JPH0543500B2 - - Google Patents

Info

Publication number
JPH0543500B2
JPH0543500B2 JP59068388A JP6838884A JPH0543500B2 JP H0543500 B2 JPH0543500 B2 JP H0543500B2 JP 59068388 A JP59068388 A JP 59068388A JP 6838884 A JP6838884 A JP 6838884A JP H0543500 B2 JPH0543500 B2 JP H0543500B2
Authority
JP
Japan
Prior art keywords
temperature
polyethylene terephthalate
thickness
container
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59068388A
Other languages
Japanese (ja)
Other versions
JPS60212325A (en
Inventor
Nobuya Asahioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP6838884A priority Critical patent/JPS60212325A/en
Publication of JPS60212325A publication Critical patent/JPS60212325A/en
Publication of JPH0543500B2 publication Critical patent/JPH0543500B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/26Component parts, details or accessories; Auxiliary operations
    • B29C51/42Heating or cooling
    • B29C51/426Producing specific thermal regimes during thermoforming to obtain particular properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は、耐熱性、耐圧強度、寸法安定性及び
外観等に優れたポリエチレンテレフタレート製容
器の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a polyethylene terephthalate container having excellent heat resistance, compressive strength, dimensional stability, appearance, etc.

従来より、未延伸のポリエステルシートを真空
及び/又は圧空成形等の熱成形によりカツプ、ト
レー等の容器を製造することは知られている。し
かしながら未延伸シートからの成形品は金型離型
性が悪く、また成形品の側壁、ときに深絞り成形
品の側壁は延伸方向、即ち縦方向の配向度が著し
く強いため、衝撃や内圧によつて縦割れを起こし
易く、更には耐熱性も劣り、必ずしも満足すべき
ものではない。
It has been known to manufacture containers such as cups and trays by thermoforming unstretched polyester sheets by vacuum and/or pressure forming. However, molded products made from unstretched sheets have poor mold release properties, and the side walls of molded products, and sometimes the side walls of deep-drawn products, are highly oriented in the stretching direction, that is, the longitudinal direction, and are therefore susceptible to impact and internal pressure. As a result, vertical cracks are likely to occur, and the heat resistance is also poor, which is not necessarily satisfactory.

一方、未延伸シートからの成形品の欠点を解消
する方法として、二軸延伸シートあるいはロール
圧延等による一軸延伸シートを用いる方法が提案
されているが、二軸延伸シートは熱成形性が低下
し、一軸延伸シートについても熱成形時の異方性
等は十分に解決されてはいないのが現状であつ
た。
On the other hand, methods using biaxially stretched sheets or uniaxially stretched sheets by roll rolling, etc. have been proposed as a method to eliminate the drawbacks of molded products made from unstretched sheets, but biaxially stretched sheets have poor thermoformability. Currently, the anisotropy during thermoforming of uniaxially stretched sheets has not been sufficiently resolved.

又、従来の熱成形は、生産性を高める為、予め
成形されたシートを予熱後、金型内で連続的に熱
成形するため、ばりや成形後のトリミング・ロス
等のスクラツプが大量に発生し、逆に生産効率の
低下を招く場合があつた。
In addition, in conventional thermoforming, in order to increase productivity, a pre-formed sheet is preheated and then continuously thermoformed in a mold, resulting in a large amount of scrap such as burrs and post-forming trimming loss. However, there were cases where this resulted in a decrease in production efficiency.

かかる欠点を解消する方法として、予め熱可塑
性樹脂シートを裁断して角形のタブレツトとし、
該タブレツトの中央部をビカツト軟化点ないし溶
融点の範囲内の温度に予熱し、タブレツトの予熱
温度範囲±10℃の範囲内の温度に加熱されたプレ
スで加圧成形した後熱成形して容器を製造する方
法(特開昭55−34902号公報)が提案されている。
しかしながら該方法をそのままポリエチレンテレ
フタレートに適用しても、ポリエチレンテレフタ
レートは溶融点よりかなり低い温度に結晶化温度
が存在するので、予熱あるいは加圧成形時の温度
設定によつては加圧成形時にポリエチレンテレフ
タレートが結晶化により白濁する場合があり、し
かも該方法によつても、加圧成形時と温度の熱成
形時の温度が同等あるいは低いので容器の耐熱性
は改良されない。
As a method to eliminate this drawback, a thermoplastic resin sheet is cut in advance to form square tablets.
The central part of the tablet is preheated to a temperature within the range of Vikat's softening point or melting point, pressure-formed in a press heated to a temperature within the preheating temperature range of the tablet ±10°C, and then thermoformed to form a container. A method for manufacturing (Japanese Unexamined Patent Publication No. 55-34902) has been proposed.
However, even if this method is applied directly to polyethylene terephthalate, polyethylene terephthalate has a crystallization temperature considerably lower than its melting point, so depending on the temperature settings during preheating or pressure molding, polyethylene terephthalate may may become cloudy due to crystallization, and even with this method, the heat resistance of the container is not improved because the temperature during pressure molding and thermoforming are the same or lower.

そこで本発明者は、耐熱性、耐圧強度、透明
性、寸法安定性、ガス・バリヤー性等に優れ、し
かもスクラツプを発生しないポリエチレンテレフ
タレート製容器の製造方法を開発すべく種々検討
を行つた結果、ポリエチレンテレフタレートシー
トの圧縮成形時の温度と熱成形時の温度とをそれ
ぞれ別個に特定の温度範囲にすることにより、本
発明の目的を達成できることが分かり、本発明を
完成するに至つた。
Therefore, the present inventor conducted various studies in order to develop a method for manufacturing a polyethylene terephthalate container that has excellent heat resistance, compressive strength, transparency, dimensional stability, gas barrier properties, etc., and does not generate scrap. It has been found that the object of the present invention can be achieved by setting the temperature during compression molding and the temperature during thermoforming of a polyethylene terephthalate sheet separately within specific temperature ranges, and have completed the present invention.

すなわち本発明は、非晶状態のポリエチレンテ
レフタレートAを層成分として含有する単層又は
複層の小板状体(B)を下記(1)式で示された範囲内の
温度に予熱した後、 Tg+10℃≦Tp1≦Tc1 ……(1) (但し、式中Tgはポリエチレンテレフタレート
Aのガラス転移温度(℃)、Tp1は予熱温度(℃)
及びTc1はポリエチレンテレフタレートAの結晶
化温度(℃)を表わす。) 前記小板状体(B)を元の厚さの1/4ないし1/1.1の
厚さになるまで圧縮成形し、次いで該成形板(C)を
下記(2)式で示された範囲内の温度に加熱した後、 Tp1+10℃≦Tp2≦Tm−30℃ ……(2) (但し、式中Tp2は加熱温度(℃)及びTmはポ
リエチレンテレフタレートAの融点(℃)を表わ
す。) 成形型内で熱成形することを特徴とするポリエ
チレンテレフタレート製容器の製造方法を提供す
るものである。
That is, in the present invention, after preheating a single-layer or multi-layer platelet-like body (B) containing amorphous polyethylene terephthalate A as a layer component to a temperature within the range shown by the following formula (1), Tg+10℃≦Tp 1 ≦Tc 1 ...(1) (However, in the formula, Tg is the glass transition temperature of polyethylene terephthalate A (℃), and Tp 1 is the preheating temperature (℃)
and Tc 1 represents the crystallization temperature (°C) of polyethylene terephthalate A. ) The platelet-shaped body (B) is compression-molded to a thickness of 1/4 to 1/1.1 of the original thickness, and then the molded plate (C) is molded in the range shown by the following formula (2). After heating to a temperature within The present invention provides a method for manufacturing a polyethylene terephthalate container, which is characterized by thermoforming in a mold.

本発明におけるポルエチレンテレフタレートA
とは、通常ジカルボン酸成分の80モル%以上、好
ましくは90モル%以上がテレフタル酸であり、グ
リコール成分の80モル%以上、好ましくは90モル
%以上がエチレングリコールである結晶性の熱可
塑性ポリエステル樹脂である。尚、残余の他のジ
カルボン酸としては、具体的には例えばイソフタ
ル酸、ジフエニルエーテル−4,4−ジカルボン
酸、ナフタリン−1,4−または2,6−ジカル
ボン酸等の芳香族ジカルボン酸、シユウ酸、コハ
ク酸、アジピン酸、セバシン酸、ウンデカジカル
ボン酸等の脂肪族ジカルボン酸、ヘキサヒドロテ
レフタル酸等の脂環族ジカルボン酸等が挙げら
れ、他のグリコール成分としては、プロピレング
リコール、1,4−ブタンジオール、ネオペンチ
ルグリコール等の脂肪族グリコール、シクロヘキ
サンジメタノール等の脂環族グリコール、ビスフ
エノールA等の芳香族ジヒドロキシ化合物等が挙
げられる。テレフタル酸及びエチレングリコール
が上記範囲であれば、共重合体でもPETと他の
ポリエステルとの混合物であつてもよい。
Polyethylene terephthalate A in the present invention
means a crystalline thermoplastic polyester in which 80 mol% or more of the dicarboxylic acid component, preferably 90 mol% or more, is terephthalic acid, and 80 mol% or more, preferably 90 mol% or more of the glycol component is ethylene glycol. It is resin. The remaining dicarboxylic acids include aromatic dicarboxylic acids such as isophthalic acid, diphenyl ether-4,4-dicarboxylic acid, naphthalene-1,4- or 2,6-dicarboxylic acid, Examples include aliphatic dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, and undecadicarboxylic acid, and alicyclic dicarboxylic acids such as hexahydroterephthalic acid.Other glycol components include propylene glycol, , 4-butanediol, aliphatic glycols such as neopentyl glycol, alicyclic glycols such as cyclohexanedimethanol, aromatic dihydroxy compounds such as bisphenol A, and the like. As long as the terephthalic acid and ethylene glycol are within the above range, it may be a copolymer or a mixture of PET and other polyester.

熱成形に用いるポリエチレンテレフタレートA
は、通常テトラクロルエタン/フエノール混合溶
媒で測定した極限粘度(IV)が0.5ないし2.0、好
ましくは0.7ないし1.5の範囲である。
Polyethylene terephthalate A used for thermoforming
Typically, the intrinsic viscosity (IV) measured with a tetrachloroethane/phenol mixed solvent is in the range of 0.5 to 2.0, preferably 0.7 to 1.5.

本発明の方法に用いる前記非晶状態のポリエチ
レンテレフタレートAからなる小板状体(B)は、ポ
リエチレンテレフタレートをT−ダイから溶融押
出後急冷することにより得た非晶状態のシートか
ら角形、例えば三角形、四角形、六角形等の形状
を有する小板状体を打抜く方法、あるいは、ポリ
エチレンテレフタレートを溶融後、冷却した金型
内に射出成形することにより、円形、角形又は肉
厚分布をもつた円形、角形等の形状を有する小板
状体を成形する方法等により得ることができる。
The platelets (B) made of amorphous polyethylene terephthalate A used in the method of the present invention are made from an amorphous sheet obtained by melt-extruding polyethylene terephthalate from a T-die and then rapidly cooling it into a rectangular shape, e.g. A method of punching small plate-shaped bodies having shapes such as triangular, square, hexagonal, etc., or by injection molding into a cooled mold after melting polyethylene terephthalate, a shape having a circular, square or wall thickness distribution can be formed. It can be obtained by a method of molding a small plate-like body having a shape such as a circle or a square.

本発明の方法に用いる前記小板状体(B)は前記ポ
リエチレンテレフタレートの単層小板状体に限る
ことなく、前記ポリエチレンテレフタレート同志
あるいは他の層、例えばテレフタル酸以外のジカ
ルボン酸成分が20モル%を越えるポリエチレンテ
レフタレート−イソフタレート共重合体、ポリエ
チレンテレフタレートーグリコール酸共重合体等
のポリエステル共重合体、エチレン・酢酸ビニル
共重合体鹸化物、ポリ塩化ビニリデン、塩化ビニ
ル・塩化ビニリデン共重合体、ポリアミド、ポリ
カーボネート等でポリエチレンテレフタレートA
の熱成形温度で成形できる熱可塑性樹脂との積層
小板状体であつてもよい。
The platelet (B) used in the method of the present invention is not limited to a single-layer platelet of the polyethylene terephthalate, but may be made of polyethylene terephthalate or other layers, for example, a dicarboxylic acid component other than terephthalic acid containing 20 moles of the polyethylene terephthalate. polyester copolymers such as polyethylene terephthalate-isophthalate copolymers, polyethylene terephthalate-glycolic acid copolymers, saponified ethylene/vinyl acetate copolymers, polyvinylidene chloride, vinyl chloride/vinylidene chloride copolymers, Polyethylene terephthalate A with polyamide, polycarbonate, etc.
It may also be a laminated platelet with a thermoplastic resin that can be molded at a thermoforming temperature of .

本発明の方法に用いる前記小板状体(B)の厚さは
通常20ないし0.1mm、好ましくは10ないし0.5mmの
範囲である。0.1mm以下の厚さでは圧縮成形後の
成形板(C)の厚さが0.1mm未満となり、更に熱成形
により得られる容器の厚さが0.05mm未満となるの
で実用的でない。一方20mmを越えると、非晶状態
の小板状体(B)を得るのが困難となり、又次の工程
での再加熱時に結晶化等のために容器の製造が困
難となる。
The thickness of the platelets (B) used in the method of the invention is usually in the range from 20 to 0.1 mm, preferably from 10 to 0.5 mm. If the thickness is less than 0.1 mm, the thickness of the molded plate (C) after compression molding will be less than 0.1 mm, and the thickness of the container obtained by thermoforming will be less than 0.05 mm, which is not practical. On the other hand, if it exceeds 20 mm, it becomes difficult to obtain platelets (B) in an amorphous state, and it becomes difficult to manufacture containers due to crystallization during reheating in the next step.

尚、本発明における非晶状態のポリエチレンテ
レフタレート小板状体(B)とは、ポリエチレン・テ
レフタレートが全厚みの2割以上、好ましくは5
割以上になるように構成されたものであり、かつ
そのポリレチレンテレフタレートが非晶状態(X
線回折により結晶ピークがほとんど観察されない
状態)にあるものである。
In the present invention, the amorphous polyethylene terephthalate platelet (B) means that polyethylene terephthalate accounts for 20% or more of the total thickness, preferably 5% or more of the total thickness.
polyethylene terephthalate, and its polyethylene terephthalate is in an amorphous state (X
It is in a state in which almost no crystal peaks are observed by line diffraction.

本発明のポリエチレンテレフタレート製容器の
製造方法は、前記ポリエチレンテレフタレートA
からなる非晶状態の小板状体(B)を下記(1)式、好ま
しくは下記(11)式で示された範囲内の温度に予熱し
た後、 Tg+10℃≦Tp1≦Tc1 ……(1) Tg+20℃≦Tp1≦Tc1−20℃ ……(11) (但し、式中Tgはポリエチレンテレフタレート
Aのガラス転移温度(℃)、Tp1は予熱温度(℃)
及びTc1はポリエチレンテレフタレートAの結晶
化温度(℃)を表わす。) 前記小板状体(B)を元の厚さの1/4〜1/1.1、好ま
しくは1/2〜1/1.5の厚さになるまで圧縮成形し、
次いで該成形板(C)を下記(2)式、好ましくは下記
(21)式で示された範囲内の温度に加熱した後、 Tp1+10℃≦Tp2≦Tm−30℃ ……(2) Tp1+30℃≦Tp2≦Tm−60℃
……(21) (但し、式中Tp2は加熱温度(℃)及びTmはポ
リエチレンテレフタレートAの融点(℃)を表わ
す。) 成形型内で熱成形することを特徴とする方法で
ある。
The method for producing a polyethylene terephthalate container of the present invention includes the polyethylene terephthalate A
After preheating the amorphous platelet (B) consisting of the following to a temperature within the range shown by the following formula (1), preferably the following formula (11), Tg+10℃≦Tp 1 ≦Tc 1 ... (1) Tg + 20℃≦Tp 1 ≦Tc 1 -20℃ ... (11) (However, in the formula, Tg is the glass transition temperature of polyethylene terephthalate A (℃), and Tp 1 is the preheating temperature (℃)
and Tc 1 represents the crystallization temperature (°C) of polyethylene terephthalate A. ) Compression molding the platelet (B) to a thickness of 1/4 to 1/1.1, preferably 1/2 to 1/1.5 of the original thickness,
Next, the molded plate (C) is heated to a temperature within the range shown by the following formula (2), preferably the following formula (21), and then Tp 1 +10°C≦ Tp2 ≦Tm−30°C ... (2 ) Tp 1 +30℃≦Tp 2 ≦Tm−60℃
...(21) (However, in the formula, Tp 2 represents the heating temperature (°C) and Tm represents the melting point (°C) of polyethylene terephthalate A.) This method is characterized by thermoforming in a mold.

小板状体(B)の予熱温度Tp1がTg+10℃未満で
は小板状体(B)が殆ど軟化せず、圧縮成形して厚さ
を元の厚さに対して1/4〜1/1.1の範囲内の厚さに
減ずることが困難であり、一方結晶化温度
(Tc1)を越えると小板状対(B)が結晶化を起こし、
白濁化し、後の熱成形が困難となるとともに、透
明性に優れた容器が得られない。
If the preheating temperature Tp 1 of the platelet (B) is less than Tg + 10°C, the platelet (B) will hardly soften, and the thickness will be reduced to 1/4 to 1/ of the original thickness by compression molding. It is difficult to reduce the thickness to a range of 1.1, whereas when the crystallization temperature (Tc 1 ) is exceeded, the platelet pair (B) undergoes crystallization;
It becomes cloudy, making subsequent thermoforming difficult and making it impossible to obtain a container with excellent transparency.

圧縮成形後の成形板(C)の厚さが小板状対(B)の元
の厚さ1/4より薄くなると、二軸延伸シートを用
いるのと同様、配向結晶化が著しくなり、熱成形
性が極端に低下する。一方、1/1.1に充たないと
熱成形後の容器の縦方向の強度が改善されず耐圧
性に劣る容器となる。
When the thickness of the formed plate (C) after compression molding becomes thinner than 1/4 of the original thickness of the platelet-like pair (B), oriented crystallization becomes significant and thermal Formability is extremely reduced. On the other hand, if the ratio is less than 1/1.1, the longitudinal strength of the thermoformed container will not be improved and the container will have poor pressure resistance.

圧縮成形時のプレスの温度は、予熱された小板
状体(B)の温度が(1)式の範囲外にならない温度であ
ればとくに限定はされないが、通常Tg+5℃な
いしTc1+5℃の範囲内である。Tg+5℃未満
の温度では予熱された小板状体(B)の温度が圧縮成
形時にTg+10℃未満となり易く、一方Tc1+5
℃を越えると、Tc1を越える虞れがある。
The temperature of the press during compression molding is not particularly limited as long as the temperature of the preheated platelet (B) does not fall outside the range of equation (1), but it is usually between Tg + 5°C and Tc 1 + 5°C. Within range. At temperatures below Tg + 5°C, the temperature of the preheated platelets (B) tends to be below Tg + 10°C during compression molding, while at Tc 1 + 5
If it exceeds ℃, there is a risk of exceeding Tc 1 .

圧縮成形によつて成形された成形板(C)の加熱温
度Tp2がTp1+10℃未満では熱成形性が劣りしか
も熱成形された容器の耐熱性、肉厚均一性、透明
性が劣る。一方、Tm−30℃を越えると、圧縮成
形時に生じた配向緊張が緩和消滅するために耐圧
強度の低いものとなる。
If the heating temperature Tp 2 of the molded plate (C) formed by compression molding is less than Tp 1 +10°C, the thermoformability will be poor, and the thermoformed container will be poor in heat resistance, wall thickness uniformity, and transparency. On the other hand, if the temperature exceeds Tm - 30°C, the oriented tension generated during compression molding will relax and disappear, resulting in a low compressive strength.

成形板(C)を(2)式で示された範囲内の温度に加熱
した後の熱成形は、公知の方法、すなわち一般に
真空成形、圧空成形と呼ばれている方法が採用で
きるが、中でもプラグアシスト真空及び/又は圧
空成形が好ましい。
For thermoforming after heating the molded plate (C) to a temperature within the range shown by formula (2), a known method, that is, a method generally called vacuum forming or pressure forming, can be adopted, but among them, Plug-assisted vacuum and/or pressure forming is preferred.

本発明に用いるポリエチレンテレフタレートA
のガラス転移温度Tg(℃)、結晶化温度Tg1(℃)
及び融点Tm(℃)は、圧縮成形後20℃のプレス
で冷却して得た非晶状態のシートから試料を切り
取り、示査走査型熱量計(DSC)を用い、10
℃/minの昇温速度で測定することにより求め
た。
Polyethylene terephthalate A used in the present invention
Glass transition temperature Tg (℃), crystallization temperature Tg 1 (℃)
The melting point Tm (℃) was determined by cutting a sample from an amorphous sheet obtained by cooling in a press at 20℃ after compression molding, and using a differential scanning calorimeter (DSC).
It was determined by measuring at a heating rate of °C/min.

本発明のポリエチレンテレフタレート製容器の
製造方法は、従来の押出成形シートを熱成形する
方法の様にスクラツプを発生することもなく、ま
た製造された容器も従来のポリエチレンテレフタ
レート製容器に比べて、耐熱性、耐圧強度、透明
性、寸法安定性、ガスバリヤー性、耐寒性等に優
れているので、炭酸飲料等の耐圧容器、ジユー
ス、練り羊羹等の熱充填容器、及び酒、冷食等の
ガスバリヤー性、耐寒性が要求される容器等、広
範囲の容器として好適である。
The method of manufacturing polyethylene terephthalate containers of the present invention does not generate scrap unlike the conventional method of thermoforming extrusion-molded sheets, and the manufactured containers also have higher heat resistance than conventional polyethylene terephthalate containers. It has excellent properties such as strength, pressure resistance, transparency, dimensional stability, gas barrier properties, and cold resistance, so it can be used as pressure-resistant containers for carbonated drinks, heat-filled containers for juices, kneaded yokan, etc., and gas barriers for alcoholic beverages, frozen foods, etc. It is suitable for a wide range of containers, including containers that require durability and cold resistance.

次に実施例を挙げて本発明を更に具体的に説明
するが、本発明はその要旨を越えない限り、これ
らの実施例に何ら制約されるものではない。
Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples as long as the gist thereof is not exceeded.

実施例 1 IV:1.3、Tg:75℃、Tc1:155℃及びTm:
260℃のポリエチレンテレフタレート(商品名
三井PET J055、三井PET樹脂)を300℃で溶融
押出して、20℃の冷却ロールで冷却し、厚さ4mm
の非晶状態(X線回折により結晶によるピークが
ほとんど観察されなかつた)のシートを得た。次
いで該シートから1辺25mmの正六角形の小板状体
(B1)を切出し、該小板状体(B1)を110℃に予
熱後、圧縮成形(プレス温度105℃)し、直径60
mmφ及び厚さ2.3mmの円形の成形板(C1)とした。
次いで該成形板(C1)の周辺部(5mm)を圧着
固定後、140℃に加熱し真空成形することにより、
フランジ部幅5mm、深さ100mm、口径50mmφ、平
均側壁厚さ265μの円筒形容器を得た。得られた
容器を以下の方法で評価した。
Example 1 IV: 1.3, Tg: 75°C, Tc 1 : 155°C and Tm:
Polyethylene terephthalate (product name) at 260℃
Mitsui PET J055, Mitsui PET resin) was melt extruded at 300℃ and cooled with a cooling roll at 20℃ to a thickness of 4 mm.
A sheet in an amorphous state (almost no crystalline peaks were observed by X-ray diffraction) was obtained. Next, a regular hexagonal small plate (B 1 ) with a side of 25 mm is cut out from the sheet, and after preheating the small plate (B 1 ) to 110°C, compression molding (press temperature 105°C) is performed to obtain a diameter of 60 mm.
A circular molded plate (C 1 ) with mmφ and thickness of 2.3 mm was prepared.
Next, after fixing the peripheral part (5 mm) of the molded plate (C 1 ) by crimping, heating it to 140°C and vacuum forming it,
A cylindrical container with a flange width of 5 mm, a depth of 100 mm, a diameter of 50 mmφ, and an average side wall thickness of 265 μm was obtained. The obtained container was evaluated by the following method.

耐圧強度(Kg/cm2):水圧をかけ破壊に至る最高
圧力を求めた。
Pressure resistance (Kg/cm 2 ): Water pressure was applied to determine the maximum pressure that would lead to destruction.

熱収縮率(%):90℃の熱水を注入し、注入前後
の体積より算出した。
Heat shrinkage rate (%): Calculated from the volume before and after injection of hot water at 90°C.

その結果、耐圧強度は17Kg/cm2及び熱収縮率は
0.15%であつた。
As a result, the compressive strength was 17Kg/cm 2 and the heat shrinkage rate was
It was 0.15%.

比較例 1 実施例1で用いた成形板(C1)の代わりに、
実施例1と同様な方法で得た厚さ2.3mmの非晶状
態のシートから切り出した直径60mmφの円形の小
板状体(B2)を用い、圧縮成形することなく110
℃に加熱して真空成形を行い、実施例1と同形の
容器を得た。しかしながら耐圧強度は8Kg/cm3
低く、90℃の熱水を注入したところ変形が著しく
収縮率の測定は出来なかつた。
Comparative Example 1 Instead of the molded plate (C 1 ) used in Example 1,
Using a circular platelet (B 2 ) with a diameter of 60 mmφ cut from an amorphous sheet with a thickness of 2.3 mm obtained in the same manner as in Example 1, 110 mm was used without compression molding.
The container was heated to .degree. C. and vacuum-formed to obtain a container having the same shape as in Example 1. However, the compressive strength was as low as 8 Kg/cm 3 , and when hot water at 90°C was injected, the material was deformed so much that it was not possible to measure the shrinkage rate.

比較例 2 比較例1の小板状体(B2)の真空成形時の加
熱温度を140℃とする以外は比較例1と同様に行
つた。その結果、加熱時に小板状体(B2)が結
晶化し、真空成形が出来なかつた。
Comparative Example 2 The same procedure as in Comparative Example 1 was carried out except that the heating temperature during vacuum forming of the small plate-shaped body (B 2 ) of Comparative Example 1 was 140°C. As a result, the platelets (B 2 ) crystallized during heating, making vacuum forming impossible.

実施例 2 実施例1で用いた小板状体(B1)の代わりに、
射出成形機を用いて300℃で成形した直径45mmφ
及び厚さ4mmの非晶状態の円形の小板状体(B3
を用い、該小板状体(B3)を予熱温度110℃で圧
縮成形(プレス温度105℃)し、直径60mmφ及び
厚さ2.3mmの円形の成形板(C3)とした。次いで
加熱温度を150℃として、実施例1と同様な方法
で実施例1と同形の容器を得た。得られた容器の
耐圧強度は18Kg/cm2で、熱収縮率は0.15%であつ
た。
Example 2 Instead of the platelets (B 1 ) used in Example 1,
Diameter 45mmφ molded at 300℃ using an injection molding machine
and an amorphous circular platelet (B 3 ) with a thickness of 4 mm.
The small plate-shaped body (B 3 ) was compression-molded at a preheating temperature of 110° C. (press temperature 105° C.) to form a circular molded plate (C 3 ) with a diameter of 60 mmφ and a thickness of 2.3 mm. Next, a container having the same shape as in Example 1 was obtained in the same manner as in Example 1, with the heating temperature set to 150°C. The resulting container had a pressure resistance of 18 kg/cm 2 and a heat shrinkage rate of 0.15%.

比較例 3 実施例1で用いた成形板(C1)を用いて、予
熱温度を170℃にして成形板(C4)を得たとこ
ろ、結晶化を起こし、真空成形時の加熱温度を
200℃にしても真空成形ができなかつた。
Comparative Example 3 When the molded plate (C 1 ) used in Example 1 was preheated to 170°C to obtain a molded plate (C 4 ), crystallization occurred and the heating temperature during vacuum forming was lowered.
Vacuum forming was not possible even at 200℃.

実施例 3 IV:0.88、Tg:70℃、Tc1:180℃、Tm:230
℃及びイソフタル酸10モル%のポリエチレンテレ
フタレート共重合体(商品名 ユニペツト
RN163、日本ユニペツト製)を射出成形機を用
いて270℃で成形し、直径45mmφ及び厚さ4mmの
非晶状態の円形の小板状体(B5)を得た。次い
で該小板状体(B5)を130℃に予熱後、圧縮成形
(プレス温度125℃)し、直径60mmφ及び厚さ2.3
mmの円形の成形板(C5)とした。次いで加熱温
度を190℃として実施例1と同様な方法で真空成
形し、実施例1と同形の容器を得た。得られた容
器の耐圧強度は16Kg/cm2で、熱収縮率は0.23%で
あつた。
Example 3 IV: 0.88, Tg: 70℃, Tc 1 : 180℃, Tm: 230
℃ and 10 mol% isophthalic acid polyethylene terephthalate copolymer (trade name Unipet)
RN163, manufactured by Nippon Unipet) was molded at 270° C. using an injection molding machine to obtain an amorphous circular platelet (B 5 ) with a diameter of 45 mmφ and a thickness of 4 mm. Next, the platelet-shaped body (B 5 ) was preheated to 130°C and compression molded (pressing temperature 125°C) to give a diameter of 60 mmφ and a thickness of 2.3 mm.
It was made into a circular molded plate (C 5 ) of mm. Next, vacuum forming was performed in the same manner as in Example 1 at a heating temperature of 190°C to obtain a container having the same shape as in Example 1. The resulting container had a pressure resistance of 16 kg/cm 2 and a heat shrinkage rate of 0.23%.

比較例 4 実施例3で用いた小板状体(B5)の代わりに
実施例3と同様な方法で成形した直径60mmφ及び
厚さ4mmの小板状体(B6)を用い、圧縮成形す
ることなく、加熱温度190℃で実施例1と同様に
真空成形を試みたところ、加熱時に小板状体が結
晶化し、真空成形できなかつた。
Comparative Example 4 Instead of the small plate-like body (B 5 ) used in Example 3, a small plate-like body (B 6 ) having a diameter of 60 mmφ and a thickness of 4 mm molded in the same manner as in Example 3 was used, and compression molding was performed. When vacuum forming was attempted in the same manner as in Example 1 at a heating temperature of 190°C without heating, the platelets crystallized during heating and vacuum forming could not be performed.

実施例 4 実施例1で成形したシートから1辺16.5mmの正
六角形の小板状体(B6)を切出し、該小板状体
(B6)を120℃に予熱後、圧縮成形(プレス温度
115℃)し、直径60mmφ及び厚さ1mmの円形の成
形板(C6)とした。次いで該成形板(C6)を固
定後190℃に加熱し、実施例1と同様に真空成形
し、実施例1と同形の容器を得た(但し平均側壁
厚さは115μ)。得られた容器の耐圧強度は側壁厚
さが薄いにもかかわらず9Kg/cm2で、熱収縮率は
0.06%であつた。
Example 4 A regular hexagonal small plate (B 6 ) with a side of 16.5 mm was cut out from the sheet formed in Example 1, and after preheating the small plate (B 6 ) to 120°C, compression molding (pressing) was performed. temperature
115°C) to form a circular molded plate (C 6 ) with a diameter of 60 mmφ and a thickness of 1 mm. Next, the molded plate (C 6 ) was fixed, heated to 190° C., and vacuum formed in the same manner as in Example 1 to obtain a container having the same shape as in Example 1 (however, the average side wall thickness was 115 μm). The pressure resistance of the obtained container was 9 kg/cm 2 despite the thin side wall thickness, and the heat shrinkage rate was
It was 0.06%.

比較例 5 実施例4で用いた成形板(C6)の代わりに、
予熱温度120℃で圧縮成形した直径60mmφ及び厚
さ0.5mmの円形の成形板(C7)を用い、固定後230
℃に加熱し、実施例1と同様に真空成形したがま
つたく容器形状にすることが出来なかつた。
Comparative Example 5 Instead of the molded plate (C 6 ) used in Example 4,
Using a circular molded plate (C 7 ) with a diameter of 60 mmφ and a thickness of 0.5 mm that was compression-molded at a preheating temperature of 120°C, it was fixed at 230°C.
℃ and vacuum-formed in the same manner as in Example 1, but it could not be formed into a tight container shape.

実施例 5 実施例1で成形したシートから一辺30mmの正六
角形の小板状体(B8)を切り出し、該小板状体
(B8)を予熱温度110℃で圧縮成形(プレス成形
105℃)し、直径60mmφ及び厚さ3.6mmの円形の成
形板(C8)とした。次いで該成形板(C8)を固
定後110℃に加熱し、実施例1と同様に真空成形
し、実施例1と同形の容器を得た(但し平均側壁
厚さを415μ)。得られた容器の耐圧強度は21Kg/
cm2で、熱収縮率は1.2%であつた。
Example 5 A regular hexagonal small plate (B 8 ) with a side of 30 mm was cut out from the sheet formed in Example 1, and the small plate (B 8 ) was compression molded (press molded) at a preheating temperature of 110°C.
105°C) to form a circular molded plate (C 8 ) with a diameter of 60 mmφ and a thickness of 3.6 mm. Next, the molded plate (C 8 ) was fixed and then heated to 110° C. and vacuum-formed in the same manner as in Example 1 to obtain a container having the same shape as in Example 1 (however, the average side wall thickness was 415 μm). The resulting container has a pressure resistance of 21 kg/
cm 2 , the heat shrinkage rate was 1.2%.

実施例 6 内、外層が実施例1で用いたポリエチレンテレ
フタレート、中間層がI.V:0.85、Tg:55℃、
Tc1なし及びTmなしのポリエチレンイソフタレ
ートになるように共押出成形(成形温度270℃)
して、内装/中間層/外層=1.33mm/1.33mm/
1.33mm(厚さ)の多層シート(ポリエチレンテレ
フタレートも非晶状態)を得た。次いで該シート
から1辺30mmの正六角形の小板状体(B9)を切
出し、該小板状体(B9)を90℃に予熱後、圧縮
成形(プレス温度95℃)し、直径60mmφ及び厚さ
3.0mmの円形の成形板(C9)とした。次いで該成
形板(C9)を固定後120℃に加熱し、実施例1と
同様に真空成形し、実施例1と同形の容器を得た
(但し平均側壁厚さ350μ)。得られた容器の耐圧
強度は18Kg/cm2で、熱収縮率は1.5%であつた。
Example 6 The inner and outer layers are the same polyethylene terephthalate used in Example 1, the middle layer is IV: 0.85, Tg: 55°C,
Coextrusion molding to obtain polyethylene isophthalate without Tc 1 and without Tm (molding temperature 270℃)
Then, interior/middle layer/outer layer = 1.33mm/1.33mm/
A multilayer sheet (polyethylene terephthalate was also in an amorphous state) with a thickness of 1.33 mm was obtained. Next, a regular hexagonal small plate (B 9 ) with a side of 30 mm is cut out from the sheet, and after preheating the small plate (B 9 ) to 90°C, compression molding (press temperature 95°C) is performed to obtain a diameter of 60 mmφ. and thickness
A circular molded plate (C 9 ) of 3.0 mm was used. Next, the molded plate (C 9 ) was fixed, heated to 120° C., and vacuum-formed in the same manner as in Example 1 to obtain a container having the same shape as in Example 1 (however, the average side wall thickness was 350 μm). The resulting container had a pressure resistance of 18 kg/cm 2 and a heat shrinkage rate of 1.5%.

比較例 6 実施例6で用いた成形板(C9)を代わりに、
実施例6と同様な方法で得た内層/中間層/外層
=1mm/1mm/1mm(厚さ)の非晶状態の外層シ
ートから切り出した直径60mmφの円形の小板状体
(B10)を用い、圧縮成形することなく120℃に加
熱して真空成形を行い、実施例1と同形の容器を
得た。得られた容器の耐圧強度は14Kg/cm2であつ
たが90℃の熱水を注入すると容器が著しく変形し
た。
Comparative Example 6 Instead of the molded plate (C 9 ) used in Example 6,
A circular plate-like body (B 10 ) with a diameter of 60 mmφ was cut from an amorphous outer layer sheet with inner layer/intermediate layer/outer layer = 1 mm/1 mm/1 mm (thickness) obtained in the same manner as in Example 6 . A container having the same shape as Example 1 was obtained by heating to 120° C. and vacuum forming without compression molding. The resulting container had a pressure resistance of 14 kg/cm 2 , but the container was significantly deformed when hot water at 90°C was poured into it.

比較例 7 実施例1の成形板(C1)の真空成形時の加熱
温度を110℃とする以外は実施例1と同様に行つ
た。得られた容器の耐圧強度は8Kg/cm2と低く、
90℃の熱水を注入すると容器が著しく変形した。
Comparative Example 7 The same procedure as in Example 1 was conducted except that the heating temperature during vacuum forming of the molded plate (C 1 ) of Example 1 was 110°C. The resulting container had a low pressure strength of 8 kg/ cm2 ;
When 90°C hot water was injected, the container deformed significantly.

Claims (1)

【特許請求の範囲】 1 非晶状態のポリエチレンテレフタレートAを
層成分として含有する単層又は複層の小板状体(B)
を下記(1)式で示された範囲内の温度に予熱した
後、 Tg+10℃≦Tp1≦Tc1 (1) (但し、式中Tgはポリエチレンテレフタレート
Aのガラス転移温度(℃)、Tp1は予熱温度(℃)
およびTc1はポリエチレンテレフタレートAの結
晶化温度(℃)を表す。) 前記小板状体(B)を元の厚さの1/4〜1/1.1の厚さ
になるまで圧縮成形し、次いで該成形板(C)を下記
(2)式で示された範囲内の温度に加熱後、 Tp1+10℃≦Tp2≦Tm−30℃ (2) (但し、式中Tp2は加熱温度(℃)及びTmはポ
リエチレンテレフタレートAの融点(℃)を表
す) 成形型内で熱成形することを特徴とする ポリエチレンテレフタレート製容器の製造方法。
[Claims] 1. A single-layer or multi-layer platelet-like body (B) containing amorphous polyethylene terephthalate A as a layer component.
After preheating to a temperature within the range shown by the following formula (1), Tg+10℃≦Tp 1 ≦Tc 1 (1) (where, in the formula, Tg is the glass transition temperature of polyethylene terephthalate A (℃), Tp 1 is preheating temperature (℃)
and Tc 1 represents the crystallization temperature (°C) of polyethylene terephthalate A. ) Compression mold the platelet (B) to a thickness of 1/4 to 1/1.1 of the original thickness, then mold the molded plate (C) as follows.
After heating to a temperature within the range shown by formula (2), Tp 1 +10℃≦ Tp2 ≦Tm−30℃ (2) (where, in the formula, Tp 2 is the heating temperature (℃) and Tm is polyethylene terephthalate A. (represents the melting point (°C) of ) A method for producing a polyethylene terephthalate container characterized by thermoforming in a mold.
JP6838884A 1984-04-07 1984-04-07 Manufacture of container made of polyethylene terephthalate Granted JPS60212325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6838884A JPS60212325A (en) 1984-04-07 1984-04-07 Manufacture of container made of polyethylene terephthalate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6838884A JPS60212325A (en) 1984-04-07 1984-04-07 Manufacture of container made of polyethylene terephthalate

Publications (2)

Publication Number Publication Date
JPS60212325A JPS60212325A (en) 1985-10-24
JPH0543500B2 true JPH0543500B2 (en) 1993-07-01

Family

ID=13372280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6838884A Granted JPS60212325A (en) 1984-04-07 1984-04-07 Manufacture of container made of polyethylene terephthalate

Country Status (1)

Country Link
JP (1) JPS60212325A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798315A (en) * 1980-10-22 1982-06-18 Goodyear Tire & Rubber Hollow vessel and its manufacture
JPS595019A (en) * 1982-07-02 1984-01-11 Toppan Printing Co Ltd Manufacture of heat-resisting container

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798315A (en) * 1980-10-22 1982-06-18 Goodyear Tire & Rubber Hollow vessel and its manufacture
JPS595019A (en) * 1982-07-02 1984-01-11 Toppan Printing Co Ltd Manufacture of heat-resisting container

Also Published As

Publication number Publication date
JPS60212325A (en) 1985-10-24

Similar Documents

Publication Publication Date Title
EP1463619B1 (en) Method for producing semicrystalline polylactic acid articles
US5972445A (en) Multilayer polyester sheet
EP0934159B1 (en) Laminates comprising layers of hydroxy-phenoxyether and polyester
JPH10315420A (en) Laminated polyester film of high oxygen gas barrier properties and manufacture thereof, and packaging material and insulating material
EP0785067B1 (en) Multilayer polyester sheet
CN100450752C (en) Method for producing multilayer stretch-molded article
US6037063A (en) High barrier, coextruded compositions useful in the manufacture of clear, heat-stable articles and methods relating thereto
AU771665B2 (en) Continuous process and apparatus for making thermoformed articles
JPH0429529B2 (en)
JP4563090B2 (en) Polyester resin composition, heat-shrinkable polyester film comprising the resin composition, molded article and container
JPH0543500B2 (en)
JPH08267686A (en) Heat forming polyester sheet and formed item thereof
JPH0562067B2 (en)
JP5153463B2 (en) Stretched polyester film for molding
JPH0470333A (en) Polyester sheet for molding and polyester molded body
JP4568043B2 (en) Polyester resin composition, heat-shrinkable polyester film comprising the resin composition, molded article and container
JPH08156211A (en) Thermoforming polyester sheet
JP3464531B2 (en) Deep drawn thermoformed polyester container
JP3811636B2 (en) Polyester laminated sheet and molded product comprising the same
EP3877129A1 (en) Compostable material for packaging
JPH081767A (en) Polyester vessel with excellent impact resistance
JPH0985795A (en) Manufacture of polyester sheet for draw forming
JP2553228B2 (en) Method for manufacturing heat-resistant resin container
JP2533982B2 (en) Method for manufacturing transparent heat-resistant container
EP0480043B1 (en) Transparent polyester container