture was stirred at 40 ° C. for 2.5 hours. After cooling to room temperature, the reaction solution was applied to a reverse phase ODS silica gel column (50 g), desalted by flowing water (500 ml), and then a compound containing 29% was eluted by flowing a 2.5% aqueous ethanol solution. Furthermore, powderization was performed with isopropanol to obtain 0.016 g (72%) of Compound 29.
[0108]
1H-NMR (DMSO-d6) Δ 12.28 (1H, brs, NH), 8.29 (1H, s, purine-H), 8.06 (1H, s, purine-H), 6.32 (1H, dd, J = 6) .8, 4.9 Hz, H-1 ′), 5.57 (1H, d, J = 5.4 Hz, OH), 5.32 (1H, t, J = 5.9 Hz, OH), 4.56 (1H, dt, J = 6.4, 5.4 Hz, H-3 ′), 3.65 (1H, dd, J = 12.2, 5.9 Hz, H-5 ′), 3.57 (1H , Dd, J = 11.7, 6.4 Hz, H-5 ′), 3.50 (1H, s, ethylyl-H), 2.66 (1H, dt, J = 12.2, 5.9 Hz, H-2 ′), 2.46 (1H, dt, J = 13.2, 6.9 Hz, H-2 ′).
[0109]
Synthesis example 4
Synthesis of 2′-deoxy-4′-C-ethylguanosine (compound 30)
[Chemical 7]
Figure 0004076114
  Adenosine deaminase (0.057 ml, 20 units) was added to a solution of compound 28 (0.03 g, 0.103 mmol) in Tris-HCl buffer (7.8 ml, pH 7.5), and the mixture was stirred at 40 ° C. for 2 hours. After cooling to room temperature, the reaction solution was applied to a reverse phase ODS silica gel column (50 g), desalted by flowing water (500 ml), and then 2.5% aqueous ethanol solution was flowed to elute compound 30. Furthermore, recrystallization from water gave 0.015 g (50%) of Compound 30.
[0110]
1H-NMR (DMSO-d6) 10.61 (1H, brs, NH), 7.90 (1H, s, H-8), 6.48 (2H, brs, NH)2), 6.13 (1H, dd, J = 7.3, 5.9 Hz, H-1 ′), 5.51 (1H, d, J = 4.9 Hz, OH), 5.30 (1H, t , J = 5.9 Hz, OH), 4.47 (1H, dt, J = 6.4, 5.4 Hz, H-3 ′), 3.62 (1H, dd, J = 12.2, 6.). 4Hz, H-5 '), 3.54 (1H, dd, J = 12.2, 6.4Hz, H-5'), 3.47 (1H, s, ethylyl-H), 2.56 (1H , Dt, J = 12.2, 6.4 Hz, H-2 ′), 2.36 (1H, dt, J = 12.7, 6.8 Hz, H-2 ′).
[0111]
Synthesis example 5
  Reference synthesis example 3(2) Instead of uracil of (2), adenine, guanine and 2,6-diaminopurine are used in the following reaction (however, the amination reaction using (5) triazole is omitted) to synthesize the following compounds: To do.
  9- (4-C-ethynyl-β-D-arabino-pentofuranosyl) adenine
  9- (4-C-ethynyl-β-D-arabino-pentofuranosyl) guanine
  9- (4-C-ethynyl-β-D-arabino-pentofuranosyl) -2,6-diaminopurine
[0112]
Reference synthesis example 5
(1) Synthesis of 2′-O-acetyl-3 ′, 5′-di-O-benzoyl-4′-C-triethylsilylethyl-5-fluorouridine (Compound 31)
[Chemical 8]
Figure 0004076114
Compound 6 (2.00 g, 3.62 mmol) was dissolved in 1,2-dichloroethane (60.0 ml), and 5-fluorouracil (0.71 g, 5.46 mmol), N, O-bis (trimethylsilyl) acetamide (5 .37 ml, 21.7 mmol) was added and heated to reflux for 1 hour. After returning the reaction solution to room temperature, trimethylsilyl trifluoromethanesulfonate (0.85 ml, 4.70 mmol) was added, and the mixture was stirred at 50 ° C. overnight. A saturated aqueous sodium hydrogen carbonate solution was added and stirred, and then the organic layer was dried over anhydrous magnesium sulfate. The organic layer was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel 300 ml, eluted with n-hexane: ethyl acetate = 3: 1) to give colorless and transparent candy-like compound 31 (0.80 g, 1 .28 mmol, 35.4%).
[0113]
1H-NMR (CDClThree) Δ 7.86 (1H, d, H-6, J6, F= 6.35), 7.37-7.29 (10H, m, aromatic), 6.32 (1H, dd, H-1 ', J = 5.62, 1.47), 5.17 (1H , T, H-2 ', J2 ', 3'= 5.62), 4.73, 4.55 (each 1H, d, benzyl, Jgem= 11.72), 4.55, 4.50 (each 1H, d, benzyl, Jgem= 11.72), 4.32 (1H, d, H-3 ', J2 ', 3'= 5.86), 3.87, 3.63 (each 1H, d, H-5 ', Jgem= 10.50), 2.04 (3H, s, acetate), 0.96 (9H, t, Si-CH)2-CHThree, J = 8.06), 0.59 (6H, Si-CH2-CHThree, J = 7.81).
FABMS m / z: 623 (MH+).
HRMS m / z (MH+): Calcd. forC33H40FN2O7Si: 623.2589, Found: 623.2589.
[Α]D  −23.3 ° (c = 0.18, CHClThree).
[0114]
(2) Synthesis of 3 ′, 5′-di-O-benzyl-4′-C-triethylsilylethyl-5-fluorouridine (Compound 32)
Embedded image
Figure 0004076114
Compound 31 (0.77 g, 1.24 mmol) was dissolved in methanol (45.0 ml), triethylamine (5.00 ml) was added, and the mixture was stirred at 30 ° C. for 48 hours. The reaction solution was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel 100 ml, eluted with n-hexane: ethyl acetate = 2: 1) to give white powdered compound 32 (0.68 g, 1. 17 mmol, 94.4%).
[0115]
1H-NMR (CDClThree) Δ 8.42 (1H, br.s, 3-NH), 7.80 (1H, d, J6, F= 6.10), 7.38-7.29 (10H, m, aromatic), 6.10 (1H, dd, H-1 ', J = 5.98, 1.47), 5.00, 4 63 (each 1H, d, benzyl, Jgem= 11.23), 4.58, 4.54 (each 1H, d, benzyl, Jgem= 10.99), 4.20 (1H, m, H-2 '), 4.13 (1H, d, H-3', J2 ', 3'= 5.86), 3.88, 3.70 (each 1H, d, H-5 ', Jgem= 10.25), 2.99 (1H, d, 2'-OH, J = 9.77), 0.96 (9H, t, Si-CH)2-CHThree, J = 8.06), 0.58 (6H, Si-CH2-CHThree, J = 7.82).
FABMS m / z: 581 (MH+).
HRMS m / z (MH+): Calcd. forC31H38FN2O6Si: 581.2483, Found: 581.2484.
[Α]D  −16.3 ° (c = 1.05, CHClThree)
m. p. 138-139 ° C
[0116]
(3) Synthesis of 4′-C-triethylsilylyl-5-fluorouridine (Compound 33)
Embedded image
Figure 0004076114
Compound 32 (1.00 g, 1.72 mmol) was dissolved in dichloromethane (50.0 ml), and 1.0 M boron trichloride dichloromethane solution (17.2 ml, 17.2 mmol) was added at −78 ° C. under an argon atmosphere. Stir at the same temperature for 3 hours. After adding a mixed solution of pyridine (10.0 ml) and methanol (20.0 ml) at −78 ° C. and stirring for 30 minutes, the reaction solution was distilled off under reduced pressure. The residue was partitioned between ethyl acetate and water, and the organic layer was dried over anhydrous magnesium sulfate. The reaction solution was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel 150 ml, eluted with chloroform: methanol = 10: 1) to give compound 33 (0.64 g, 1.60 mmol, 93) as a white powder. 0.0%).
[0117]
1H-NMR (DMSO-d6) Δ 11.93 (1H, d, 3-NH, J = 5.13), 8.13 (1H, d, H-6, J6, F= 7.08), 5.89 (1H, dd, H-1 ′, J = 6.35, 1.95), 5.71 (1H, t, 5′-OH, J = 5.37), 5.37, 5.23 (each 1H, d, 2′-OH, 3′-OH, J = 6.35), 4.12 (1H, q, H-2 ′, J = 6.35), 4.05 (1H, t, H-3 ′, J = 5.61), 3.61-3.57 (2H, m, H-5 ′), 3.35 (1H, s, ethyl), 0 .95 (9H, t, Si-CH2-CHThree, J = 7.81), 0.55 (6H, Si-CH2-CHThree, J = 7.81).
FABMS m / z: 401 (MH+).
HRMS m / z (MH+): Calcd. forC17H26FN2O6Si: 401.1544, Found: 401.1550.
[Α]D  -2.30 ° (c = 1.00, CHThreeOH)
m. p. 180-183 ° C
[0118]
(4) Synthesis of 3 ′, 5′-di-O-acetyl-2′-deoxy-4′-C-triethylsilylethyl-5-fluorouridine (Compound 34)
Embedded image
Figure 0004076114
Figure 0004076114
Compound 33 (0.54 g, 1.35 mmol) was suspended in acetonitrile (30.0 ml), and an acetyl bromide (1.00 ml, 13.5 mmol) acetonitrile solution (20.0 ml) was suspended at 85 ° C. over 1 hour. The solution was added dropwise and heated to reflux for 3 hours. After the reaction solution was distilled off under reduced pressure, the residue was dissolved in ethyl acetate and washed with a saturated aqueous sodium bicarbonate solution and a saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous magnesium sulfate and evaporated under reduced pressure to obtain crude 3 ′, 5′-di-O-acetyl-2′-bromo-2′-deoxy-4′-C-triethylsilylethyl-5. -Fluorouridine 34 was obtained. Crude compound 34 was azeotroped three times with dry toluene, then dissolved in dry toluene (20.0 ml), and tri-n-butyltin hydride (0.75 ml, 2.91 mmol), 2,2 ′ at 85 ° C. -Azobis (isobutyronitrile) (0.01 g) was added, and the mixture was heated and stirred for 30 minutes in an argon atmosphere. After the reaction solution was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (silica gel 200 ml, eluted with n-hexane: ethyl acetate = 2: 1) to give compound 35 (0.41 g, 0) as a white powder. .88 mmol, 65.2%).
[0119]
1H-NMR (CDClThree) Δ 9.23 (1H, br.s, 3-NH), 7.70 (1H, d, H-6, J6, F= 6.10), 6.35 (1H, t, H-1 ', J1 ', 2'= 7.08), 5.36 (1H, t, H-3 ', J2 ', 3'= 7.57), 4.43, 4.39 (each 1H, d, H-5 ', Jgem= 12.21), 2.65, 2.33 (each 1H, m, H-2 '), 2.17, 2.13 (each 3H, s, acetate), 1.00 (9H, t, Si) -CH2-CHThree, J = 7.82), 0.63 (6H, Si-CH2-CHThree, J = 7.82).
FABMS m / z: 469 (MH+).
HRMS m / z (MH+): Calcd. forCtwenty oneH30FN2O7Si: 469.1806, Found: 469.1810.
[Α]D  −12.9 ° (c = 1.00, CHClThree)
m. p. 111-112 ° C
[0120]
(5) Synthesis of 4′-C-ethyl-2′-deoxy-5-fluorocytidine (Compound 37)
Embedded image
Figure 0004076114
Figure 0004076114
Compound 35 (0.35 g, 0.75 mmol) was dissolved in pyridine (5.00 ml), p-chlorophenylphosphorodichloridate (0.62 ml, 3.77 mmol) was added under ice cooling, and the mixture was stirred for 5 minutes. 1,2,4-Triazole (0.78 g, 11.3 mmol) was added and stirred at 30 ° C. for 24 hours. The reaction solution was evaporated under reduced pressure, the residue was partitioned between ethyl acetate and water, and the organic layer was dried over anhydrous magnesium sulfate. The organic layer was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (silica gel 50 ml, eluted with ethyl acetate). 4- (1,2,4-triazolo) uridine 36 was obtained. Compound 36 was dissolved in dioxane (15.0 ml), 25% aqueous ammonia (5.00 ml) was added, and the mixture was stirred at room temperature overnight. After confirming the disappearance of compound 36 on silica gel thin layer chromatography (chloroform: methanol = 10: 1), the reaction solution was evaporated under reduced pressure. The residue was dissolved in methanol (45.0 ml), 1N aqueous sodium hydroxide solution (5.00 ml, 5.00 mmol) was added, and the mixture was stirred at room temperature for 24 hours. Acetic acid (0.29 ml, 5.00 mmol) was added and the reaction solution was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (silica gel 50 ml, eluted with chloroform: ethanol = 4: 1). The fraction containing Compound 37 was dried under reduced pressure, and the residue was crystallized from methanol-ether to obtain Compound 37 (0.12 g, 0.45 mmol, 60.0%) as white crystals.
[0121]
1H-NMR (DMSO-d6) Δ 8.06 (1H, d, H-6, J6, F= 7.08), 7.79, 7.54 (each 1H, br.s, NH2), 6.05 (1H, m, H-1 ′), 5.57, 5.50 (each 1H, br, 3′-OH, 5′-OH), 4.31 (1H, br.q, H-3 ′), 3.66, 3.60 (each 1H, d, H-5′Jgem= 11.72), 3.51 (1H, s, ethyl), 2.25, 2.12 (each 1H, m, H-2 ′)
[Α]D  + 77.9 ° (c = 1.00, CHThreeOH)
FABMS m / z: 270 (MH+).
HRMS m / z (MH+): Calcd. forC11H13FNThreeOFour: 270.0890, Found: 270.0888.
m. p. ~ 225 ° C (Dec)
[0122]
Formulation Example 1: Tablet
This invention compound 30.0mg
Finely powdered cellulose 25.0mg
Lactose 39.5mg
Starch 40.0mg
Talc 5.0mg
Magnesium stearate 0.5mg
A tablet is prepared from the above composition by a conventional method.
[0123]
Formulation Example 2: Capsule
This invention compound 30.0mg
Lactose 40.0mg
Starch 15.0mg
Talc 5.0mg
Capsules are prepared from the above composition by conventional methods.
[0124]
Formulation Example 3: Injection
This invention compound 30.0mg
Glucose 100.0mg
An injection is prepared by dissolving the above composition in purified water for injection.
[0125]
Test examples are shown below. In the test, the following seven compounds of the present invention and two known compounds were used as drugs.
Compound of the present invention:
Compound 13: 4'-C-ethynyl-2'-deoxycytidine
Compound 19: 1- (4-C-ethynyl-β-D-arabino-pentofuranosyl) cytosine
Compound 23: 9- (2-deoxy-4-C-ethynyl-β-D-ribo-pentofuranosyl) adenine [4'-C-ethynyl-2'-deoxyadenosine]
Compound 28: 9- (2-deoxy-4-C-ethynyl-β-D-ribo-pentofuranosyl) -2,6-diaminopurine
Compound 29: 9- (2-deoxy-4-C-ethynyl-β-D-ribo-pentofuranosyl) hypoxanthine [4'-C-ethynyl-2'-deoxyinosine]
Compound 30: 9- (2-deoxy-4-C-ethynyl-β-D-ribo-pentofuranosyl) guanine [4'-C-ethynyl-2'-deoxyguanosine]
Compound 37: 4'-C-ethynyl-2'-deoxy-5-fluorocytidine
Known compounds:
4'-C-ethynylthymidine
AZT
[0126]
Test example
<Method>
(1) Anti-HSV1 activity
1. Human fetal lung-derived fibroblasts are subcultured 1: 2-4 split every 4-5 days in Eagle MEM containing 10% semi-fetal bovine serum (Mitsubishi Chemical).
2. The cell suspension obtained from the parent cells in a 1: 2 split is seeded in a 96-well microplate at a rate of 200 μl / well and cultured in a carbon dioxide incubator at 37 ° C. for 4 days.
3. The culture solution is discarded, and serial dilution is performed on a 96-well microplate using a MEM Hanks containing a test drug at twice the maximum test concentration of each drug so that each well has a predetermined test drug concentration.
4. 100-320 TCID50100 μl / well of 5% quasi-fetal calf serum-containing eagle containing type 1 herpes simplex virus (HSV-1) VR-3 strain, inoculated with the virus, and incubated at 37 ° C. in a carbon dioxide incubator Incubate at
5. After 2-3 days of culturing, when the control containing no test drug was completely cytopathic due to virus infection (CPE score = 4), the degree of CPE in each well was observed under a microscope and score ( 0-4).
6). Minimum effective concentration (ED) of the test drug that inhibits CPE by 50% or more (CPE score of 2 or less)50).
[0127]
(2) Human immunodeficiency virus (HIV) activity
1) MTT method using MT-4 cells
1. Dilute the test drug using a 96-well plate (100 μl). Here, HIV-1 (IIIb strain ; 100 TCID50) Add infected and uninfected MT-4 cells and incubate at 37 ° C. for 5 days.
2. MTT (20 μl, 7.5 mg / ml) is added and incubated for an additional 2-3 hours.
3. After completion of the culture, 120 μl is taken, MTT stop solution (Isopropanol containing Triton X-100 4%, HCl 0.04N) is added, and the formazan produced by stirring is dissolved, and the absorbance at 540 nm is dissolved. Measure. Since this measurement value is proportional to the number of living cells, the concentration of the test drug at which the measurement value of the test using infected MT-4 cells reached 50% was determined as EC.50In addition, the concentration of the test drug at which the measured value of the test using non-infected MT-4 cells became 50% was determined as CC50And
[0128]
2) MAGI assay using HeLa CD4 / LTR-beta-Gal cells
1. HeLa CD4 / LTR-beta-Gal cells are added to 96 wells at a rate of 10,000 cells per well. After 12 to 24 hours, the culture solution is discarded, and a diluted test drug (100 μl is added).
2. Various HIV strains (wild strain: WT, resistant strains: MDR, M184V, NL4-3, 104pre and C; each 50 TCID50Cultivated for 48 hours.
3. After completion of the culture, the cells are fixed with PBS supplemented with 1% formaldehyde and 0.2% glutaraldehyde for 5 minutes.
4). After washing with PBS three times, the cells were stained with 0.4 mg / ml X-Gal for 1 hour. The number of blue stained cells was counted under the transmission stereomicroscope, and the number of plaques in each well was counted. % Decrease in test drug concentration by EC50, Reduce drug concentration by 90% EC90And
5. Cytotoxicity is measured in the same manner as the MTT method using HeLa CD4 / LTR-beta-Gal cells uninfected with the virus.
[0129]
<Results> (1) Anti-HSV-1 activity
[Table 1]
Figure 0004076114
[0130]
(2) Human immunodeficiency virus (HIV) activity and cytotoxicity
Tables 2 to 7 show the average of 2 to 5 measurements.
(1) MTT method using MT-4 cells
[Table 2]
Figure 0004076114
[Table 3]
Figure 0004076114
[Table 4]
Figure 0004076114
[0131]
(2) MAGI assay using HeLa CD4 / LTR-beta-Gal cells
[Table 5]
Figure 0004076114
[Table 6]
Figure 0004076114
[Table 7]
Figure 0004076114

Claims (10)

式[I]で表される4’−C−エチニルプリンヌクレオシド。
Figure 0004076114
Figure 0004076114
(式中、Bは、アデニン、グアニン、ジアミノプリンもしくはその誘導体からなる群より選ばれた塩基を示し、Xは水素原子を示し、Rは水素原子またはリン酸残基を示す。ただし、Bで表されるアデニン誘導体、グアニン誘導体もしくはジアミノプリン誘導体とは、ハロゲン原子、アルキル基、ハロアルキル基、アルケニル基、ハロアルケニル基、アルキニル基、アミノ基、アルキルアミノ基、水酸基、ヒドロキシアミノ基、アミノキシ基、アルコキシ基、メルカプト基、アルキルメルカプト基、アリール基、アリールオキシ基、及びシアノ基からなる群より選択された置換基を有するアデニン、グアニンもしくはジアミノプリンである。
4′-C-ethynylpurine nucleoside represented by the formula [I].
Figure 0004076114
Figure 0004076114
(In the formula, B represents a base selected from the group consisting of adenine, guanine, diaminopurine or derivatives thereof, X represents a hydrogen atom , R represents a hydrogen atom or a phosphate residue , where B represents The adenine derivative, guanine derivative or diaminopurine derivative represented is a halogen atom, alkyl group, haloalkyl group, alkenyl group, haloalkenyl group, alkynyl group, amino group, alkylamino group, hydroxyl group, hydroxyamino group, aminoxy group, Adenine, guanine or diaminopurine having a substituent selected from the group consisting of an alkoxy group, a mercapto group, an alkyl mercapto group, an aryl group, an aryloxy group, and a cyano group.
4’−C−エチニル−2’−デオキシアデノシンである、請求項1記載の化合物。2. A compound according to claim 1 which is 4'-C-ethynyl-2'-deoxyadenosine. 4’−C−エチニル−2’−デオキシグアノシンである、請求項1記載の化合物。The compound of claim 1 which is 4'-C-ethynyl-2'-deoxyguanosine. 9−(4−C−エチニル−2−デオキシ−β−D−リボ−ペントフラノシル)−2,6−ジアミノプリンである、請求項1記載の化合物。The compound of claim 1, which is 9- (4-C-ethynyl-2-deoxy-β-D-ribo-pentofuranosyl) -2,6-diaminopurine. 請求項1〜4のいずれか1項に記載の4’−C−エチニルプリンヌクレオシドと薬学的に許容される担体とを含有してなる医薬組成物。A pharmaceutical composition comprising the 4'-C-ethynylpurine nucleoside according to any one of claims 1 to 4 and a pharmaceutically acceptable carrier. 抗HIV剤である、請求項5記載の医薬組成物。The pharmaceutical composition according to claim 5, which is an anti-HIV agent. エイズ治療薬である、請求項5記載の医薬組成物。The pharmaceutical composition according to claim 5, which is an AIDS therapeutic agent. 請求項1〜4のいずれか1項に記載の4’−C−エチニルプリンヌクレオシドの医薬製造のための使用。Use of the 4'-C-ethynylpurine nucleoside according to any one of claims 1 to 4 for the manufacture of a medicament. 医薬が、抗HIV剤である請求項8記載の使用。Use according to claim 8, wherein the medicament is an anti-HIV agent. 医薬が、エイズ治療薬である請求項8記載の使用。The use according to claim 8, wherein the medicine is an AIDS drug.
JP2000137982A 1999-05-12 2000-05-11 4'-C-ethynylpurine nucleoside compounds Expired - Lifetime JP4076114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000137982A JP4076114B2 (en) 1999-05-12 2000-05-11 4'-C-ethynylpurine nucleoside compounds

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP11-131539 1999-05-12
JP13153999 1999-05-12
JP17492099 1999-06-22
JP11-174920 1999-06-22
JP31824699 1999-11-09
JP11-318246 2000-03-23
JP2000081117 2000-03-23
JP2000-81117 2000-03-23
JP2000137982A JP4076114B2 (en) 1999-05-12 2000-05-11 4'-C-ethynylpurine nucleoside compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007314092A Division JP2008110983A (en) 1999-05-12 2007-12-05 4'-c-ethynyl nucleoside compound

Publications (3)

Publication Number Publication Date
JP2001335592A JP2001335592A (en) 2001-12-04
JP2001335592A5 JP2001335592A5 (en) 2007-08-30
JP4076114B2 true JP4076114B2 (en) 2008-04-16

Family

ID=27527275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000137982A Expired - Lifetime JP4076114B2 (en) 1999-05-12 2000-05-11 4'-C-ethynylpurine nucleoside compounds

Country Status (1)

Country Link
JP (1) JP4076114B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2502109C (en) * 2004-03-24 2010-02-23 Yamasa Corporation 4'-c-substituted-2-haloadenosine derivative
JP2008069182A (en) * 2004-03-24 2008-03-27 Yamasa Shoyu Co Ltd 4'-c-substituted-2-haloadenosine derivative
AU2013235220C1 (en) * 2011-12-22 2019-03-28 Janssen Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
CN107459544B (en) 2011-12-22 2021-03-16 詹森生物制药有限公司 Substituted nucleosides, nucleotides and analogs thereof
US9441007B2 (en) 2012-03-21 2016-09-13 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
USRE48171E1 (en) 2012-03-21 2020-08-25 Janssen Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
JP6191989B2 (en) * 2014-02-12 2017-09-06 学校法人東京理科大学 Adenine derivative or pharmacologically acceptable salt thereof, method for producing the same, and use thereof
WO2018092728A1 (en) 2016-11-16 2018-05-24 国立研究開発法人国立国際医療研究センター Nucleoside derivative having physical activities including anti-viral activity
KR20210142712A (en) * 2019-04-05 2021-11-25 가부시기가이샤 닛뽕쇼꾸바이 Preparation of cross-linked artificial nucleosides

Also Published As

Publication number Publication date
JP2001335592A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
US6291670B1 (en) 4′-C-ethynyl pyrimidine nucleoside compounds and pharmaceutical compositions
JP5213194B2 (en) 4&#39;-C-substituted-2-haloadenosine derivatives
EP0421777B1 (en) Further antiviral pyrimidine nucleosides
EP3159351A2 (en) Modified 3&#39;-azido-4&#39;-ethynyl-nucleosides as antiviral agents
JP2008069182A (en) 4&#39;-c-substituted-2-haloadenosine derivative
JP4076114B2 (en) 4&#39;-C-ethynylpurine nucleoside compounds
JPH06228186A (en) 2&#39;-deoxy-@(3754/24)2&#39;s)-alkylpyrimidine nucleoside derivative
WO1999043690A1 (en) L-4&#39;-arabinofuranonucleoside compound and medicine composition comprising the same
JP4039790B2 (en) 4&#39;-C-ethynylpyrimidine nucleoside compounds
JPH09328497A (en) 4&#39;-fluoromethylnucleoside
JP2008110983A (en) 4&#39;-c-ethynyl nucleoside compound
JPWO2003068796A1 (en) 4&#39;-C-cyano-2&#39;-deoxypurine nucleoside
JPH07126282A (en) New thionucleoside derivative
JPH11349596A (en) 4&#39;-methylnucleoside compound
JPH0987295A (en) 2&#39;-deoxy-2&#39;-methylidene-4&#39;-thiopyrimidine nucleoside and antiviral agent
MX2008004079A (en) Modified 4&#39;-nucleosides as antiviral agents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070717

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4076114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term