JPH0542989B2 - - Google Patents

Info

Publication number
JPH0542989B2
JPH0542989B2 JP61227208A JP22720886A JPH0542989B2 JP H0542989 B2 JPH0542989 B2 JP H0542989B2 JP 61227208 A JP61227208 A JP 61227208A JP 22720886 A JP22720886 A JP 22720886A JP H0542989 B2 JPH0542989 B2 JP H0542989B2
Authority
JP
Japan
Prior art keywords
adhesive sheet
curing agent
thermosetting
curing
thermosetting adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61227208A
Other languages
Japanese (ja)
Other versions
JPS6381187A (en
Inventor
Mitsuhiro Kondo
Tsukasa Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP61227208A priority Critical patent/JPS6381187A/en
Publication of JPS6381187A publication Critical patent/JPS6381187A/en
Publication of JPH0542989B2 publication Critical patent/JPH0542989B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive

Landscapes

  • Adhesive Tapes (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はプリント配線板どうし、または、プリ
ント配線板と基材あるいは銅箔等を接着するため
に使用される熱硬化性接着シートに関するもので
ある。 [従来の技術] 従来、このような熱硬化性接着シートは、エポ
キシ樹脂、不飽和ポリエステル樹脂等を主成分と
する熱硬化性樹脂組成物を基材に含浸あるいは塗
布させるか、シート状、フイルム状に成形し、適
当な温度、時間にて加熱されることによつて半硬
化状態にすることにより、作製されている。 しかしながら、上記の熱硬化性接着シートは次
に述べる欠点を持つている。 まず、上記樹脂組成物を均質にかつ再現性良く
目的とする半硬化状態にするためには、加熱温
度、時間等の製造条件を厳しく制御する必要があ
つた。次に、上記接着シートは、半硬化状態であ
るため、未反応の樹脂の硬化反応が常温において
も徐々に進行する。そのため接着シートの貯蔵安
定性が著しく悪かつた。 又、加熱温度、加熱時間等の製造条件を厳しく
制御する必要なしに、均一で安定な半硬化状態を
持つ接着シートを得る方法として、特開昭56−
114691号において、電離性放射線を照射すること
によつて硬化する電離性放射線硬化型樹脂組成物
と、電離性放射線によつては硬化しない加熱硬化
型樹脂組成物との混合物を基材に含浸させるかあ
るいはシート状、フイルム状に成形し、電離性放
射線を照射することによつて電離性放射線硬化型
樹脂組成物のみを硬化させる接着シートが提案さ
れている。この混合樹脂組成物による接着シート
は、電離性放射線硬化型樹脂組成物と加熱硬化型
樹脂組成物の混合比を変えることによつて目的と
する半硬化状態を持つ接着シートが均一かつ安定
的に製造することができた。しかし、この接着シ
ートには、次に述べる重大な問題点があつた。 まず、電離性放射線を照射することによつて
は、樹脂組成物から溶剤を取り除くことはできな
いので、無溶剤型の樹脂組成物にしなくてはなら
ない。しかしながら、無溶剤型でガラスクロス等
の基材に充分含浸されるような低粘度の電離性放
射線硬化型樹脂組成物または加熱硬化型樹脂組成
物は現在開発されていない。また、これらの高粘
度の樹脂組成物を基材に充分含浸しようとする
と、真空含浸や超音波含浸など特殊な設備を必要
とする。また、これらの樹脂組成物を、反応性、
未反応性希釈剤添加によつて低粘度化しても、そ
の硬化物は、耐熱性、耐湿性などの性能が大きく
劣化すること等の欠点がある。 また、半硬化状態にするために照射する電離性
放射線は、基材に損傷を与えるばかりか、作業者
の人体に重大な害をもたらす。また、通常の加熱
炉と異り、電離性放射線を照射する設備は高価で
あり、保安、保全にも非常に手間がかかること等
の欠点を有する。 次に、前記産業上の利用分野に使用される接着
シートは、接着力もさることながら回路形成金属
表面や基材端部への樹脂のはみ出しを抑えるため
に加熱加圧時の低い樹脂の流れ性が要求されてい
る。従来の接着シートは、熱硬化型エポキシ樹脂
組成物中にゴム状成分を添加することによつて可
とう性を持たせ低い流れ性と接着力とを兼ね備え
させている。 しかしながら、上記の接着シートは次に述べる
欠点を持つている。 すなわち、ゴム状成分を添加しているため耐湿
性や耐熱性、耐薬品性などの性能が大きく低下す
ること等の欠点を有する。 本発明は、以上のような従来の接着シートの各
問題点を解決すべくなされたもので、その目的と
するところは接着シートの半硬化状態が均一にか
つ安定に得られ、常温における貯蔵安定性に優
れ、また、低い流れ性における接着性が良好で、
しかも、耐熱性と耐湿性、耐薬品性が満足できる
接着シートを提供することにある。 [問題点を解決するための手段] 上記の目的を達成するために、本発明者が鋭意
研究を重ねた結果、次に示す接着シートが従来の
ものに比べ格段に優れていることを見出した。 すなわち、熱硬化型エポキシ樹脂組成物(A)と、
前記(A)の硬化温度で加熱されると硬化しないかあ
るいはしにくく、それ以上の温度で加熱されると
硬化する熱硬化型エポキシメタアクリレート樹脂
組成物(B)とを混合し、この混合物(C)を無機繊維、
有機繊維の少なくともいずれか1種からなる基材
に含浸もしくは塗布するか、あるいはシート状、
フイルム状に成形し、前記(A)の硬化温度で加熱す
ることによつて、前記混合物(C)中の前記(A)のみを
硬化させた接着シートを用いることにより可能と
なる。 以下に本発明の詳細な説明を述べる。 本発明に用いられる熱硬化型エポキシ樹脂組成
物(A)は、エポキシ樹脂と、アミン系硬化剤、ポリ
アミド系硬化剤、イミダゾール系硬化剤から選ば
れる少なくともいずれか1種の硬化剤とを必須成
分とするものである。 まず、本発明に用いられるエポキシ樹脂として
は、例えば、ビスフエノールA、ビスフエノール
F、フエノールノボラツク樹脂、クレゾールノボ
ラツク樹脂等の多価フエノール類のグリシジルエ
ーテル、ブタンジオール、ポリプロピレングリコ
ール等の多価アルコール類のグリシジルエーテ
ル、フタル酸、テトラヒドロフタル酸等のカルボ
ン酸類のグリシジルエステル等のグリシジル型エ
ポキシ樹脂や、分子内のオルフイン結合を過酢酸
等でエポキシ化して得られる脂環型エポキシ樹脂
等が挙げられる。 本発明に於て用いられるエポキシ硬化剤は、50
〜120℃の温度範囲でエポキシ樹脂を十分に硬化
させるものが選択される。例えば、ジエチレント
リアミン、ジエチルアミノプロピルアミン等の脂
肪族ポリアミン、メンセンジアミン、イソフオロ
ンジアミン等の脂環族ポリアミン、メタフエニレ
ンジアミン、ジアミノジフエニルメタン等の芳香
族アミン等のアミン系化合物、ダイマー酸とポリ
アミンとの縮合により生成するポリアミド系化合
物、2−メチルイミダゾール、2−エチル−4−
メチルイミダゾール等の速硬化性のイミダゾール
化合物等が挙げられる。 これらの硬化剤は、50〜120℃の範囲内で前記
エポキシ樹脂を硬化させうるものが好ましい。こ
れは50℃より低い温度で高い硬化性を有する硬化
剤だとポツトライフが非常に短いため作業性が悪
く、また120℃より高いと、前記(B)の硬化反応も
徐々に進んでしまうからである。この温度範囲は
より好ましくは70〜100℃の範囲内でエポキシ樹
脂を硬化させうる硬化剤とすることが望ましい。 これらの硬化剤は、前述のエポキシ樹脂の種
類、および使用条件に応じて適宜選択するもので
ある。 またこれらの硬化剤にベンジルジメチルアミン
等の3級アミン、サリチル酸等のフエノール性水
酸基を持つ化合物等を硬化促進剤として必要に応
じて使用してもよい。 次に、本発明に用いられる熱硬化型エポキシメ
タアクリレート樹脂組成物(B)は、エポキシメタア
クリレート樹脂と、共重合性架橋剤と、ラジカル
重合開始剤とを必須成分とするものである。 まず、本発明に用いられるエポキシメタアクリ
レート樹脂は、ビスフエノールA型あるいはビス
フエノールF型エポキシ樹脂とメタアクリル酸と
の付加反応生成物であるビスフエノール型エポキ
シメタアクリレート樹脂、フエノールノボラツク
エポキシ樹脂あるいはクレゾールノボラツクエポ
キシ樹脂とメタアクリル酸との付加反応生成物で
あるノボラツク型エポキシメタアクリレート樹
脂、多価アルコール類のグリシジルエーテル型エ
ポキシ樹脂とメタアクリル酸との付加反応生成物
である脂肪族型エポキシメタアクリレート樹脂の
少なくともいずれか1種を主成分とするものであ
る。また本発明では、これらエポキシ樹脂とアク
リル酸との付加反応生成物であるエポキシアクリ
レート樹脂も必要に応じてエポキシメタアクリレ
ート樹脂と共重合させて使用することができる。 共重合性架橋剤としては、例えば、ジアリルフ
タレート、トリエチレングリコールジアクリレー
ト、トリメチレンプロパントリアクレート等のア
クリル酸エステル類、トリメチロールプロパント
リメタクリレート、ポリプロピレン類等のエポキ
シメタアクリレート樹脂と反応する不飽和基を未
端に2つ以上有するモノマー又はそのプレポリマ
ーを用いることができる。これらの共重合性架橋
剤は、120℃以下の温度では、ほとんど揮撥性が
ないものを用いるのが好ましい、なぜなら揮撥性
があると前記熱硬化型エポキシ樹脂組成物(A)の硬
化中に共重合性架橋剤が揮撥し減少してしまうか
らである。 共重合性架橋剤は、エポキシメタアクリレート
樹脂100重量部に対して10〜200重量部、好ましく
は50〜100重量部であることが好ましい。50重量
部より少ないとエポキシメタアクリレート樹脂組
成物(B)の粘度が高くなるため作業性が悪くなり、
又、100重量部より多いと硬化物の性能が低下す
るので好ましくない。 次に、ラジカル重合開始剤は、例えば、クメン
ヒドロパーオキサイド、t−ブチルヒドロパーオ
キサイド、ジクミルパーオキサイド、ジt−ブチ
ルパーオキサイド、2,5−ジメチル−2,5−
ジt−ブチルパーオキシヘキサンなど100〜200℃
の範囲内で加熱することにより、分解しラジカル
を発生するものが好ましい。なぜなら100℃より
低い温度でラジカルが発生すると前記(A)の硬化中
に前記(B)の硬化が進行してしまい、また200℃よ
り高いと接着シートを使用する際接着時の作業性
の悪化、設備、燃料のコスト高になるからであ
る。より好ましくは120℃〜170℃の温度範囲が望
ましい。 次に、前記(A)の前記(B)に対する混合比は、1/
9〜9/1の範囲内であることが望ましい。1/
9より小さいと、製造された接着シートの表面が
著るしくベタつく。また9/1より大きいと、接
着シート中に含まれる未反応の前記(B)の割合が少
なすぎるため、接着力が低下する。望ましくは
3/7〜7/3が好ましい。 また本発明の組成物には前記(A)および前記(B)の
他に、必要に応じて、アセトン、メチルエチルケ
トン等の120℃以下の沸点を有する溶剤、難燃剤、
チクソトロピー付与剤、充填材、反応性希釈剤、
レベリング剤、消泡剤などを配合することができ
る。 本発明は上記混合樹脂組成物(C)を、無機繊維、
有機繊維の少なくともいずれか1種からなる基材
に含浸もしくは塗布された使用形態と、シート
状、フイルム状に成形された使用形態の2通りが
使用可能である。 前記混合物(C)を含浸もしくは塗布される基材と
しては、例えば、ガラス、シリカ、アスベスト等
の無機繊維、あるいは、ポリエステル、ポリアミ
ド、ポリアミドイミド、アクリル、紙等の有機繊
維からなる織布、不織布、マツトあるいはこれら
の組合せ基材が用いられる。 また、シート状の接着シートは、例えばフツ素
樹脂系フイルム等の離型性を有するフイルム上に
塗膜厚に応じてカーテンコーター、ロールコータ
ーあるいはナイフコーター等を用いて塗布した
後、前記(A)の硬化温度で加熱することにより得ら
れる。 [発明の作用] 本発明は、以上のような手段を採ることによつ
て以下のような作用がある。 まず、一般的にエポキシ樹脂は、エポキシ環の
開環反応により硬化剤の官能基と付加反応して硬
化する。以下に代表的な硬化剤であるアミン系硬
化剤によるエポキシ樹脂の硬化反応を示す。 次に、一般に熱硬化型エポキシメタアクリレー
ト樹脂の硬化は、過酸化物の分解によるラジカル
発生により、末端の不飽和基がラジカル重合して
硬化する。以下に、エポキシメタアクリレート樹
脂の硬化反応式を示す。 R−O−O−R′→R−O・ + ・O−R′
……(2) ……(3) 本発明では、式(1)に示したエポキシ基と硬化剤
との反応性と、式(2)に示した過酸化物の分解性と
が離れた温度領域になる様にエポキシ樹脂硬化剤
と過酸化物が選択される。すなわち、エポキシ基
とエポキシ樹脂硬化剤が50〜120℃の範囲内で高
い反応性を示すような硬化剤を含む熱硬化型エポ
キシ樹脂組成物(A)と100〜200℃の範囲内で高い分
解性を示しラジカルを発生するような過酸化物を
含む熱硬化型エポキシメタアクリレート樹脂組成
物(B)とを混合する。この混合物(C)を基材に含浸も
しくは塗布するか、あるいはシート状、フイルム
状に成形し、50〜120℃の範囲内で加熱すると、
前記混合物(C)中の前記(A)のみが硬化することによ
り前記(C)全体としては半硬化状態となる。しか
も、前記(A)と前記(B)の混合比率を変えることによ
つて任意の半硬化状態を選ぶことができる。 ここで、硬化剤のアミン基とエポキシメタアク
リレート樹脂または共重合性架橋剤のビニル基と
のマイケル反応と呼ばれる付加反応について述べ
る。もし前記(C)を50〜120℃の範囲内で加熱した
時、このマイケル反応が多量に生じるとエポキシ
メタアクリレート樹脂も硬化するので、前記(C)は
目的とする任意の半硬化状態とならない。しかし
このマイケル反応は高い塩基性触媒の存在下以外
では、反応が生じるのに高温を必要とするため、
本発明における前記(C)を50〜120℃の範囲内で加
熱してもマイケル反応はほとんど生じない。 次に本発明の接着シートの性能について詳細な
説明を述べる。 前記(C)により作られた接着シートは前述したよ
うに、前記(A)と前記(B)の混合比率を変えることに
より任意に半硬化状態を選択でき、しかも、50〜
120℃の範囲内で加熱した時、前記(B)はほとんど
反応しないので、硬化条件の管理を厳格にしなく
ても常に安定した半硬化状態の接着シートを得る
ことができる。また、当然常温においても前記(B)
は反応しないので、接着シートの貯蔵安定性は非
常に優れている。 次に、樹脂がフローせずに強い接着力が得たい
用途の時、前記(A)と前記(B)の混合比率により目的
とする半硬化状態にすれば、前記(A)の硬化によ
り、前記(C)全体は、前記(A)の三次元網目構造が形
成されているため高温高圧でプレスしても熔融し
ないので、ほとんど樹脂はフローしない。ところ
が、その接着シート中には未反応の前記(B)が含ま
れており、これが接着力を高める理由となる。 本発明の接着シートを、100〜200℃の範囲内で
加熱して前記(B)をも硬化させた硬化物は、相互侵
入高分子網目構造を作るため、エポキシ樹脂硬化
物の持つ優れた耐熱性、耐湿性、耐薬品性、高接
着性とエポキシメタアクリレート樹脂硬化物の持
つ優れた可撓性、高靭性、耐衝撃性とを重ね備え
た硬化物が得られる。 [実施例] 次に、本発明を実施例により具体的に説明する
が、本発明は以下の実施例に限定されるものでは
ない。以下の実施例において「部」とあるのは全
て「重量部」を意味する。 実施例 1 ビスフエノールA型エポキシ樹脂(平均分子量
950油化シエル(株)製E−1001)を100部、硬化剤と
して、ラロミンC−260(BASF(株)製)を12.5部混
合し、これを(a)組成物とする。また、ビスフエノ
ールA型エポキシメタアクリレート樹脂(平均分
子量1000日本ユピカ(株)製ネオポール8104)100部、
共重合性加橋剤としてジアリルフタレート(大阪
曹達(株)製)75部、ラジカル重合開始剤としてパー
クミルD(F)(日本油脂(株)製)、1.8部を混合しこれ
を(b)組成物とする。そして、(a)組成物と(b)組成物
を2:1で混合し、粘度が100cPsになるように
メチルエチルケトンを加え含浸剤用ワニスとし
た。 次いで、この含浸用ワニスを厚さ30μmのガラ
スクロスに含浸し、80℃で40分間乾燥、硬化させ
ることにより、接着シートを得た。 実施例 2 実施例1に於て、共重合性架橋剤としてNKエ
ステルTMPT(新中村工業(株)製)を100部、ラジ
カル重合開始剤としてパーブチルD(日本油脂(株)
製)を2部用いる他は実施例1と同様とする。 実施例 3 実施例1に於て、(a)組成物と(b)組成物を1:1
で混合した他は、実施例1と同様とする。 実施例 4 ビスフエノールA型エポキシ樹脂(平均分子量
380油化シエル(株)製E−828)を100部、硬化剤と
してカヤハードA−A(日本化薬(株)製)40部を混
合し、これを(a′)組成物とする。またビスフエ
ノールA型メタアクリレート樹脂(平均分子量
1000、日本ユピカ(株)製ネオポール8104)100部、
共重合性架橋剤としてジアリルフタレート(大阪
曹達(株)製)を75部ラジカル重合開始剤としてパー
クミルD(F)(日本油脂(株)製)1.8部を混合し、こ
れを(b′)組成物とする。そして、(a′)組成物
と(b′)組成物を2:1で混合し、塗工用ワニス
とした。 次いで、このワニスをナイフコーターによつて
テフロンフイルム上に塗布し、100℃で90分間硬
化することによつて、塗膜厚50μmの接着シート
を得た。 実施例 5 実施例4に於て、共重合性架橋剤としてNKエ
ステルTMPT(新中村科学(株)製)を100部、ラジ
カル重合開始剤としてパーブチルD(日本油脂(株)
製)2部用いる他は実施例4と同様とする。 実施例 6 実施例4に於て、(a′)組成物と(b′)組成物
を1:1で混合した他は、実施例4と同様とす
る。 比較例 A プリプレグ状の市販接着シート。 比較例 B シート状の市販接着シート。 上記実施例で得られた接着シートと比較例の市
販接着シートの評価を以下の方法で行い、その結
果を表に示した。 (経時変化率):100℃で2時間熱処理した前後の
発熱量をDSCによつて測定し、以下に示す式
から変化を求めた。 経時変化率 =(熱処理前の発熱量−熱処理後の発熱量)/熱処理
前の発熱量 ×100 (樹脂のはみ出し):10cm角にカツトした接着シ
ート中央に直径2cmの穴を明け、温度170℃、
圧力40Kgf/cm2、プレス時間60分のプレス条件
にて成形した後、穴中にはみ出した樹脂の長さ
の最大値を測定した。 (接着力):(常態)厚さ35μmの銅ハクとガラエ
ポ板との間に接着シートをはさみ、170℃、40
Kgf/cm2、60分間にてプレスした後、1cm幅に
カツトし、ピール強度を測定する。 (熱処理後):150℃、240時間後のピール強度。 (吸湿後):PCT(121℃ 2気圧)100時間後の
ピール強度。 表より明らかなように各実施例の経時変化率は
ほぼ0でこれは熱処理前後においてもほとんど硬
[Industrial Application Field] The present invention relates to a thermosetting adhesive sheet used for bonding printed wiring boards to each other, or to bonding a printed wiring board to a base material, copper foil, or the like. [Prior Art] Conventionally, such thermosetting adhesive sheets have been produced by impregnating or coating a base material with a thermosetting resin composition mainly composed of epoxy resin, unsaturated polyester resin, etc. It is produced by molding it into a shape and heating it at an appropriate temperature and time to bring it into a semi-cured state. However, the above thermosetting adhesive sheet has the following drawbacks. First, in order to bring the resin composition into the desired semi-cured state homogeneously and with good reproducibility, it was necessary to strictly control manufacturing conditions such as heating temperature and time. Next, since the adhesive sheet is in a semi-cured state, the curing reaction of the unreacted resin proceeds gradually even at room temperature. Therefore, the storage stability of the adhesive sheet was extremely poor. In addition, as a method for obtaining an adhesive sheet with a uniform and stable semi-cured state without the need to strictly control manufacturing conditions such as heating temperature and heating time, JP-A-56-
No. 114691, a substrate is impregnated with a mixture of an ionizing radiation-curable resin composition that is cured by irradiation with ionizing radiation and a heat-curable resin composition that is not cured by ionizing radiation. Alternatively, an adhesive sheet has been proposed in which only the ionizing radiation-curable resin composition is cured by forming the adhesive sheet into a sheet or film and irradiating it with ionizing radiation. By changing the mixing ratio of the ionizing radiation-curable resin composition and the heat-curable resin composition, the adhesive sheet made of this mixed resin composition can be uniformly and stably produced with the desired semi-cured state. was able to manufacture it. However, this adhesive sheet had the following serious problems. First, since the solvent cannot be removed from the resin composition by irradiating it with ionizing radiation, the resin composition must be of a solvent-free type. However, a solvent-free, low-viscosity ionizing radiation-curable resin composition or heat-curable resin composition that can be sufficiently impregnated into a substrate such as glass cloth has not yet been developed. Further, in order to sufficiently impregnate a base material with these highly viscous resin compositions, special equipment such as vacuum impregnation or ultrasonic impregnation is required. In addition, these resin compositions can be
Even if the viscosity is lowered by adding an unreactive diluent, the cured product has drawbacks such as significant deterioration in properties such as heat resistance and moisture resistance. Further, the ionizing radiation applied to bring the material into a semi-cured state not only damages the base material but also causes serious harm to the human body of the worker. Furthermore, unlike a normal heating furnace, equipment for irradiating ionizing radiation is expensive and has drawbacks such as being very time-consuming for safety and maintenance. Next, the adhesive sheets used in the above-mentioned industrial application fields have not only good adhesive strength but also low resin flowability when heated and pressed to prevent the resin from extruding onto the circuit-forming metal surface or the edge of the base material. is required. Conventional adhesive sheets are made to have flexibility by adding a rubbery component to a thermosetting epoxy resin composition, thereby providing both low flowability and adhesive strength. However, the above adhesive sheet has the following drawbacks. That is, since a rubber-like component is added, there is a drawback that performance such as moisture resistance, heat resistance, chemical resistance, etc. is greatly reduced. The present invention has been made to solve the problems of conventional adhesive sheets as described above, and its purpose is to uniformly and stably obtain the semi-cured state of the adhesive sheet, and to maintain storage stability at room temperature. It also has good adhesion at low flowability.
Moreover, it is an object of the present invention to provide an adhesive sheet that has satisfactory heat resistance, moisture resistance, and chemical resistance. [Means for Solving the Problems] In order to achieve the above object, the inventor of the present invention has conducted extensive research and has discovered that the following adhesive sheet is significantly superior to conventional adhesive sheets. . That is, a thermosetting epoxy resin composition (A),
A thermosetting epoxy methacrylate resin composition (B) that does not cure or is difficult to cure when heated at the curing temperature of (A) above, but cures when heated at a temperature higher than that temperature is mixed with (B), and this mixture ( C) inorganic fiber,
Impregnated or coated on a base material made of at least one kind of organic fiber, or in sheet form,
This is possible by using an adhesive sheet in which only (A) in the mixture (C) is cured by forming it into a film and heating it at the curing temperature of (A). A detailed description of the invention follows. The thermosetting epoxy resin composition (A) used in the present invention contains an epoxy resin and at least one curing agent selected from amine curing agents, polyamide curing agents, and imidazole curing agents as essential components. That is. First, the epoxy resin used in the present invention includes, for example, glycidyl ethers of polyhydric phenols such as bisphenol A, bisphenol F, phenol novolak resin, and cresol novolak resin, polyhydric resins such as butanediol, and polypropylene glycol. Examples include glycidyl-type epoxy resins such as glycidyl ethers of alcohols, glycidyl esters of carboxylic acids such as phthalic acid and tetrahydrophthalic acid, and alicyclic-type epoxy resins obtained by epoxidizing intramolecular olefin bonds with peracetic acid, etc. It will be done. The epoxy curing agent used in the present invention is 50%
One is selected that sufficiently cures the epoxy resin in the temperature range of ~120°C. For example, aliphatic polyamines such as diethylenetriamine and diethylaminopropylamine, alicyclic polyamines such as menzendiamine and isophoronediamine, amine compounds such as aromatic amines such as metaphenylenediamine and diaminodiphenylmethane, and dimer acids. Polyamide compounds produced by condensation with polyamines, 2-methylimidazole, 2-ethyl-4-
Examples include fast-curing imidazole compounds such as methylimidazole. These curing agents are preferably those capable of curing the epoxy resin within the range of 50 to 120°C. This is because if the curing agent has high curing properties at temperatures lower than 50°C, the pot life will be very short, resulting in poor workability, and if the temperature is higher than 120°C, the curing reaction described in (B) will proceed gradually. be. It is desirable to use a hardening agent that can harden the epoxy resin within this temperature range, more preferably within the range of 70 to 100°C. These curing agents are appropriately selected depending on the type of epoxy resin mentioned above and usage conditions. In addition, a tertiary amine such as benzyldimethylamine, a compound having a phenolic hydroxyl group such as salicylic acid, etc. may be used as a curing accelerator, if necessary. Next, the thermosetting epoxy methacrylate resin composition (B) used in the present invention contains an epoxy methacrylate resin, a copolymerizable crosslinking agent, and a radical polymerization initiator as essential components. First, the epoxy methacrylate resin used in the present invention is a bisphenol type epoxy methacrylate resin which is an addition reaction product of a bisphenol A type or bisphenol F type epoxy resin and methacrylic acid, a phenol novolac epoxy resin, or Novolak-type epoxy methacrylate resin, which is the addition reaction product of cresol novolak epoxy resin and methacrylic acid, and aliphatic epoxy, which is the addition reaction product of glycidyl ether-type epoxy resin of polyhydric alcohols and methacrylic acid. The main component is at least one kind of methacrylate resin. Further, in the present invention, epoxy acrylate resin which is an addition reaction product of these epoxy resins and acrylic acid can also be used after being copolymerized with epoxy methacrylate resin, if necessary. Examples of copolymerizable crosslinking agents include acrylic acid esters such as diallyl phthalate, triethylene glycol diacrylate, and trimethylene propane triacrylate, unsaturated compounds that react with epoxy methacrylate resins such as trimethylolpropane trimethacrylate, and polypropylene. A monomer having two or more groups at each end or a prepolymer thereof can be used. It is preferable to use these copolymerizable crosslinking agents that have almost no volatility at temperatures below 120°C, because if they are volatile, the thermosetting epoxy resin composition (A) will be difficult to cure during curing. This is because the copolymerizable crosslinking agent is volatilized and reduced. The amount of the copolymerizable crosslinking agent is preferably 10 to 200 parts by weight, preferably 50 to 100 parts by weight, based on 100 parts by weight of the epoxy methacrylate resin. If it is less than 50 parts by weight, the viscosity of the epoxy methacrylate resin composition (B) will increase, resulting in poor workability.
Further, if the amount is more than 100 parts by weight, the performance of the cured product will deteriorate, which is not preferable. Next, the radical polymerization initiator is, for example, cumene hydroperoxide, t-butyl hydroperoxide, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-
Di-t-butylperoxyhexane, etc. 100-200℃
It is preferable to use one that decomposes and generates radicals when heated within this range. This is because if radicals are generated at a temperature lower than 100°C, the curing of (B) will proceed while curing of (A), and if it is higher than 200°C, workability during bonding will deteriorate when using an adhesive sheet. This is because the cost of equipment and fuel will be high. More preferably, the temperature range is 120°C to 170°C. Next, the mixing ratio of (A) to (B) is 1/
It is desirable that it be within the range of 9 to 9/1. 1/
If it is smaller than 9, the surface of the produced adhesive sheet will become extremely sticky. If it is larger than 9/1, the proportion of unreacted (B) contained in the adhesive sheet is too small, resulting in a decrease in adhesive strength. Desirably, 3/7 to 7/3 is preferable. In addition to (A) and (B), the composition of the present invention may optionally include a solvent having a boiling point of 120°C or lower, such as acetone or methyl ethyl ketone, a flame retardant,
thixotropy agents, fillers, reactive diluents,
A leveling agent, an antifoaming agent, etc. can be added. The present invention provides the above-mentioned mixed resin composition (C) with inorganic fibers,
Two ways of use are possible: one in which it is impregnated or coated on a base material made of at least one type of organic fiber, and the other in which it is formed into a sheet or film. Examples of the substrate impregnated or coated with the mixture (C) include woven fabrics and nonwoven fabrics made of inorganic fibers such as glass, silica, and asbestos, or organic fibers such as polyester, polyamide, polyamideimide, acrylic, and paper. , pine, or a combination of these materials is used. In addition, the sheet-like adhesive sheet is coated onto a film having releasability such as a fluororesin film using a curtain coater, a roll coater, a knife coater, etc. according to the coating thickness, and then the adhesive sheet described above (A ) by heating at the curing temperature. [Actions of the Invention] The present invention has the following effects by adopting the above-described measures. First, an epoxy resin is generally cured by an addition reaction with a functional group of a curing agent through a ring-opening reaction of an epoxy ring. The curing reaction of an epoxy resin using an amine curing agent, which is a typical curing agent, is shown below. Next, in general, thermosetting epoxy methacrylate resins are cured by radical polymerization of terminal unsaturated groups due to generation of radicals due to decomposition of peroxide. The curing reaction formula of epoxy methacrylate resin is shown below. R-O-O-R' → R-O・ + ・O-R'
...(2) ...(3) In the present invention, the reactivity of the epoxy group and the curing agent shown in formula (1) and the decomposability of the peroxide shown in formula (2) are set in different temperature ranges. Epoxy resin hardeners and peroxides are selected. That is, a thermosetting epoxy resin composition (A) containing an epoxy group and a curing agent that exhibits high reactivity within the range of 50 to 120°C, and a thermosetting epoxy resin composition (A) that exhibits high reactivity within the range of 100 to 200°C. and a thermosetting epoxy methacrylate resin composition (B) containing a peroxide that exhibits properties and generates radicals. When this mixture (C) is impregnated or applied onto a substrate, or formed into a sheet or film, and heated within the range of 50 to 120°C,
By curing only the above (A) in the mixture (C), the above (C) as a whole becomes a semi-cured state. Furthermore, by changing the mixing ratio of (A) and (B), any semi-cured state can be selected. Here, an addition reaction called a Michael reaction between an amine group of a curing agent and a vinyl group of an epoxy methacrylate resin or a copolymerizable crosslinking agent will be described. If (C) above is heated within the range of 50 to 120°C, if a large amount of this Michael reaction occurs, the epoxy methacrylate resin will also harden, so (C) above will not reach the desired semi-cured state. . However, this Michael reaction requires high temperatures to occur unless it is in the presence of a highly basic catalyst.
Even if the above-mentioned (C) in the present invention is heated within the range of 50 to 120°C, almost no Michael reaction occurs. Next, a detailed description will be given of the performance of the adhesive sheet of the present invention. As mentioned above, the adhesive sheet made by the above (C) can be arbitrarily set in a semi-cured state by changing the mixing ratio of the above (A) and the above (B).
Since (B) hardly reacts when heated within the range of 120°C, an adhesive sheet in a stable semi-cured state can always be obtained without strict control of curing conditions. Also, of course, even at room temperature, the above (B)
does not react, so the storage stability of the adhesive sheet is very good. Next, when you want to obtain strong adhesive strength without the resin flowing, if you create the desired semi-cured state by adjusting the mixing ratio of (A) and (B), the curing of (A) will Since the above-mentioned (C) as a whole has the three-dimensional network structure of the above-mentioned (A), it does not melt even when pressed at high temperature and high pressure, so almost no resin flows. However, the adhesive sheet contains unreacted (B), which is the reason why the adhesive strength is increased. The cured product obtained by heating the adhesive sheet of the present invention within the range of 100 to 200°C and also curing the above-mentioned (B) has the excellent heat resistance of the cured epoxy resin because it forms an interpenetrating polymer network structure. It is possible to obtain a cured product that combines the properties of hardness, moisture resistance, chemical resistance, and high adhesiveness with the excellent flexibility, high toughness, and impact resistance of cured epoxy methacrylate resin. [Examples] Next, the present invention will be specifically explained using Examples, but the present invention is not limited to the following Examples. In the following examples, all "parts" mean "parts by weight." Example 1 Bisphenol A type epoxy resin (average molecular weight
100 parts of 950 E-1001 (manufactured by Yuka Ciel Co., Ltd.) and 12.5 parts of Laromin C-260 (manufactured by BASF Corporation) as a curing agent were mixed to obtain composition (a). In addition, 100 parts of bisphenol A type epoxy methacrylate resin (Neopol 8104, manufactured by Nippon U-Pica Co., Ltd. with an average molecular weight of 1000),
75 parts of diallyl phthalate (manufactured by Osaka Soda Co., Ltd.) as a copolymerizable crosslinking agent and 1.8 parts of Percyl D(F) (manufactured by NOF Corporation) as a radical polymerization initiator were mixed to form composition (b). Make it a thing. Then, the composition (a) and the composition (b) were mixed at a ratio of 2:1, and methyl ethyl ketone was added so that the viscosity was 100 cPs to prepare a varnish for an impregnating agent. Next, a glass cloth having a thickness of 30 μm was impregnated with this impregnating varnish, and dried and cured at 80° C. for 40 minutes to obtain an adhesive sheet. Example 2 In Example 1, 100 parts of NK ester TMPT (manufactured by Shin Nakamura Kogyo Co., Ltd.) was used as a copolymerizable crosslinking agent, and Perbutyl D (manufactured by Nippon Oil & Fats Co., Ltd.) was used as a radical polymerization initiator.
The procedure was the same as in Example 1 except that 2 parts of (manufactured by) were used. Example 3 In Example 1, (a) composition and (b) composition were mixed at 1:1.
The procedure was the same as in Example 1 except that the mixture was mixed in step 1. Example 4 Bisphenol A type epoxy resin (average molecular weight
100 parts of 380 E-828 (manufactured by Yuka Ciel Co., Ltd.) and 40 parts of Kayahard AA (manufactured by Nippon Kayaku Co., Ltd.) as a curing agent were mixed to form a composition (a'). In addition, bisphenol A type methacrylate resin (average molecular weight
1000, Neopol 8104 manufactured by Nippon U-Pica Co., Ltd.) 100 copies,
75 parts of diallyl phthalate (manufactured by Osaka Soda Co., Ltd.) as a copolymerizable crosslinking agent and 1.8 parts of Percyl D(F) (manufactured by Nippon Oil & Fats Co., Ltd.) as a radical polymerization initiator were mixed to form composition (b'). Make it a thing. Then, the (a') composition and the (b') composition were mixed at a ratio of 2:1 to obtain a coating varnish. Next, this varnish was applied onto a Teflon film using a knife coater and cured at 100° C. for 90 minutes to obtain an adhesive sheet with a coating thickness of 50 μm. Example 5 In Example 4, 100 parts of NK ester TMPT (manufactured by Shin-Nakamura Kagaku Co., Ltd.) was used as a copolymerizable crosslinking agent, and Perbutyl D (manufactured by NOF Corporation) was used as a radical polymerization initiator.
The procedure was the same as in Example 4, except that 2 parts (manufactured by) were used. Example 6 Example 4 was the same as Example 4 except that the composition (a') and the composition (b') were mixed at a ratio of 1:1. Comparative Example A Commercially available prepreg adhesive sheet. Comparative Example B Commercially available adhesive sheet in sheet form. The adhesive sheets obtained in the above examples and the commercially available adhesive sheets of comparative examples were evaluated by the following method, and the results are shown in the table. (Rate of change over time): The calorific value before and after heat treatment at 100° C. for 2 hours was measured by DSC, and the change was determined from the formula shown below. Rate of change over time = (Calorific value before heat treatment - Calorific value after heat treatment) / Calorific value before heat treatment × 100 (Protrusion of resin): Cut a 2 cm diameter hole in the center of an adhesive sheet cut into 10 cm squares, and cut it at a temperature of 170°C. ,
After molding under press conditions of a pressure of 40 kgf/cm 2 and a pressing time of 60 minutes, the maximum length of the resin protruding into the holes was measured. (Adhesive strength): (Normal state) An adhesive sheet is sandwiched between a 35 μm thick copper plate and a glass epoxy board, and the adhesive sheet is placed between 170℃ and 40℃.
After pressing at Kgf/cm 2 for 60 minutes, the pieces were cut into 1 cm width and the peel strength was measured. (After heat treatment): Peel strength after 240 hours at 150℃. (After moisture absorption): Peel strength after 100 hours at PCT (121°C, 2 atm). As is clear from the table, the rate of change over time for each example was almost 0, which means that there is almost no hardness even before and after heat treatment.

【表】 化が進行していないことを表わしている。このこ
とにより、本発明の接着シートは、常温での貯蔵
安定性が格段に優れていることが分る。 さらに、樹脂のはみ出しは前記(A)と前記(B)の割
合が同じであればほぼ同じ値をとり、また、割合
によつて樹脂のはみ出し量が任意にコントロール
できることが分る。 一方、接着力は、樹脂のはみ出し量が小さい場
合でも良好な結果を得た。しかも、熱処理後ある
いは吸湿後の接着力の減少も比較例と比べて小さ
く耐熱性および耐湿性が良好であることが明らか
となつた。 [発明の効果] 実施例からも明らかなように、本発明の接着シ
ートは以下のような長所が認められた。 1 半硬化状態にする時の加熱温度では前記(B)は
ほとんど反応しないため、常に均一の半硬化状
態を持つ接着シートが得られる。 2 常温においても前記(B)は反応しないので、貯
蔵安定性に極めて優れた接着シートが得られ
る。 3 樹脂フローは、前記(A)と前記(B)混合比で決定
でき、しかも常に安定したフローが得られる。 4 接着シート中には未反応の前記(B)が存在する
ため樹脂のフローが少ない場合でも良好な接着
力が得られる。 5 ゴム状成分が入つていないので、耐熱性、耐
湿性、耐薬品性に優れる。 以上の様な、従来のものと比べ極めて優秀な性
能を持つ接着シートが得られるので、産業上有用
である。
[Table] This shows that the transformation is not progressing. This shows that the adhesive sheet of the present invention has extremely excellent storage stability at room temperature. Furthermore, it can be seen that if the ratios of (A) and (B) are the same, the amount of resin extrusion is approximately the same, and the amount of resin extrusion can be controlled arbitrarily depending on the ratio. On the other hand, good adhesive strength results were obtained even when the amount of resin protruding was small. Moreover, it was revealed that the decrease in adhesive strength after heat treatment or moisture absorption was smaller than that of the comparative example, and the heat resistance and moisture resistance were good. [Effects of the Invention] As is clear from the Examples, the adhesive sheet of the present invention had the following advantages. 1. Since the above (B) hardly reacts at the heating temperature used to form the semi-cured state, an adhesive sheet always having a uniform semi-cured state can be obtained. 2. Since (B) does not react even at room temperature, an adhesive sheet with extremely excellent storage stability can be obtained. 3. The resin flow can be determined by the mixing ratio of (A) and (B), and a stable flow can always be obtained. 4. Since unreacted (B) is present in the adhesive sheet, good adhesive strength can be obtained even when the resin flow is small. 5. Since it does not contain rubbery components, it has excellent heat resistance, moisture resistance, and chemical resistance. As described above, it is possible to obtain an adhesive sheet with extremely superior performance compared to conventional adhesive sheets, so it is industrially useful.

Claims (1)

【特許請求の範囲】 1 熱硬化型エポキシ樹脂組成物(A)と、前記(A)の
硬化温度で加熱されると硬化しないかあるいはし
にくく、それ以上の温度で加熱されると硬化する
熱硬化型エポキシメタアクリレート樹脂組成物(B)
とを混合し、この混合物(C)をシート状あるいはフ
イルム状に成形し、前記(A)の硬化温度で加熱する
ことによつて、前記混合物(C)中の前記(A)のみを硬
化させたことを特徴とする熱硬化性接着シート。 2 前記(A)がエポキシ樹脂と、アミン系硬化剤、
ポリアミド系硬化剤、イミダゾール系硬化剤から
選ばれる少なくともいずれか1種の硬化剤とを必
須成分とすることを特徴とする特許請求の範囲第
1項記載の熱硬化性接着シート。 3 前記(A)に含まれる硬化剤が50〜120℃の範囲
内でエポキシ樹脂を硬化させうる硬化剤であるこ
とを特徴とする特許請求の範囲第1項あるいは第
2項記載の熱硬化性接着シート。 4 前記(B)が、ビスフエノール型エポキシ樹脂に
メタアクリル酸を付加させたビスフエノール型エ
ポキシメタアクリレート樹脂、ノボラツク型エポ
キシ樹脂にメタアクリル酸を付加させたノボラツ
ク型エポキシメタアクリレート樹脂、多価アルコ
ール類のグリシジルエーテル型エポキシ樹脂にメ
タアクリル酸を付加させた脂肪族型エポキシメタ
アクリレート樹脂から選ばれる少なくともいずれ
か1種と、共重合性架橋剤と、ラジカル重合開始
剤とを必須成分とすることを特徴とする特許請求
の範囲第1項〜第3項のいずれかに記載の熱硬化
性接着シート。 5 前記(B)に含まれるラジカル重合開始剤が100
〜200℃の範囲内で分解しラジカルを発生するこ
とを特徴とする特許請求の範囲第1項〜第4項の
いずれかに記載の熱硬化性接着シート。 6 前記(A)の前記(B)に対する混合比が1/9〜
9/1の範囲内であることを特徴とする特許請求
の範囲第1項〜第5項のいずれかに記載の熱硬化
性接着シート。 7 熱硬化型エポキシ樹脂組成物(A)と、前記(A)の
硬化温度で加熱されると硬化しないかあるいはし
にくく、それ以上の温度で加熱されると硬化する
熱硬化型エポキシメタアクリレート樹脂組成物(B)
とを混合し、この混合物(C)を無機繊維、有機繊維
の少なくともいずれか1種からなる基材に含浸も
しくは塗布し、前記(A)の硬化温度で加熱すること
によつて、前記混合物(C)中の前記(A)のみを硬化さ
せたことを特徴とする熱硬化性接着シート。 8 前記(A)がエポキシ樹脂と、アミン系硬化剤、
ポリアミド系硬化剤、イミダゾール系硬化剤から
選ばれる少なくともいずれか1種の硬化剤とを必
須成分とすることを特徴とする特許請求の範囲第
7項記載の熱硬化性接着シート。 9 前記(A)に含まれる硬化剤が50〜120℃の範囲
内でエポキシ樹脂を硬化させうる硬化剤であるこ
とを特徴とする特許請求の範囲第7項あるいは第
8項記載の熱硬化性接着シート。 10 前記(B)がビスフエノール型エポキシ樹脂に
メタアクリル酸を付加させたビスフエノール型エ
ポキシメタアクリレート樹脂、ノボラツク型エポ
キシ樹脂にメタアクリル酸を付加させたノボラツ
ク型エポキシメタアクリレート樹脂、多価アルコ
ール類のグリシジルエーテル型エポキシ樹脂にメ
タアクリル酸を付加させた脂肪族型エポキシメタ
アクリレート樹脂から選ばれる少なくともいずれ
か1種と、共重合性架橋剤と、ラジカル重合開始
剤とを必須成分とすることを特徴とする特許請求
の範囲第7項〜第9項のいずれかに記載の熱硬化
性接着シート。 11 前記(B)に含まれるラジカル重合開始剤が
100〜200℃の範囲内で分解しラジカルを発生する
ことを特徴とする特許請求の範囲第7項〜第10
項のいずれかに記載の熱硬化性接着シート。 12 前記(A)の前記(B)に対する混合比が1/9〜
9/1の範囲内であることを特徴とする特許請求
の範囲第7項〜第11項のいずれかに記載の熱硬
化性接着シート。
[Scope of Claims] 1. A thermosetting epoxy resin composition (A), which does not cure or is difficult to cure when heated at the curing temperature of (A), and which cures when heated at a higher temperature. Curable epoxy methacrylate resin composition (B)
This mixture (C) is formed into a sheet or film, and heated at the curing temperature of (A) to cure only the (A) in the mixture (C). A thermosetting adhesive sheet characterized by: 2 The above (A) is an epoxy resin, an amine curing agent,
The thermosetting adhesive sheet according to claim 1, characterized in that it contains at least one type of curing agent selected from a polyamide curing agent and an imidazole curing agent as an essential component. 3. Thermosetting according to claim 1 or 2, characterized in that the curing agent contained in (A) is a curing agent capable of curing the epoxy resin within the range of 50 to 120°C. Adhesive sheet. 4 The above (B) is a bisphenol type epoxy methacrylate resin in which methacrylic acid is added to a bisphenol type epoxy resin, a novolak type epoxy methacrylate resin in which methacrylic acid is added to a novolak type epoxy resin, and a polyhydric alcohol. At least one selected from aliphatic epoxy methacrylate resins obtained by adding methacrylic acid to glycidyl ether type epoxy resins, a copolymerizable crosslinking agent, and a radical polymerization initiator as essential components. A thermosetting adhesive sheet according to any one of claims 1 to 3, characterized in that: 5 The radical polymerization initiator contained in (B) above is 100
The thermosetting adhesive sheet according to any one of claims 1 to 4, characterized in that it decomposes and generates radicals within a temperature range of -200°C. 6 The mixing ratio of (A) to (B) is 1/9 to
The thermosetting adhesive sheet according to any one of claims 1 to 5, wherein the thermosetting adhesive sheet is within the range of 9/1. 7 A thermosetting epoxy resin composition (A) and a thermosetting epoxy methacrylate resin that does not harden or hardens when heated at the curing temperature of (A), but hardens when heated at a higher temperature. Composition (B)
The mixture (C) is impregnated or applied onto a base material made of at least one of inorganic fibers and organic fibers, and heated at the curing temperature of (A). A thermosetting adhesive sheet characterized in that only (A) in C) is cured. 8 The above (A) is an epoxy resin and an amine curing agent,
8. The thermosetting adhesive sheet according to claim 7, which contains at least one type of curing agent selected from a polyamide curing agent and an imidazole curing agent as an essential component. 9. Thermosetting according to claim 7 or 8, characterized in that the curing agent contained in (A) is a curing agent capable of curing the epoxy resin within the range of 50 to 120°C. Adhesive sheet. 10 The above (B) is a bisphenol type epoxy methacrylate resin in which methacrylic acid is added to a bisphenol type epoxy resin, a novolak type epoxy methacrylate resin in which methacrylic acid is added to a novolak type epoxy resin, and polyhydric alcohols. The essential components are at least one selected from aliphatic epoxy methacrylate resins obtained by adding methacrylic acid to glycidyl ether type epoxy resins, a copolymerizable crosslinking agent, and a radical polymerization initiator. A thermosetting adhesive sheet according to any one of claims 7 to 9. 11 The radical polymerization initiator contained in (B) above is
Claims 7 to 10, characterized in that it decomposes and generates radicals within the range of 100 to 200°C.
The thermosetting adhesive sheet according to any one of the above. 12 The mixing ratio of (A) to (B) is 1/9 to
The thermosetting adhesive sheet according to any one of claims 7 to 11, wherein the thermosetting adhesive sheet is within the range of 9/1.
JP61227208A 1986-09-25 1986-09-25 Thermosetting adhesive sheet Granted JPS6381187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61227208A JPS6381187A (en) 1986-09-25 1986-09-25 Thermosetting adhesive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61227208A JPS6381187A (en) 1986-09-25 1986-09-25 Thermosetting adhesive sheet

Publications (2)

Publication Number Publication Date
JPS6381187A JPS6381187A (en) 1988-04-12
JPH0542989B2 true JPH0542989B2 (en) 1993-06-30

Family

ID=16857185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61227208A Granted JPS6381187A (en) 1986-09-25 1986-09-25 Thermosetting adhesive sheet

Country Status (1)

Country Link
JP (1) JPS6381187A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3041980B2 (en) * 1991-02-14 2000-05-15 セイコーエプソン株式会社 Liquid crystal panel and method of manufacturing liquid crystal panel
JP3002591B2 (en) * 1992-02-13 2000-01-24 イビデン株式会社 Adhesive sheet, method for manufacturing printed wiring board using this adhesive sheet, and printed wiring board
JP3350266B2 (en) * 1994-12-09 2002-11-25 ダイハツ工業株式会社 Thermosetting double-sided adhesive tape and vehicle attachment mounting structure using the same
US7618713B2 (en) 1997-03-31 2009-11-17 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
ATE316560T1 (en) * 1999-06-18 2006-02-15 Hitachi Chemical Co Ltd ADHESIVE, ADHESIVE ARTICLE, CIRCUIT SUBSTRATE FOR SEMICONDUCTOR MOUNTING HAVING AN ADHESIVE AND A SEMICONDUCTOR ASSEMBLY CONTAINING THE SAME
US6833629B2 (en) 2001-12-14 2004-12-21 National Starch And Chemical Investment Holding Corporation Dual cure B-stageable underfill for wafer level
JP4831980B2 (en) * 2005-02-25 2011-12-07 富士フイルム株式会社 Cellulose ester film, polarizing plate, liquid crystal display device, and method for producing cellulose ester film
TWI494364B (en) * 2009-01-30 2015-08-01 Ajinomoto Kk Resin composition
JP5552788B2 (en) * 2009-10-05 2014-07-16 日立化成株式会社 Epoxy resin composition, semiconductor sealing resin composition, and semiconductor device
JP6134497B2 (en) * 2012-11-08 2017-05-24 京セラ株式会社 Manufacturing method of laminated core
US11193049B2 (en) 2016-11-25 2021-12-07 Lg Chem, Ltd. Curable composition
KR102239656B1 (en) * 2018-09-28 2021-04-12 (주)엘지하우시스 Adhesive composition for external thermal insulation and external thermal insulation system applying the same

Also Published As

Publication number Publication date
JPS6381187A (en) 1988-04-12

Similar Documents

Publication Publication Date Title
KR101776560B1 (en) Resin composition, prepreg, metal-foil-clad laminated board, resin composite sheet, and printed circuit board
KR950013821B1 (en) Curable polyphenylene ether and cyanurate resin composition and a cured resin composition obtainable therefrom
JP5651169B2 (en) Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board
TWI496803B (en) Hardener composition for epoxy resins
EP0227002B1 (en) Heat activatable adhesives for wire scribed circuit boards
KR100632169B1 (en) Interlayer Insulation Adhesive For Multilayer Printed Circuit Board
JPH0542989B2 (en)
JP6978371B2 (en) Curable resin composition and laminate
GB2155938A (en) Aqueous epoxy resin impregnatng composition
JP2016538363A (en) Curable composition for forming interpenetrating polymer networks
JPH03111414A (en) Chemically linked and interconnected networks
US5707729A (en) Adhesive for copper foils and adhesive-backed copper foil
JP4553595B2 (en) Prepreg resin composition and prepreg using the same
JP6451204B2 (en) Resin composition, prepreg, metal foil with resin, and laminate and printed wiring board using these
JPS59152914A (en) Curable resin composition
JPH11100562A (en) Interlayer insulation adhesive for multilayer printed wiring board and copper foil
JP4171084B2 (en) Thermosetting resin composition
JP4375957B2 (en) Thermosetting resin composition
JPS63120784A (en) Adhesive composition and method of using same as adhesive
JPS6399283A (en) Thermosetting adhesive sheet
JP2017502122A (en) Low dielectric constant halogen-free epoxy compound
KR20110080419A (en) Resin composition for insulating film, insulating film using the same and manufacturing method thereof
TW593462B (en) Method for the production of reinforcing or laminating materials treated with resin
JPS6119621A (en) Epoxy resin composition
JP5427164B2 (en) Copper-clad laminate and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term