JPH0543408Y2 - - Google Patents

Info

Publication number
JPH0543408Y2
JPH0543408Y2 JP8989188U JP8989188U JPH0543408Y2 JP H0543408 Y2 JPH0543408 Y2 JP H0543408Y2 JP 8989188 U JP8989188 U JP 8989188U JP 8989188 U JP8989188 U JP 8989188U JP H0543408 Y2 JPH0543408 Y2 JP H0543408Y2
Authority
JP
Japan
Prior art keywords
acid
concentration
sensor
aqueous solution
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8989188U
Other languages
Japanese (ja)
Other versions
JPH0212644U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8989188U priority Critical patent/JPH0543408Y2/ja
Publication of JPH0212644U publication Critical patent/JPH0212644U/ja
Application granted granted Critical
Publication of JPH0543408Y2 publication Critical patent/JPH0543408Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Secondary Cells (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は酸水溶液の濃度を測定するセンサに関
するものであり、さらに詳しくは酸水溶液の水蒸
気圧からその濃度を知るようにしたセンサに関す
るものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a sensor for measuring the concentration of an acid aqueous solution, and more specifically to a sensor that determines the concentration of an acid aqueous solution from its water vapor pressure.

従来の技術 硫酸、塩酸、酢酸等の酸の水溶液濃度を測定し
たいという要望は多い。殊に、鉛電池の電解液と
しての硫酸の濃度は鉛電池の充放電状態と密接な
関係があるため、鉛電池の硫酸の濃度を簡便に測
定し得る装置の出現が待望されている。従来、鉛
電池の硫酸濃度は浮子式比重計や光屈折式比重計
によつて測定するのが通例である。また、特殊な
方法としては鉛電池の硫酸電解液の上部空間の湿
度を測定することによつて硫酸濃度を知るという
方法(ドイツ特許第2254207号(1973))が提案さ
れている。この方法は、硫酸水溶液と気液平衡状
態にある上部空間の水蒸気圧が硫酸水溶液の濃度
によつて変化するので、前記空間の水蒸気圧を測
定すれば硫酸水溶液の濃度を知ることができると
いう原理に基づいている。一方、この提案をさら
に発展させて、湿度センサを多孔性のポリプロピ
レン膜で被覆したものを硫酸水溶液中に直接浸漬
し、多孔式ポリプロピレンの孔を通して拡散して
くる水蒸気の分圧を湿度センサで測定するという
方法が提案されている。(J.L.Weininger,J.L.
Briant.J.Electrochem.Soc.129,2409(1982)) 考案が解決しようとする問題点 上述の浮子式比重計や光屈折式比重計は、その
寸法が大きすぎるため、鉛電池に挿入するわけに
は行かず、また、硫酸水溶液の濃度を連続的に測
定することができないという難点があつた。これ
に対し、鉛電池の電解液上部の湿度を湿度センサ
で測定するという方法の場合には、硫酸の濃度が
変化したとき、硫酸水溶液の水蒸気圧を空間部分
の水蒸気圧が平衡に達するのに時間がかかり、こ
のため応答速度が遅いという問題があつた。ま
た、上述のWeininger等の方法の場合、多孔性の
ポリプロピレンは撥水性が不十分なため、水蒸気
だけでなく硫酸水溶液自体が膜を通つて湿度セン
サの感湿部に到達してしまい、湿度が正確に測定
できなくなるばかりか化学的に侵され、寿命が極
めて短いという欠点があつた。
Prior Art There are many requests to measure the concentration of aqueous solutions of acids such as sulfuric acid, hydrochloric acid, and acetic acid. In particular, since the concentration of sulfuric acid as an electrolyte in a lead battery is closely related to the charging/discharging state of the lead battery, it is eagerly awaited for an apparatus that can easily measure the concentration of sulfuric acid in a lead battery. Conventionally, the sulfuric acid concentration in a lead-acid battery is usually measured using a float type hydrometer or a photorefraction type hydrometer. Furthermore, as a special method, a method has been proposed (German Patent No. 2254207 (1973)) in which the sulfuric acid concentration is determined by measuring the humidity in the space above the sulfuric acid electrolyte of a lead battery. This method is based on the principle that since the water vapor pressure in the upper space, which is in vapor-liquid equilibrium with the sulfuric acid aqueous solution, changes depending on the concentration of the sulfuric acid aqueous solution, the concentration of the sulfuric acid aqueous solution can be determined by measuring the water vapor pressure in the space. Based on. On the other hand, by further developing this proposal, a humidity sensor coated with a porous polypropylene membrane was directly immersed in an aqueous sulfuric acid solution, and the humidity sensor measured the partial pressure of water vapor diffusing through the pores of the porous polypropylene. A method has been proposed to do so. (JL Weininger, JL
Briant.J.Electrochem.Soc.129, 2409 (1982)) Problems that the invention aims to solve The above-mentioned float-type hydrometers and photorefraction-type hydrometers are too large, so they cannot be inserted into a lead-acid battery. Another problem was that the concentration of the sulfuric acid aqueous solution could not be measured continuously. In contrast, when the humidity above the electrolyte of a lead-acid battery is measured using a humidity sensor, when the concentration of sulfuric acid changes, the water vapor pressure of the sulfuric acid aqueous solution is adjusted until the water vapor pressure in the space reaches equilibrium. There was a problem that it took a long time and the response speed was slow. In addition, in the case of the method of Weininger et al. mentioned above, porous polypropylene has insufficient water repellency, so not only water vapor but also the sulfuric acid aqueous solution itself passes through the membrane and reaches the humidity sensing part of the humidity sensor. Not only was it impossible to measure accurately, but it was also chemically attacked and had an extremely short lifespan.

問題点を解決するための手段 本考案は湿度センサを被覆する膜を多孔性フツ
素樹脂からなる撥水層と水蒸気の選択透過層を有
する膜とし、湿度センサの感湿部周辺にアルカリ
またはアルカリ土類金属の炭酸塩或るいは水酸化
物を主体とする固形の酸蒸気吸収体を配置するこ
とにより上述の問題点を解決したものである。
Means for Solving the Problems The present invention uses a membrane that covers the humidity sensor as a membrane that has a water repellent layer made of porous fluororesin and a selectively permeable layer for water vapor. The above-mentioned problems are solved by disposing a solid acid vapor absorber mainly composed of carbonates or hydroxides of earth metals.

作 用 本考案の作用原理は上述のWeininger等が提案
したものと基本的に同じである。すなわち、湿度
センサを多孔性撥水性プラスチツク膜で被覆し、
酸水溶液中に浸漬すると、その酸水溶液中の水分
が蒸気となつて前記プラスチツク膜の孔を拡散し
ていき、やがて膜を境にして気液が平衡する。こ
の時、膜内の気相中の水蒸気圧は湿度センサによ
り湿度として捕えられる。
Operation The principle of operation of the present invention is basically the same as that proposed by Weininger et al. mentioned above. That is, the humidity sensor is covered with a porous water-repellent plastic membrane,
When immersed in an acid aqueous solution, the water in the acid aqueous solution becomes vapor and diffuses through the pores of the plastic membrane, and eventually the gas and liquid are balanced across the membrane. At this time, the water vapor pressure in the gas phase within the membrane is detected as humidity by the humidity sensor.

一般に酸水溶液の水蒸気圧は酸の濃度が高けれ
ば高いほど低いが、酸の既知の濃度と上述の湿度
センサによつて検出される相対湿度との関係を求
めておけば、未知の濃度の酸水溶液に上述の湿度
センサを多孔性プラスチツク膜で被覆したものを
浸漬した際の相対湿度の値から、その酸水溶液の
濃度を知ることができる。したがつて、この湿度
センサを多孔性プラスチツク膜で被覆したセンサ
は酸水溶液の濃度センサとして機能する。また、
この多孔性プラスチツク膜は単なる湿度センサの
保護カバー以上の機能をもつていることになる。
In general, the higher the acid concentration, the lower the water vapor pressure of an aqueous acid solution. The concentration of the acid aqueous solution can be determined from the relative humidity value obtained when the above-mentioned humidity sensor coated with a porous plastic film is immersed in the aqueous solution. Therefore, this humidity sensor covered with a porous plastic film functions as a concentration sensor for an acid aqueous solution. Also,
This porous plastic membrane has more than just a protective cover for the humidity sensor.

本考案にかかる湿度センサの被覆膜は多孔性フ
ツ素樹脂膜と水蒸気選択透過膜を有している。多
孔性フツ素樹脂膜は、酸水溶液自体が内部に侵入
して湿度センサに直接接触するのを防止し、水蒸
気だけを透過させる機能を持つている。フツ素樹
脂膜は上述のWininger等の提案したポリプロピ
レンより撥水性がはるかに高く、当該目的には優
れた機能を発揮する。ところで、この多孔性フツ
素樹脂膜は酸水溶液の侵入を防ぎはするが、酸自
体の蒸気の透過は防止しない。これに対して、水
蒸気選択透過膜は酸自体の蒸気の透過を防止し、
水蒸気だけを選択的に透過させる機能を持つてい
る。この水蒸気選択透過層の材料としてはパーフ
ルオロカーボンスルフオン酸が適しているが、必
ずしもこれに限定されない。また、この層を形成
する方法としてはパーフルオロカーボンスルフオ
ン酸を多孔性フツ素樹脂膜の片面に塗着すればよ
い。
The coating membrane of the humidity sensor according to the present invention has a porous fluororesin membrane and a water vapor selectively permeable membrane. The porous fluororesin membrane has the function of preventing the acid aqueous solution itself from entering the interior and coming into direct contact with the humidity sensor, and allowing only water vapor to pass through. The fluororesin film has much higher water repellency than the polypropylene proposed by Wininger and others mentioned above, and exhibits excellent functionality for the purpose. Incidentally, although this porous fluororesin membrane prevents the intrusion of the acid aqueous solution, it does not prevent the permeation of the vapor of the acid itself. On the other hand, a water vapor selectively permeable membrane prevents the permeation of the vapor of the acid itself,
It has the ability to selectively transmit only water vapor. Perfluorocarbon sulfonic acid is suitable as the material for this water vapor selectively permeable layer, but it is not necessarily limited thereto. Further, as a method for forming this layer, perfluorocarbon sulfonic acid may be applied to one side of the porous fluororesin membrane.

かかる二重層構造を有する膜にすると酸の蒸気
の透過は非常に少なくなる。しかしながら、前記
二重層構造を有する膜で被覆した濃度センサも、
長時間酸水溶液中で使用すると、微量の酸蒸気が
膜を透過し、センサに悪影響を与える。
If the membrane has such a double layer structure, the permeation of acid vapor will be extremely reduced. However, the concentration sensor coated with the membrane having the double layer structure also
If the sensor is used in an acid aqueous solution for a long period of time, a small amount of acid vapor will permeate the membrane and adversely affect the sensor.

そこで、本願考案者等は二重層構造を有する膜
を透過した微量の酸蒸気を捕捉するために、炭酸
カルシウムからなる酸蒸気吸収層を水蒸気選択透
過層の上に設けた三重層構造を有する膜を提案し
た。この酸蒸気の捕捉は、例えば次のような化学
反応によつて行われる。
Therefore, the inventors of the present invention proposed a membrane with a triple layer structure in which an acid vapor absorbing layer made of calcium carbonate was provided on a water vapor selectively permeable layer in order to capture the trace amount of acid vapor that permeated through the membrane with a double layer structure. proposed. This acid vapor is captured, for example, by the following chemical reaction.

H2SO4+CaCO3→ CaSO4+CO2+H2O 上述の如き三重層構造を有する膜を用いること
により、酸蒸気の透過をほぼ完全に防止できた
が、濃度センサを長時間、酸水溶液中で使用する
場合、水蒸気選択透過層を透過する酸蒸気量が多
くなり、その酸蒸気を捕捉する炭酸カルシウムの
層が厚くなるので濃度センサの応答速度が遅くな
るという問題があつた。そこで、本考案では濃度
センサの応答性を損なわずに、寿命を伸ばす方法
として、固形の酸蒸気吸収体、例えば、炭酸カル
シウムのブロツクを湿度センサの感湿部周辺に配
置し、多孔性フツ素樹脂層と水蒸気選択透過層を
有する膜で被覆してなる濃度センサを提案する。
多孔性フツ素樹脂層と水蒸気選択透過層とを透過
してきた僅かな酸蒸気は感湿部周辺の炭酸カルシ
ウムと優先的に反応するので、感湿部を侵すこと
はない。
H 2 SO 4 +CaCO 3 → CaSO 4 +CO 2 +H 2 O By using a membrane with a triple layer structure as described above, the permeation of acid vapor could be almost completely prevented. When used in the water vapor selective permeation layer, the amount of acid vapor that permeates through the water vapor selective permeation layer increases, and the calcium carbonate layer that traps the acid vapor becomes thicker, resulting in a problem that the response speed of the concentration sensor becomes slower. Therefore, in the present invention, as a method to extend the life of the concentration sensor without impairing its responsiveness, a solid acid vapor absorber, such as a block of calcium carbonate, is placed around the humidity sensing part of the humidity sensor. We propose a concentration sensor coated with a membrane having a resin layer and a water vapor selective permeation layer.
A small amount of acid vapor that has passed through the porous fluororesin layer and the water vapor selectively permeable layer reacts preferentially with calcium carbonate around the moisture sensitive area, so it does not attack the moisture sensitive area.

この濃度センサは三重層構造を有する濃度セン
サに比べ、寿命がほぼ同じで、応答速度が約2倍
速くなつた。なお、本考案における酸蒸気吸収体
は炭酸カルシウムに限定されるものではなく、ア
ルカリまたはアルカリ土類金属の炭酸塩あるいは
水酸化物を主体にするものであれば何でもよい。
This concentration sensor has approximately the same lifespan and approximately twice the response speed as the concentration sensor having a triple layer structure. Note that the acid vapor absorber in the present invention is not limited to calcium carbonate, but any material may be used as long as it is mainly composed of carbonates or hydroxides of alkali or alkaline earth metals.

実施例 以下、本考案の一実施例について詳述する。Example An embodiment of the present invention will be described in detail below.

先ず、撥水層となる厚さ0.1mm、気孔率75%の
多孔性ポリテトラフルオロエチレン膜の片面にパ
ーフルオロカーボンスルフオン酸樹脂のアルコー
ル溶液をコーテイングして水蒸気選択透過層を形
成する。かくして二重層構造の膜ができる。
First, a water vapor selectively permeable layer is formed by coating one side of a porous polytetrafluoroethylene membrane with a thickness of 0.1 mm and a porosity of 75%, which will serve as a water repellent layer, with an alcoholic solution of perfluorocarbon sulfonic acid resin. In this way, a membrane with a double layer structure is formed.

次に炭酸カルシウムの微粉末(粒径約20μ)
10gにポリテトラフルオロエチレンの水懸濁液
(固形物60%)0.1mlを加えて混合し、その後、乾
燥、粉砕する。粉砕した粉末0.5gを圧力500Kg/
cm2でプレスして大きさ15×20mm、厚さ3mmのコ字
状のブロツクに成形し、これを酸蒸気吸収体とす
る。
Next, fine powder of calcium carbonate (particle size approximately 20μ)
Add 0.1 ml of an aqueous suspension of polytetrafluoroethylene (60% solids) to 10 g, mix, then dry and crush. 0.5g of crushed powder is pressed at 500Kg/
It is pressed at cm 2 and formed into a U-shaped block with a size of 15 x 20 mm and a thickness of 3 mm, and this is used as an acid vapor absorber.

アルミナ基板上に高分子電解質から成る感湿膜
を形成したタイプの湿度センサの感湿部周辺に上
記炭酸カルシウムのコ字状のブロツクを置き、こ
れを多孔性フツ素樹脂層と水蒸気選択透過層との
二重層構造からなる膜で被覆して水溶液の濃度を
測定するセンサを作製する。
The above U-shaped block of calcium carbonate is placed around the humidity sensing part of a humidity sensor in which a moisture-sensitive film made of a polymer electrolyte is formed on an alumina substrate, and this is combined with a porous fluororesin layer and a water vapor selectively permeable layer. A sensor for measuring the concentration of an aqueous solution is fabricated by coating it with a membrane consisting of a double layer structure.

このようにして得られた酸水溶液濃度センサの
構造を第1図に、その断面構造を第2図に示す。
第1図および第2図において、湿度センサ1の両
側部および底部は上述の如く成型された炭酸カル
シウムを主体とする酸蒸気吸収体2で囲まれ、撥
水層3と水蒸気選択透過層4とから構成された二
重層膜で被覆、包装されている。
The structure of the acid aqueous solution concentration sensor thus obtained is shown in FIG. 1, and its cross-sectional structure is shown in FIG.
In FIGS. 1 and 2, both sides and the bottom of a humidity sensor 1 are surrounded by an acid vapor absorber 2 mainly made of calcium carbonate molded as described above, and a water repellent layer 3 and a water vapor selectively permeable layer 4 are formed. It is coated and packaged with a double layer membrane composed of.

濃度センサに用いた湿度センサの検出方式は、
くし形電極の付いたアルミナ基板上に高分子電解
質からなる感湿膜を形成したタイプの高分子抵抗
式であり、1KHzの交流を印加した時のインピー
ダンスを検知し、そのインピーダンスの変化を電
圧の変化として検出するようにしたものである。
The detection method of the humidity sensor used for the concentration sensor is
This type of polymer resistance type has a moisture-sensitive film made of polymer electrolyte formed on an alumina substrate with interdigitated electrodes.It detects the impedance when 1KHz alternating current is applied, and detects the change in impedance by changing the voltage. It is designed to be detected as a change.

第5図は、硫酸水溶液と濃度センサによる検出
電圧との関係を示した図である。硫酸水溶液の濃
度が高くなるに従い濃度センサの電圧が低下し、
測定電圧値により、硫酸水溶液濃度を的確に検出
し得る。
FIG. 5 is a diagram showing the relationship between the sulfuric acid aqueous solution and the voltage detected by the concentration sensor. As the concentration of the sulfuric acid aqueous solution increases, the voltage of the concentration sensor decreases,
The concentration of the sulfuric acid aqueous solution can be accurately detected by the measured voltage value.

硫酸水溶液の濃度を変化させた際の濃度センサ
の電圧の変化からセンサの応答速度を求めるとこ
ろ、第3図に示した如く、本考案センサAは90%
応答で3分となり、炭酸カルシウム層の厚い三重
層構造膜で被覆した濃度センサBの90%応答時間
5分に比べ、かなり速い応答となつた。これは本
考案のセンサAにおいては検知部表面に蒸気の透
過を妨げる炭酸カルシウムの層が無いためであ
る。
When the response speed of the sensor is determined from the change in the voltage of the concentration sensor when the concentration of the sulfuric acid aqueous solution is changed, as shown in Figure 3, the sensor A of the present invention has a response rate of 90%.
The response time was 3 minutes, which was much faster than the 90% response time of concentration sensor B, which was coated with a thick three-layer calcium carbonate layer of 5 minutes. This is because the sensor A of the present invention does not have a layer of calcium carbonate on the surface of the detection part that prevents vapor transmission.

更に、硫酸水溶液の濃度を連続的に測定したと
きの水溶液濃度センサの特性を検討した。即ち、
本考案センサについて濃度40%の硫酸水溶液(温
度30℃)中での1000時間にわたる測定結果は第4
図の如くであつて、本考案センサは57mVの安定
した電圧を継続しており、三重層構造膜を用いた
濃度センサに劣らない寿命が得られた。
Furthermore, we investigated the characteristics of the aqueous solution concentration sensor when continuously measuring the concentration of sulfuric acid aqueous solution. That is,
The results of measurements over 1000 hours in a 40% sulfuric acid aqueous solution (temperature 30°C) regarding the sensor of this invention are the 4th.
As shown in the figure, the sensor of the present invention maintained a stable voltage of 57 mV, and had a lifespan comparable to that of a concentration sensor using a triple-layered membrane.

考案の効果 以上のべたように、本考案は連続的に測定で
き、応答性がよく、寿命の長い酸水溶液の濃度を
測定するセンサを提供するものであり、その工業
的価値は極めて大である。
Effects of the invention As described above, the present invention provides a sensor for measuring the concentration of an acid aqueous solution that can be measured continuously, has good responsiveness, and has a long life, and its industrial value is extremely large. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による硫酸水溶液の濃度を測定
するセンサの構造を示す正面図、第2図は第1図
はおけるA−A線断面図、第3図は濃度センサの
応答速度を示す特性図、第4図は硫酸水溶液中の
濃度を連続的に測定した時の濃度センサの特性の
変化を示す図である。第5図は硫酸水溶液の濃度
と濃度センサの電圧との関係を示す図である。 1……湿度センサ、2……酸蒸気吸収体、3…
…撥水層、4……水蒸気選択透過層。
Fig. 1 is a front view showing the structure of a sensor for measuring the concentration of a sulfuric acid aqueous solution according to the present invention, Fig. 2 is a sectional view taken along the line A-A in Fig. 1, and Fig. 3 is a characteristic showing the response speed of the concentration sensor. 4 are diagrams showing changes in the characteristics of the concentration sensor when the concentration in an aqueous sulfuric acid solution is continuously measured. FIG. 5 is a diagram showing the relationship between the concentration of the sulfuric acid aqueous solution and the voltage of the concentration sensor. 1...Humidity sensor, 2...Acid vapor absorber, 3...
...Water repellent layer, 4...Water vapor selectively permeable layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] アルカリまたはアルカリ土類金属の炭酸塩ある
いは水酸化物を主体とする固形の酸蒸気吸収体を
湿度センサの感湿部周辺に配置し、酸水溶液自体
が内部に侵入して湿度センサに直接接触するのを
防止し水蒸気だけを透過させる機能を有する多孔
性フツ素樹脂層と酸自体の蒸気の透過を防止し水
蒸気だけを選択的に透過させる機能を有する水蒸
気選択透過層とを有する膜で被覆してなる酸水溶
液の濃度を測定するセンサ。
A solid acid vapor absorber mainly composed of carbonates or hydroxides of alkali or alkaline earth metals is placed around the humidity sensing part of the humidity sensor, and the acid aqueous solution itself enters the interior and comes into direct contact with the humidity sensor. The membrane is coated with a porous fluororesin layer that has the function of preventing the acid from passing through and allowing only water vapor to pass through, and a water vapor selective permeation layer that has the function of preventing the vapor of the acid itself from passing through and selectively allowing only water vapor to pass through. A sensor that measures the concentration of an acid aqueous solution.
JP8989188U 1988-07-06 1988-07-06 Expired - Lifetime JPH0543408Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8989188U JPH0543408Y2 (en) 1988-07-06 1988-07-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8989188U JPH0543408Y2 (en) 1988-07-06 1988-07-06

Publications (2)

Publication Number Publication Date
JPH0212644U JPH0212644U (en) 1990-01-26
JPH0543408Y2 true JPH0543408Y2 (en) 1993-11-01

Family

ID=31314429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8989188U Expired - Lifetime JPH0543408Y2 (en) 1988-07-06 1988-07-06

Country Status (1)

Country Link
JP (1) JPH0543408Y2 (en)

Also Published As

Publication number Publication date
JPH0212644U (en) 1990-01-26

Similar Documents

Publication Publication Date Title
US5573648A (en) Gas sensor based on protonic conductive membranes
US4478704A (en) Gas detection device
WO1996024052A9 (en) Electrochemical gas sensor
EP0990895A3 (en) Gas sensor with electrically conductive hydrophobic membranes
GB1571282A (en) Gas sensor
CA2245050C (en) Three-electrode electrochemical gas sensor
Syritski et al. Environmental QCM sensors coated with polypyrrole
CN109477808B (en) Electrochemical gas sensor for detecting hydrogen cyanide gas
US5206615A (en) Sensor for measuring solute concentration in an aqueous solution
WO2002031485A1 (en) Acid gas measuring sensors and method of making same
JPH0543408Y2 (en)
Miura et al. Development of new chemical sensors based on low-temperature proton conductors
JP2598172B2 (en) Carbon dioxide detection sensor
JPH0635172Y2 (en) Sensor for measuring the concentration of aqueous acid solution
Jordan et al. Humidity and temperature effects on the response to ethylene of an amperometric sensor utilizing a gold‐nafion electrode
JPH086293Y2 (en) Solute concentration measurement sensor in aqueous solution
JPH0745002Y2 (en) Solute concentration measurement sensor in aqueous solution
JPH0633650Y2 (en) Lead acid battery
JP2634498B2 (en) Carbon dioxide detection sensor
JP3042616B2 (en) Constant potential electrolytic gas sensor
JP3815523B2 (en) Galvanic cell oxygen sensor
Fredericks et al. The effect of water vapour on the behaviour of the oxygen electrode in molten nitrates
RU2006848C1 (en) Element sensitive to fluorine and to hydrogen fluoride
JP3708208B2 (en) pH sensor and ion water generator
Wallgren et al. A Nafion®-based co-planar electrode amperometric sensor for methanol determination in the gas phase