JPH0543273B2 - - Google Patents

Info

Publication number
JPH0543273B2
JPH0543273B2 JP61143485A JP14348586A JPH0543273B2 JP H0543273 B2 JPH0543273 B2 JP H0543273B2 JP 61143485 A JP61143485 A JP 61143485A JP 14348586 A JP14348586 A JP 14348586A JP H0543273 B2 JPH0543273 B2 JP H0543273B2
Authority
JP
Japan
Prior art keywords
resistance
cable
measurement
circuit
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61143485A
Other languages
Japanese (ja)
Other versions
JPS62299772A (en
Inventor
Susumu Umeda
Osamu Shirahama
Minoru Yamamoto
Takashi Niimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Fujikura Ltd
Original Assignee
Asahi Kasei Corp
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Fujikura Ltd filed Critical Asahi Kasei Corp
Priority to JP14348586A priority Critical patent/JPS62299772A/en
Publication of JPS62299772A publication Critical patent/JPS62299772A/en
Publication of JPH0543273B2 publication Critical patent/JPH0543273B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、架橋ポリエチレン電力ケーブルの
絶縁抵抗を活線下で測定し、絶縁劣化の程度を知
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of measuring the insulation resistance of a crosslinked polyethylene power cable under live wire conditions to determine the degree of insulation deterioration.

[従来の技術その1] 交直重畳法により、活線下でケーブルの絶縁抵
抗を測定する技術が公知である。その一例を第3
図に示す(特公昭59−34977号公報参照)。
[Prior Art No. 1] A technique is known in which the insulation resistance of a cable is measured under a live wire using the AC/DC superposition method. An example of this is shown in the third
As shown in the figure (see Japanese Patent Publication No. 59-34977).

10は測定対象の架橋ポリエチレン電力ケーブ
ルで、12はケーブル導体、14はケーブル絶縁
体、16はケーブル遮蔽層、18はケーブルシー
スである。
10 is a cross-linked polyethylene power cable to be measured, 12 is a cable conductor, 14 is a cable insulator, 16 is a cable shielding layer, and 18 is a cable sheath.

電力ケーブル10は高圧母線24に接続され、
平時(測定時以外)は、スイツチ26が閉じ、ケ
ーブル遮蔽層16が接地されている。
The power cable 10 is connected to a high voltage bus bar 24,
During normal times (other than during measurements), the switch 26 is closed and the cable shielding layer 16 is grounded.

測定時には、スイツチ26を開き、直流電源2
8により、接地用トランス30の中性点を通し
て、ケーブル絶縁体14に直流電圧を重畳する。
When measuring, open the switch 26 and turn on the DC power supply 2.
8 superimposes a DC voltage on the cable insulator 14 through the neutral point of the grounding transformer 30.

第4図は直流等価回路で、Rxが絶縁体14の
抵抗、Rsはシース18の抵抗である。直流電源
28によつて絶縁体抵抗Rxに流れる漏れ電流I1
を、ケーブル遮蔽層16に接続する直流電流計3
2により測定し、絶縁体抵抗Rxの値を求める。
FIG. 4 shows a DC equivalent circuit, where Rx is the resistance of the insulator 14 and Rs is the resistance of the sheath 18. Leakage current I 1 flowing through the insulator resistor Rx by the DC power supply 28
A DC ammeter 3 connected to the cable shielding layer 16
2 to find the value of the insulator resistance Rx.

[従来技術その1の問題点] (1) ケーブルシース18の絶縁抵抗Rsが低下す
ると、局部電池34が形成され、それにもとづ
く電流Inは、第4図のように、電流計32を流
れるためシース抵抗Rsが低いと測定に大きな
誤差を与える。
[Problems with Prior Art No. 1] (1) When the insulation resistance Rs of the cable sheath 18 decreases, a local battery 34 is formed, and the current In based on it flows through the ammeter 32 as shown in FIG. If the resistance Rs is low, it will cause a large error in measurement.

それを補償するための手段36も種々考えら
れているが、シース抵抗Rsの値が100kΩ以下
に低下すると、絶縁体抵抗Rxの正確な測定ほ
とんどできなくなる。
Various means 36 for compensating for this have been considered, but when the value of the sheath resistance Rs decreases below 100 kΩ, accurate measurement of the insulator resistance Rx becomes almost impossible.

(2) 直流電源28としては、少なくとも50V以上
が必要である(たとえば絶縁体抵抗Rxの値が
2000MΩの場合、50VでもI1は25nAで、非常に
微小である。これに対し(1)で述べたように、シ
ースの局部電池は最大0.5V程度であるためシ
ース抵抗Rsが100kΩに低下したとすると、上
記I1(25nA)の200倍の電流約5μAが流れるこ
とになり、これを補償し、正確な測定をするこ
とはきわめて困難である)。
(2) The DC power supply 28 must have at least 50V (for example, if the value of the insulator resistance Rx is
In the case of 2000MΩ, I1 is 25nA even at 50V, which is extremely small. On the other hand, as mentioned in (1), the local battery of the sheath has a maximum voltage of about 0.5V, so if the sheath resistance Rs drops to 100kΩ, a current of about 5μA, which is 200 times the above I 1 (25nA), will flow. (This makes it extremely difficult to compensate for this and make accurate measurements.)

そして、その直流電源28は、直接、母線2
4に印加される。
The DC power supply 28 is directly connected to the bus 2.
4 is applied.

50V以上の高い直流電圧が高圧母線24に印
加されると、これに接続されたケーブル及び機
器の絶縁体に不必要な対地電圧が印加され好ま
しくない。
If a high DC voltage of 50 V or more is applied to the high voltage bus 24, unnecessary ground voltage will be applied to the insulators of the cables and equipment connected thereto, which is undesirable.

[従来技術その2] 上記の問題を解決するものとして、次の方法が
提案されている(特願昭61−12779(特開昭62−
170857号公報)参照)。
[Prior art No. 2] The following method has been proposed to solve the above problem (Japanese Patent Application No. 12779/1983
(Refer to Publication No. 170857).

すなわち、第5図、第6図のように、 ケーブル遮蔽層16あるいは電力機器40の
ケース44と大地間に直流電源52を印加し
て、前記ケーブル遮蔽層16あるいはケース4
4と大地間の電圧Vを測定し、 前記ケーブルなどの接続している母線24と
大地間に、抵抗値の異なる2種の絶縁抵抗測定
用抵抗56(抵抗値=R1)、58(抵抗値=
R2)を切換え接続して、前記抵抗の両端の電
圧v1,v2を順次測定し、 それから下記の(1)式により絶縁体抵抗Rxの
値を求める、 という方法である。
That is, as shown in FIGS. 5 and 6, by applying a DC power source 52 between the cable shielding layer 16 or the case 44 of the power equipment 40 and the ground, the cable shielding layer 16 or the case 4
4 and the ground, and two types of insulation resistance measuring resistors 56 (resistance value = R 1 ), 58 (resistance value = R 1 ) and 58 (resistance value=
R 2 ) is switched and connected, the voltages v 1 and v 2 across the resistor are sequentially measured, and then the value of the insulator resistance Rx is determined using the following equation (1).

Rx=R2/1−R2/R1・V−v2/v2−R2/1−R2/R1・V
−v1/v1(1) [従来技術その2の問題点] (1) Rxが104MΩ以上になると、R1またはR2
500kΩとするため、フイルターを構成するキヤ
バシタンスとの関係で測定の時定数が大きくな
り、5分以上を必要とする。
Rx= R2 /1- R2 / R1・V- v2 / v2 - R2 /1- R2 / R1・V
−v 1 /v 1 (1) [Problems with conventional technology 2] (1) When Rx becomes 10 4 MΩ or more, R 1 or R 2 must be
Since the resistance is 500 kΩ, the measurement time constant becomes large due to the capacitance of the filter, and requires more than 5 minutes.

(2) 抵抗値の異なる2種の絶縁抵抗測定用抵抗5
6,58(R1、R2)を用いなければならない。
(2) Two types of insulation resistance measurement resistors 5 with different resistance values
6,58 (R 1 , R 2 ) must be used.

なお、その理由は次のとおりである。すなわち
高圧母線24には測定対象のケーブル10の外
に、ケーブルやモーター、トランスなどの機器が
接続しており、それらの全体を電力機器40で示
したが、それの絶縁体抵抗50(Rn)も、第2
図のように、絶縁抵抗測定用抵抗56(または5
8)と並列に入り、測定誤差の原因になる。
The reason for this is as follows. In other words, in addition to the cable 10 to be measured, devices such as cables, motors, and transformers are connected to the high-voltage bus 24, and the entirety of these devices is shown as power equipment 40, and its insulator resistance 50 (Rn) Also, the second
As shown in the figure, resistor 56 (or 5
8) and causes measurement errors.

その影響を排除するために、2種の値の異なる
抵抗を用いるのである。
In order to eliminate this effect, two types of resistors with different values are used.

[問題点を解決するための手段] 第1図のように、 ケーブル遮蔽層と大地間にフイルタ回路70を
介して検出用抵抗90および可変直流電源92を
接続し、 接地用トランス30の中性点と大地間にはフイ
ルター回路72を介して基準抵抗R1を接続し、
かつ測定用の比例抵抗rxと、測定用の加減抵抗rs
とを設け、 前記基準抵抗R1と測定用抵抗rx,rsおよびケ
ーブル絶縁層の絶縁抵抗Rxとで直流ホイートス
トンブリツジ回路を形成するとともに前記接地用
トランスの中性点に測定用直流電源78を接続す
ることにより測定回路74を組むこと、 によつて上記問題の解決を図つたものである。
[Means for solving the problem] As shown in FIG. 1, a detection resistor 90 and a variable DC power supply 92 are connected between the cable shielding layer and the ground via a filter circuit 70, and the neutral of the grounding transformer 30 is connected. A reference resistor R1 is connected between the point and the ground via a filter circuit 72,
and proportional resistance rx for measurement and rheostatic resistance rs for measurement
A DC Wheatstone bridge circuit is formed by the reference resistor R1, the measurement resistors rx, rs, and the insulation resistance Rx of the cable insulation layer, and a measurement DC power source 78 is connected to the neutral point of the grounding transformer. The above problem is solved by assembling the measuring circuit 74.

[実施例] 第1図において、 70はケーブル側のフイルター回路、72は接
地用トランス側のフイルター回路であり、これら
は公知のものである。
[Embodiment] In FIG. 1, 70 is a filter circuit on the cable side, and 72 is a filter circuit on the grounding transformer side, which are known.

rxは数種の異なる抵抗値を有する抵抗からな
る比例抵抗、rsは加減抵抗である。
rx is a proportional resistance made up of resistors with several different resistance values, and rs is a rheostat.

これらの抵抗値は、実布設線路のRx=0.1〜
106MΩの抵抗範囲を測定可能とするため、 ●比例抵抗rxは、100kΩ、1MΩ、10MΩ、
100MΩの切換え、 ●加減抵抗rsは、 10〜100Ω 100〜1000Ω 1〜10kΩ 10〜100kΩ のダイヤル式調整としてある。
These resistance values are Rx = 0.1 ~
10 In order to be able to measure a resistance range of 6 MΩ, ●Proportional resistance rx is 100kΩ, 1MΩ, 10MΩ,
100MΩ switching, ●The rheostatic resistance RS is available as a dial adjustment of 10 to 100Ω, 100 to 1000Ω, 1 to 10kΩ, and 10 to 100kΩ.

78は測定用の直流電源で、その電圧Eは、活
線時の交流電圧に重畳するため、他の機器への影
響を考慮して、10〜100Vとするのが適当である。
またブリツジ回路ではこの程度の電圧で十分な測
定感度が得られる。
Reference numeral 78 denotes a DC power supply for measurement, and since the voltage E thereof is superimposed on the AC voltage when the line is live, it is appropriate to set it to 10 to 100V in consideration of the influence on other equipment.
Furthermore, in the bridge circuit, sufficient measurement sensitivity can be obtained with this level of voltage.

76はスイツチ、80は電圧計を示す。 76 is a switch, and 80 is a voltmeter.

90はフイルター回路70の出力側、すなわち
直流的にはケーブルの遮蔽層と大地間に接続され
た検出用抵抗で、フイルターを構成するキヤパシ
タンスとの関係で適当な時定数(約2秒)となる
ように、5〜100kΩの間で選択される。
90 is a detection resistor connected to the output side of the filter circuit 70, that is, between the shielding layer of the cable and the ground in terms of direct current, and has an appropriate time constant (about 2 seconds) in relation to the capacitance that constitutes the filter. As such, it is selected between 5 and 100 kΩ.

92は可変電圧源で、測定に際してケーブル遮
蔽層にあらわれるノイズ電圧をキヤンセルするた
めのものである。
Reference numeral 92 denotes a variable voltage source for canceling noise voltage appearing on the cable shielding layer during measurement.

88は電圧計で、ブリツジバランス用に使用さ
れるとともに、ノイズキヤンセルに際しても使用
されるものである。
Reference numeral 88 denotes a voltmeter, which is used for bridge balance as well as for noise cancellation.

R1は接地用トランス30の中性点に接続され
たフイルター回路72の出力側に接続された基準
抵抗(直流的には中性点と大地間に接続される)
である。
R1 is a reference resistor connected to the output side of the filter circuit 72 connected to the neutral point of the grounding transformer 30 (in DC terms, it is connected between the neutral point and the ground)
It is.

このように構成された本発明の絶縁抵抗測定方
法の等価回路を第2図に示す。
FIG. 2 shows an equivalent circuit of the insulation resistance measuring method of the present invention configured as described above.

これから明らかなように、ブリツジの各辺はケ
ーブルの絶縁抵抗Rx、基準抵抗R1、比例抵抗
rx、加減抵抗rsで形成され、ケーブルシース絶縁
抵抗Rsはブリツジバランス用電圧計88と並列
になるのでケーブルの絶縁抵抗の測定に当つてシ
ース絶縁抵抗の影響を受けることはない。
As is clear from this, each side of the bridge is the cable insulation resistance Rx, the reference resistance R1, and the proportional resistance.
rx and rheostat rs, and the cable sheath insulation resistance Rs is connected in parallel with the bridge balance voltmeter 88, so that measurement of the insulation resistance of the cable is not affected by the sheath insulation resistance.

●測定方法: 検出用抵抗90の両端に現れているノイズ電
圧をキヤンセルするため、電圧計88の指示が
零になるように可変電圧源92を調整する。
●Measurement method: In order to cancel the noise voltage appearing across the detection resistor 90, adjust the variable voltage source 92 so that the reading on the voltmeter 88 becomes zero.

この場合、ノイズ電圧の極性を考慮して可変
電圧源92の極性が転換できるように構成して
おくことが望ましい。
In this case, it is desirable to configure the variable voltage source 92 so that its polarity can be switched in consideration of the polarity of the noise voltage.

次にスイツチ76を閉じてブリツジ回路に電
圧を印加し、検圧計88の指示が零になるよう
に比例抵抗rx、加減抵抗rsをそれぞれ調整す
る。
Next, the switch 76 is closed to apply voltage to the bridge circuit, and the proportional resistance rx and the rheostatic resistance rs are respectively adjusted so that the reading on the pressure gauge 88 becomes zero.

バランス点では、次式が成立する。 At the balance point, the following equation holds.

Rx/R1=rx/rs (2) したがつて、ケーブルの絶縁抵抗Rxは、 Rx=R1・rx/rs (3) として求めることができる。 Rx/R1=rx/rs (2) Therefore, the insulation resistance Rx of the cable is Rx=R1・rx/rs (3) It can be found as

また、ブリツジバランスが成立したときに
は、比例抵抗rxと加減抵抗rsのそれぞれの端子
電圧は等しいから、電圧計80の指示値Vxと
電源78の電圧Eとから、 Rx=E−Vx/Vx・rx として求めることができる。
Furthermore, when bridge balance is established, the respective terminal voltages of the proportional resistor rx and the rheostat rs are equal, so from the indicated value Vx of the voltmeter 80 and the voltage E of the power supply 78, Rx=E-Vx/Vx・It can be obtained as rx.

[発明の効果] (1) ケーブル遮蔽層と大地間にフイルター回路を
介して検出用抵抗および可変直流電源を接続
し、接地用トランスの中性点と大地間にはフイ
ルター回路を介して基準抵抗R1を接続し、か
つ測定用の比例抵抗rxと、測定用抵抗rsとを設
け、前記基準抵抗R1と測定用抵抗rx,rsおよ
びケーブル絶縁層の絶縁抵抗Rxとで、直流ホ
イートストンブリツジを形成しているので、 ケーブルシース絶縁抵抗Rsは直流ホイート
ストンブリツジの測定辺に含まれない。そのた
め、シース絶縁抵抗Rsの影響を受けずに、ケ
ーブル絶縁体の絶縁抵抗Rxを測定することが
できる。
[Effects of the invention] (1) A detection resistor and a variable DC power supply are connected between the cable shielding layer and the ground via a filter circuit, and a reference resistor is connected between the neutral point of the grounding transformer and the ground via a filter circuit. R1 is connected, and a proportional resistance rx for measurement and a resistance for measurement rs are provided, and a DC Wheatstone bridge is formed by the reference resistance R1, the measurement resistances rx, rs, and the insulation resistance Rx of the cable insulation layer. Therefore, the cable sheath insulation resistance Rs is not included in the measurement side of the DC Wheatstone bridge. Therefore, the insulation resistance Rx of the cable insulator can be measured without being affected by the sheath insulation resistance Rs.

(2) 電力ケーブルの劣化の程度を知るためには、
ケーブル絶縁体の直流抵抗分だけを、漏洩キヤ
パシタンスと分離して測定することが必要であ
るが、本発明においては、直流ホイートストン
ブリツジを形成して測定するので、直流絶縁抵
抗だけの測定が可能である。
(2) To know the degree of deterioration of power cables,
It is necessary to measure only the DC resistance of the cable insulator separately from the leakage capacitance, but in the present invention, since a DC Wheatstone bridge is formed and measured, only the DC insulation resistance can be measured. It is.

(3) 測定回路がブリツジ回路になつているので、
電圧・電流法に比較して精度が高く、測定範囲
も広い。
(3) Since the measurement circuit is a bridge circuit,
It has higher accuracy and a wider measurement range than the voltage/current method.

(従来技術その1の方法では103MΩ程度の測
定しかできなかつたが、本発明の方法では
106MΩの測定が可能)。
(The method of conventional technology 1 could only measure about 10 3 MΩ, but the method of the present invention
10 6 MΩ measurement possible).

(4) 直流ホイートストンブリツジ回路になつてい
るため、大地の迷走電流の影響がない。
(4) Since it is a DC Wheatstone bridge circuit, there is no influence from stray currents in the ground.

(5) ブリツジバランスの時定数を2秒程度に設定
することができるため、測定が速く、簡単であ
る。
(5) Since the bridge balance time constant can be set to about 2 seconds, measurements are quick and easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するための回路の
説明図、第2図はその等価回路図、第3図は従来
技術その1の説明図で、第4図はその回路図、第
5図は従来技術その2の説明図で、第6図はその
回路図。 Rx:ケーブル絶縁体抵抗、Rs:ケーブル遮蔽
層抵抗、30:接地トランスの中性点、70,7
2:フイルタ回路、rx:比例抵抗、rs:加減抵
抗、90:検出用抵抗、R1:基準抵抗。
FIG. 1 is an explanatory diagram of a circuit for implementing the method of the present invention, FIG. 2 is an equivalent circuit diagram thereof, FIG. 3 is an explanatory diagram of prior art No. 1, FIG. 4 is a circuit diagram thereof, and FIG. The figure is an explanatory diagram of the second conventional technique, and FIG. 6 is its circuit diagram. Rx: Cable insulation resistance, Rs: Cable shielding layer resistance, 30: Neutral point of grounding transformer, 70,7
2: Filter circuit, rx: proportional resistance, rs: rheostat, 90: detection resistor, R1: reference resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 ケーブル遮蔽層と大地間にフイルタ回路を介
して検出用抵抗および可変直流電源を接続し、接
地用トランスの中性点と大地間にはフイルター回
路を介して基準抵抗R1を接続し、かつ測定用の
比例抵抗rxと、測定用の加減抵抗rsとを設け、前
記基準抵抗R1と測定用の抵抗rx,rsおよびケー
ブル絶縁層の絶縁抵抗Rxとで直流ホイートスト
ンブリツジ回路を形成するとともに前記接地用ト
ランスの中性点に測定用直流電源を接続すること
により測定回路を構成し、前記比例抵抗rxおよ
び加減抵抗rsを調整して、前記直流ホイートスト
ンブリツジ回路を平衡させることにより、ケーブ
ル絶縁層の直流絶縁抵抗を測定することを特徴と
する、ケーブルの絶縁抵抗測定方法。
1. Connect the detection resistor and variable DC power supply between the cable shielding layer and the ground via a filter circuit, connect the reference resistor R1 between the neutral point of the grounding transformer and the ground via the filter circuit, and perform the measurement. A proportional resistance rx for measurement and a rheostat rs for measurement are provided, and a DC Wheatstone bridge circuit is formed by the reference resistance R1, the measurement resistances rx, rs, and the insulation resistance Rx of the cable insulation layer. A measurement circuit is configured by connecting a measurement DC power source to the neutral point of the transformer, and the cable insulation layer is A method for measuring insulation resistance of a cable, the method comprising measuring the DC insulation resistance of a cable.
JP14348586A 1986-06-19 1986-06-19 Insulation resistance measuring method for cable or electric machine and apparatus Granted JPS62299772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14348586A JPS62299772A (en) 1986-06-19 1986-06-19 Insulation resistance measuring method for cable or electric machine and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14348586A JPS62299772A (en) 1986-06-19 1986-06-19 Insulation resistance measuring method for cable or electric machine and apparatus

Publications (2)

Publication Number Publication Date
JPS62299772A JPS62299772A (en) 1987-12-26
JPH0543273B2 true JPH0543273B2 (en) 1993-07-01

Family

ID=15339801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14348586A Granted JPS62299772A (en) 1986-06-19 1986-06-19 Insulation resistance measuring method for cable or electric machine and apparatus

Country Status (1)

Country Link
JP (1) JPS62299772A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042878A (en) * 1973-08-20 1975-04-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042878A (en) * 1973-08-20 1975-04-18

Also Published As

Publication number Publication date
JPS62299772A (en) 1987-12-26

Similar Documents

Publication Publication Date Title
EP2588871B1 (en) Apparatus and method for measuring the dissipation factor of an insulator
JP4652236B2 (en) Ground resistance measuring device
US5414348A (en) Measurement device with common mode current cancellation
EP0295240A1 (en) Method and device for detecting a fault, e.g. a short circuit, break or leakage, in an electric cable or conductor
JPH0543273B2 (en)
EP2588872B1 (en) Apparatus and method for measuring the dissipation factor of an insulator
US4871972A (en) Apparatus for detecting faulty power line insulator
JP3716308B2 (en) High resistance measuring method and high resistance measuring apparatus
JPH0262831B2 (en)
JPH07253444A (en) Insulation diagnostic apparatus for power cable
JPS62170857A (en) Method and device for measuring insulation resistance of cable of electric equipment
JP2802651B2 (en) Hot wire insulation resistance measurement method
JPS62172272A (en) Apparatus for detecting insulation deterioration of power cable
JP2727324B2 (en) Resistance network analyzer
JP2547796B2 (en) Cable live-line deterioration diagnostic device
SU1215032A1 (en) Apparatus for measuring liquid electrical conductance
SU1020782A1 (en) Device for remote measuring of resistor resistance radiation change
JPS6229749B2 (en)
SU1150558A1 (en) Bridge for measuring resistance of electrical circuits under ac voltage
JPH0421825B2 (en)
JPH0275974A (en) Method and device for detecting defective insulation point of cable
JPH0690245B2 (en) Insulation deterioration related quantity measuring device
JPH0453581Y2 (en)
JPS63231274A (en) Method for measuring insulation resistance of cable or electric equipment
JPH0546506B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term