JPH054348B2 - - Google Patents

Info

Publication number
JPH054348B2
JPH054348B2 JP59075100A JP7510084A JPH054348B2 JP H054348 B2 JPH054348 B2 JP H054348B2 JP 59075100 A JP59075100 A JP 59075100A JP 7510084 A JP7510084 A JP 7510084A JP H054348 B2 JPH054348 B2 JP H054348B2
Authority
JP
Japan
Prior art keywords
water
soluble
inorganic fibers
acid
polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59075100A
Other languages
Japanese (ja)
Other versions
JPS60221346A (en
Inventor
Atsushi Sakai
Hiroaki Eguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59075100A priority Critical patent/JPS60221346A/en
Publication of JPS60221346A publication Critical patent/JPS60221346A/en
Publication of JPH054348B2 publication Critical patent/JPH054348B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はガラス繊維、炭素繊維及びセラミツク
フアイバー等を水溶性のポリアミドで良好に収束
するための収束剤に関するものである。 〔従来の技術〕 近年、無機繊維と各種ポリマからなる強化プラ
スチツクが自動車部品、航空機部品、精密機械部
品、浴槽及び浄化槽等家庭用品、それにボート、
ゴルフ、スキー等のスポーツ用品、安全帽など広
範囲な分野でいろいろな用途に多量に使用されて
いる。 今後も、一般的な合成樹脂、金属及びセラミツ
クスなどの補強材料として無機繊維が広範に使用
されるであろうが、これら無機繊維を補強材料と
して使用する時、無機繊維を収束剤で収束し、短
くカツトして合成樹脂等と混錬し、コンポジツト
を得ている。 〔発明が解決しようとする問題点〕 これまでの一連の工程で問題点になつているの
は、 (1) 繊維束に収束剤を塗布するが、有機溶媒の場
合は、職場の環境衛生、外部への公害問題に特
に注意を払わなければならないし、又安全面に
おいても引火爆発する溶媒を使用する時は工程
の装置をすべて完全防爆型にしなければなら
ず、設備費の増大を招く。 (2) 収束剤の収束性能の向上が必要である。 (3) マトリツクス材料との相溶性が悪い場合は強
度のあるマトリツクス材が得られない。 上記の問題点を解決すべく種々の収束剤が検討
されているが、水溶性の収束剤の場合は環境衛生
公害及び安全面については最良であるが、いま一
つマトリツクス材との相溶性が良くなく、強度の
良いコンポジツトが得られていない等一長一短の
収束剤が多かつた。 〔問題点を解決するための手段〕 本発明者らは、これら問題点を解決する目的で
鋭意研究をすすめたところ、無機繊維の収束剤と
してはマトリツクス材の含浸性及び収束性の良好
なものとして特定の構造を有する水溶性ポリアミ
ド樹脂が最も適しているものであることを見い出
した。 即ち本発明は、主鎖中に三級アミノ基および/
またはオキシエチレン基を有するジアミンとジカ
ルボン酸とを重縮合して得られる水溶性のポリア
ミドを主成分として含有している無機繊維の水溶
性収束剤を提供するものである。 この水溶性ポリアミドは主鎖中に三級アミノ基
および/またはオキシエチレン基を有するジアミ
ンとジカルボン酸より重縮合して得られるポリア
ミド樹脂で前記ジアミンとして、ピペラジン環を
有するN,N′−ビス(γ−アミノプロピル)ピ
ペラジン、N−(β−アミノエチル)ピペラジン
等主鎖中に三級アミノ基を含むモノマ、オキシエ
チレンアルキルアミン等の主鎖中にオキシエチレ
ン基を含むアルキルジアミンが有用である。 又、ジカルボン酸としてはアジピン酸、セバシ
ン酸等がある。 本発明の水溶性のポリアミドは共重合体であつ
てもよい。共重合成分としては、例えばα−ピロ
リドン、α−ピペリドン、ε−カプロラクタム、
α−メチル−ε−カプロラクタム、ε−メチル−
ε−カプロラクタム、ε−ラウロラクタムなどの
ラクタムを挙げることができ、二元共重合もしく
は多元共重合も可能であるが、共重合比率は水溶
性という物性を妨げない範囲において決定され
る。好ましくはラクタム環を持つ共重合成分比率
を30重量%以内にしないとポリマが水に完溶しな
くなる。 しかしながら、前記範囲外の共重合成分比率の
難水溶性のポリマであつても、有機及び無機酸を
もちいて溶液を酸性にした場合溶解性が増大し、
水可溶性になり使用が可能になる。有機酸として
は、酢酸、クロル酢酸、プロピオン酸、マレイン
酸、しゆう酸、フルオロ酢酸等があり、無機酸と
しては、一般的な鉱酸類である塩酸、硫酸、リン
酸等を挙げることができる。 このようにして得られた水溶性のポリアミドを
水又は酸性水溶液に0.1重量%以上、好ましくは
1重量%〜20重量%の濃度に溶解して無機繊維の
収束剤として使用する。 この収束剤の使用方法としては浸漬法、スプレ
ー法等の通常の方法で無機繊維に付与され、数百
〜数万本のフイラメントを収束する。 この収束剤の無機繊維に対する付着量はフイラ
メントの太さにもよるが、ポリマ固形分で1〜20
重量%、好ましくは3〜10重量%である。 この場合付着量が少なすぎたり、多すぎた時
は、後加工での作業性が悪くなり、ボビンへの巻
取り、カツテング等の問題を発生させる。 特に少なすぎた場合は、フイラメントがばらけ
て毛羽が発生する。多すぎた時は、フイラメント
の柔軟性が欠けてきて硬くなりすぎ、ボビンへの
巻取りがスムースにいかなくなる。このようにし
て収束剤を付与された無機繊維は乾燥機で水分除
去及び加熱処理されるが、この加熱処理条件もボ
ビン巻取り後の後加工の作業性に重要であり、マ
トリツクス材との接着性の良否にかかわつてく
る。 すなわち、本発明の収束剤は無機繊維に付与し
た後、室温〜100℃の熱風をもちいた乾燥機中で
水分を除去した後、150〜300℃の温度範囲の条件
下で熱処理する。好ましくは、200〜280℃の温度
条件下で行う。 この熱処理温度は、水溶性のポリアミドが空気
中の酸素によつて自己架橋する温度であり、水可
溶の物性を失う温度である。 この処理により、水溶性ポリマが不溶になり吸
湿性も失うため、フイラメントを収束したストラ
ンドのべたつきがなくなり、後加工の作業性が向
上するだけでなく、マトリツクス材への密着性が
良くなり取扱いやすい無機繊維を提供できる。 この水溶性ポリアミド樹脂を用いた収束剤は各
種マトリツクス材との親和性にすぐれておりコン
ポジツトの特性を著しく向上せしめるが、特にポ
リアミド系樹脂、ポリイミド系樹脂、ポリアミド
イミド系樹脂、及びポリエーテルアミドイミド系
樹脂においてすぐれた密着性の改善効果がある。 このようなポリアミド系樹脂としては、ナイロ
ン−6、ナイロン−66、ナイロン610、ナイロン
612及びP−フエニレンジアミンとフタル酸クロ
ライドを反応させた芳香族系ポリアミドがある。 また、ポリイミド系樹脂としては、トリメリツ
ト酸無水物とヘキサメチレンジアミンを環化反応
によつて得られる樹脂等がある。 ポリアミドイミド系樹脂は、上記ポリアミド成
分とポリイミド成分を共重したものである。 また、ポリエーテルアミドイミド系樹脂は、ポ
リアミドイミド系樹脂成分に更にポリエチレング
リコール等エーテル結合基を含有した成分を共重
合して得られた樹脂である。 これらのマトリツクス材と無機繊維とから複合
材料を形成する方法は、一般の射出成形法やモノ
マキヤステイング法等で行われ、水溶性の収束剤
を塗布された無機繊維のフイラメント束をカツタ
ーで1〜10mm程度に切断し、前にあげたポリアミ
ド等のマトリツクス材のチツプとブレンダーで良
く混合した後射出成形したり、モノマと触媒を共
に型材に入れ成型したりしてコンポジツト製品を
得る。 〔効 果〕 本発明の水溶性収束剤は次の効果を示す。 (1) 無機繊維の収束性がすぐれている。 (2) 収束された無機繊維とマトリツクス材の密着
性能を向上させ強度のすぐれたコンポジツトを
得られる。 (3) 本発明の収束剤が付与された無機繊維束を紙
管に巻上げた後、紙管から前記繊維束を巻きも
どすとき解舒性がすぐれている。 〔実施例 1〕 40の撹拌の付いた釜に水を13.8Kg、アジピン
酸(AAと略称)7.33Kg入れ容解させN−(β−ア
ミノエチル)ピペラジン(AEPと略称)を少し
ずつ投入し6.47Kg加えた時、PHが7.3になつたの
で塩反応を終了し共重合成分のε−カプロラクタ
ム(LCと略称)を1.53Kg加えた。撹拌溶解し釜
内の空気を窒素ガスで置換した後、水を除去しな
がら4時間かけて230℃まで昇温し、更に重縮合
反応を完全に行うため1.5時間継続して98%硫酸
の相対粘度で1.7〜2.4のポリマを得た。他の組成
のポリマについても同様に重合した。 また、N,N′−ビス(γ−アミノプロピル)
ピペラジン(BAPPと略称)やα,ε−ビス(ア
ミノプロピオキシ)ポリエチレングリコール
(PGDと略称)をAEPの代りに使用して、同様に
重合を行つた結果を表1〜3に示す。
[Industrial Field of Application] The present invention relates to a binding agent for satisfactorily binding glass fibers, carbon fibers, ceramic fibers, etc. with water-soluble polyamide. [Prior Art] In recent years, reinforced plastics made of inorganic fibers and various polymers have been used for automobile parts, aircraft parts, precision machinery parts, household goods such as bathtubs and septic tanks, boats,
It is used in large quantities for a variety of purposes in a wide range of fields, including sports equipment such as golf and skiing, and hard hats. Inorganic fibers will continue to be widely used as reinforcing materials for general synthetic resins, metals, ceramics, etc., but when these inorganic fibers are used as reinforcing materials, they must be converged with a converging agent, It is cut into short pieces and kneaded with synthetic resin, etc. to obtain a composite. [Problems to be solved by the invention] The problems that have arisen in the series of processes up to now are: (1) The binding agent is applied to the fiber bundles, but in the case of using an organic solvent, the environmental sanitation of the workplace, Particular attention must be paid to the problem of external pollution, and from the safety point of view, when flammable and explosive solvents are used, all process equipment must be completely explosion-proof, which increases equipment costs. (2) It is necessary to improve the convergence performance of the convergence agent. (3) If the compatibility with the matrix material is poor, a strong matrix material cannot be obtained. Various sizing agents have been studied to solve the above problems, but water-soluble sizing agents are the best in terms of environmental health, pollution, and safety, but they are not compatible with the matrix material. There were many sizing agents that had advantages and disadvantages, such as not being good and not producing a composite with good strength. [Means for Solving the Problems] The present inventors have carried out intensive research with the aim of solving these problems, and have found that a binding agent for inorganic fibers that has good impregnating properties and binding properties for matrix materials It has been found that a water-soluble polyamide resin having a specific structure is the most suitable. That is, the present invention has a tertiary amino group and/or
Alternatively, the present invention provides a water-soluble sizing agent for inorganic fibers containing as a main component a water-soluble polyamide obtained by polycondensing a diamine having an oxyethylene group and a dicarboxylic acid. This water-soluble polyamide is a polyamide resin obtained by polycondensing a diamine having a tertiary amino group and/or an oxyethylene group in its main chain with a dicarboxylic acid. Monomers containing a tertiary amino group in the main chain, such as γ-aminopropyl)piperazine and N-(β-aminoethyl)piperazine, and alkyldiamines containing an oxyethylene group in the main chain, such as oxyethylenealkylamine, are useful. . In addition, examples of dicarboxylic acids include adipic acid and sebacic acid. The water-soluble polyamide of the present invention may be a copolymer. Examples of copolymerization components include α-pyrrolidone, α-piperidone, ε-caprolactam,
α-Methyl-ε-caprolactam, ε-Methyl-
Lactams such as ε-caprolactam and ε-laurolactam can be mentioned, and binary copolymerization or multi-component copolymerization is also possible, but the copolymerization ratio is determined within a range that does not interfere with the physical property of water solubility. Preferably, the proportion of the copolymer component having a lactam ring must be within 30% by weight, otherwise the polymer will not be completely soluble in water. However, even for poorly water-soluble polymers with a copolymerization component ratio outside the above range, the solubility increases when the solution is made acidic using an organic or inorganic acid.
It becomes water soluble and can be used. Examples of organic acids include acetic acid, chloroacetic acid, propionic acid, maleic acid, oxalic acid, and fluoroacetic acid, and examples of inorganic acids include common mineral acids such as hydrochloric acid, sulfuric acid, and phosphoric acid. . The water-soluble polyamide thus obtained is dissolved in water or an acidic aqueous solution to a concentration of 0.1% by weight or more, preferably 1% to 20% by weight, and used as a sizing agent for inorganic fibers. The binding agent is applied to the inorganic fibers by a conventional method such as dipping or spraying, and several hundred to tens of thousands of filaments are bundled. The amount of this sizing agent attached to the inorganic fibers depends on the thickness of the filament, but the polymer solid content is 1 to 20%.
% by weight, preferably 3-10% by weight. In this case, if the amount of adhesion is too small or too large, workability in post-processing will be poor, leading to problems such as winding onto a bobbin and cutting. In particular, if the amount is too small, the filament will come apart and fuzz will occur. If there is too much, the filament will lose its flexibility and become too hard, making it difficult to wind it onto the bobbin smoothly. The inorganic fibers that have been given a sizing agent in this way are subjected to water removal and heat treatment in a dryer, but the conditions for this heat treatment are also important for the workability of post-processing after winding the bobbin. It has to do with the quality of sexuality. That is, after the sizing agent of the present invention is applied to inorganic fibers, moisture is removed in a dryer using hot air at room temperature to 100°C, and then heat treatment is performed under a temperature range of 150 to 300°C. Preferably, it is carried out under a temperature condition of 200 to 280°C. This heat treatment temperature is the temperature at which the water-soluble polyamide self-crosslinks due to oxygen in the air, and is the temperature at which it loses its water-soluble physical properties. This treatment makes the water-soluble polymer insoluble and loses its hygroscopicity, which eliminates the stickiness of the strands containing the filaments, which not only improves the workability of post-processing, but also improves adhesion to the matrix material, making it easier to handle. We can provide inorganic fibers. This sizing agent using water-soluble polyamide resin has excellent affinity with various matrix materials and significantly improves the properties of composites, but it is especially suitable for polyamide resins, polyimide resins, polyamide-imide resins, and polyetheramide-imide resins. It has an excellent effect of improving adhesion in resins. Such polyamide resins include nylon-6, nylon-66, nylon 610, nylon
There are aromatic polyamides made by reacting 612 and P-phenylenediamine with phthalic acid chloride. Examples of polyimide resins include resins obtained by a cyclization reaction of trimellitic anhydride and hexamethylene diamine. The polyamide-imide resin is a copolymer of the above polyamide component and polyimide component. Further, the polyetheramide-imide resin is a resin obtained by copolymerizing a polyamide-imide resin component with a component containing an ether bonding group such as polyethylene glycol. The method of forming a composite material from these matrix materials and inorganic fibers is carried out by a general injection molding method or a monomer casting method, in which a filament bundle of inorganic fibers coated with a water-soluble sizing agent is cut into one bundle with a cutter. A composite product is obtained by cutting the material into pieces of about 10 mm, mixing them thoroughly in a blender with chips of matrix material such as the polyamide mentioned above, and then injection molding, or by putting the monomer and catalyst together in a mold and molding. [Effects] The water-soluble sizing agent of the present invention exhibits the following effects. (1) Inorganic fibers have excellent convergence. (2) It is possible to improve the adhesion between the converged inorganic fibers and the matrix material, resulting in a composite with excellent strength. (3) After winding up the inorganic fiber bundle to which the sizing agent of the present invention has been applied onto a paper tube, the fiber bundle has excellent unwinding properties when the fiber bundle is unwound from the paper tube. [Example 1] Put 13.8 kg of water and 7.33 kg of adipic acid (abbreviated as AA) into a pot equipped with a 40-mm stirrer, dissolve, and add N-(β-aminoethyl)piperazine (abbreviated as AEP) little by little. When 6.47 kg was added, the pH reached 7.3, so the salt reaction was terminated and 1.53 kg of ε-caprolactam (abbreviated as LC), a copolymer component, was added. After stirring and dissolving and replacing the air in the pot with nitrogen gas, the temperature was raised to 230°C over 4 hours while removing water, and then 98% sulfuric acid was added for 1.5 hours to complete the polycondensation reaction. A polymer with a viscosity of 1.7-2.4 was obtained. Polymers of other compositions were similarly polymerized. Also, N,N'-bis(γ-aminopropyl)
Tables 1 to 3 show the results of similar polymerizations using piperazine (abbreviated as BAPP) and α,ε-bis(aminopropioxy)polyethylene glycol (abbreviated as PGD) in place of AEP.

【表】【table】

【表】【table】

【表】【table】

〔実施例 2〕[Example 2]

実施例1で得られた水溶性の収束剤を5重量%
水に溶解しガラス繊維の収束剤として使用した。 10μ×1000フイラメントからなるガラス繊維を
水溶液に浸漬し、ローラで過剰の水溶液を除去
し、240〜250℃の熱風乾燥機中で3分間加熱処理
し収束剤の付着量2〜3%のガラス繊維を得た。 この繊維を3mm長にカツトして、ナイロン6ペ
レツトと混錬しガラス繊維を15%の成型品を得
た。 この成型品のコンポジツト物性と比較するため
に、アクリルアミドポリマを比較品として上記と
同様のテストした。 その結果を表4に示す。
5% by weight of the water-soluble sizing agent obtained in Example 1
It was dissolved in water and used as a binding agent for glass fibers. Glass fibers consisting of 10μ x 1000 filaments are immersed in an aqueous solution, excess aqueous solution is removed with a roller, and heat treated for 3 minutes in a hot air dryer at 240-250°C to obtain glass fibers with a binding agent adhesion of 2-3%. I got it. This fiber was cut into a length of 3 mm and kneaded with nylon 6 pellets to obtain a molded product containing 15% glass fiber. In order to compare the physical properties of the composite of this molded product, the same tests as above were conducted using an acrylamide polymer as a comparison product. The results are shown in Table 4.

〔実施例 3〕[Example 3]

実施例1で得られた水溶性収束剤5%水溶液に
10μ×1000フイラメントからなるガラス繊維を浸
漬しローラで過剰の水溶液を除去し240〜250℃の
熱風乾燥機中で3分間加熱処理し、ボビンに張力
300Kgで巻いた後、25℃65%RHの条件で10日間
放置後ストランドの巻もどしを行い巻もどし性を
調べた。 比較品としてポリアクリルアミドも同様にテス
トした。 その結果を表5に示す。
To the 5% aqueous solution of the water-soluble sizing agent obtained in Example 1,
A glass fiber consisting of 10μ x 1000 filaments is immersed, excess aqueous solution is removed using a roller, heat treated in a hot air dryer at 240-250℃ for 3 minutes, and tension is applied to the bobbin.
After winding at 300 kg, the strand was left to stand for 10 days at 25°C and 65% RH, and then the strand was unwound to examine its unwinding properties. Polyacrylamide was also tested in the same manner as a comparative product. The results are shown in Table 5.

【表】【table】

〔実施例 4〕[Example 4]

水溶性のAEP−90収束剤を5%濃度に水に溶
かし10μ×1000フイラメントからなるガラス繊維
に3%塗布し、温度をかえて4分間熱処理し張力
300Kgでボビンに巻きあげた後、25℃ 65%RH
の条件で10日間放置後ストランドの巻もどしを行
い巻もどし性を調べた。 その結果を表6に示す。
A water-soluble AEP-90 sizing agent was dissolved in water to a concentration of 5% and applied at 3% to a glass fiber consisting of a 10μ x 1000 filament, and heat treated for 4 minutes at different temperatures to create tension.
After winding on a bobbin with 300Kg, 25℃ 65%RH
After being left for 10 days under these conditions, the strands were unrolled and the unwinding properties were examined. The results are shown in Table 6.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 主鎖中に三級アミノ基および/またはオキシ
エチレン基を有するジアミンとジカルボン酸とを
重縮合して得られる水溶性のポリアミドを主成分
として含有している無機繊維の水溶性収束剤。
1. A water-soluble sizing agent for inorganic fibers containing as a main component a water-soluble polyamide obtained by polycondensing a diamine having a tertiary amino group and/or oxyethylene group in its main chain with a dicarboxylic acid.
JP59075100A 1984-04-16 1984-04-16 Water-soluble bundling agent of inorganic fiber Granted JPS60221346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59075100A JPS60221346A (en) 1984-04-16 1984-04-16 Water-soluble bundling agent of inorganic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59075100A JPS60221346A (en) 1984-04-16 1984-04-16 Water-soluble bundling agent of inorganic fiber

Publications (2)

Publication Number Publication Date
JPS60221346A JPS60221346A (en) 1985-11-06
JPH054348B2 true JPH054348B2 (en) 1993-01-19

Family

ID=13566412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59075100A Granted JPS60221346A (en) 1984-04-16 1984-04-16 Water-soluble bundling agent of inorganic fiber

Country Status (1)

Country Link
JP (1) JPS60221346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105676A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Carbon fiber, carbon fiber-reinforced thermoplastic resin composition, molding material and molded product
JP2004107626A (en) * 2002-07-16 2004-04-08 Toray Ind Inc Carbon fiber reinforced thermoplastic resin composition, molding material and molded article
US11518857B2 (en) 2017-09-08 2022-12-06 Matsumoto Yushi-Seiyaku Co., Ltd. Sizing agent for reinforcement fiber and applications thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212514A (en) * 1985-05-31 1988-09-05 Sumitomo Rubber Ind Ltd Structural material and its manufacture
CN1261637C (en) 2001-07-31 2006-06-28 三菱丽阳株式会社 Sizing agent for carbon fiber, method for sizing carbon fiber by said sizing agent, sized carbon fiber and knitted or woven fabric using said carbon fiber
JP5777504B2 (en) * 2011-12-22 2015-09-09 住友精化株式会社 Carbon fiber sizing agent and carbon fiber bundle treated with the sizing agent
EP2966217B1 (en) 2013-03-06 2018-05-02 Sumitomo Seika Chemicals CO. LTD. Fiber treatment agent, carbon fibers treated with fiber treatment agent, and carbon fiber composite material containing said carbon fibers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003105676A (en) * 2001-09-28 2003-04-09 Toray Ind Inc Carbon fiber, carbon fiber-reinforced thermoplastic resin composition, molding material and molded product
JP2004107626A (en) * 2002-07-16 2004-04-08 Toray Ind Inc Carbon fiber reinforced thermoplastic resin composition, molding material and molded article
US11518857B2 (en) 2017-09-08 2022-12-06 Matsumoto Yushi-Seiyaku Co., Ltd. Sizing agent for reinforcement fiber and applications thereof

Also Published As

Publication number Publication date
JPS60221346A (en) 1985-11-06

Similar Documents

Publication Publication Date Title
KR100875843B1 (en) Polyamide composition
JP5459842B2 (en) Crosslinkable aramid copolymer
JP3741762B2 (en) Colorless transparent copolyamides and their production methods, and molded articles produced from these copolyamides, blends or alloys thereof
JPH07278303A (en) Aromatic copolyamide, its preparation, molded structure and its preparation
JP2002538278A (en) Aqueous polyamide-amic acid composition
JPH07502299A (en) Compatible thermoplastic polymer blend compositions comprising polyamide/amorphous polyamide blends
US4952662A (en) Molding compounds comprising a thermoplastically processible, aromatic polyamide
JPH07502051A (en) Amide-imide resin for the production of heat-resistant fibers
JPH054348B2 (en)
JPH04233943A (en) Amorphous copolyamide, its manufacture, and manufacture of its molding
JPS6366851B2 (en)
BR0115543B1 (en) process for the preparation of polyamides, polyamide, and molded filaments, fibers, sheets or bodies.
US5041506A (en) Method for the production of a molecular composite of rigid aromatic polymer
US20100234538A1 (en) Polyamide
JPH07118401A (en) Improvement of adhesiveness of aramid cord to rubber
JPH011761A (en) Method for producing molecular composites of rigid aromatic polymers
JPS6036510B2 (en) Sizing agent for carbon fiber
JP2022028668A (en) Block copolymer for protecting metal-based parts
US4758651A (en) Amorphous aromatic copolyamide, a process for the preparation thereof, and shaped object
JPS6234848B2 (en)
JP2793023B2 (en) Thermoplastically processable graft polymer and method for producing the same
JPS62149980A (en) Coated full-aromatic polyamide fiber and fiber reinforced resin composite using the same
JP2722008B2 (en) Polyimide resin composition and method for producing the same
JPH0551615B2 (en)
JPS64422B2 (en)