JPH0542775B2 - - Google Patents

Info

Publication number
JPH0542775B2
JPH0542775B2 JP60077687A JP7768785A JPH0542775B2 JP H0542775 B2 JPH0542775 B2 JP H0542775B2 JP 60077687 A JP60077687 A JP 60077687A JP 7768785 A JP7768785 A JP 7768785A JP H0542775 B2 JPH0542775 B2 JP H0542775B2
Authority
JP
Japan
Prior art keywords
deflection
winding
frequency
saddle
deflection winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60077687A
Other languages
Japanese (ja)
Other versions
JPS61237343A (en
Inventor
Hidenori Takita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7768785A priority Critical patent/JPS61237343A/en
Publication of JPS61237343A publication Critical patent/JPS61237343A/en
Publication of JPH0542775B2 publication Critical patent/JPH0542775B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、インライン型カラー陰極線管に内
蔵される自己集中型式のサドル−サドル型偏向ヨ
ークに関し、とくに偏向ヨーク各部の温度上昇を
低減させるために高周波偏向巻線を低周波偏向巻
線の外側に設けた偏向ヨークに関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a self-concentrating saddle-saddle type deflection yoke built into an in-line color cathode ray tube, and particularly to a self-concentrating saddle-saddle type deflection yoke for reducing temperature rise in each part of the deflection yoke. The present invention relates to a deflection yoke in which a high frequency deflection winding is provided outside a low frequency deflection winding.

〔従来の技術〕[Conventional technology]

第2図は従来のサドル−サドル型の偏向ヨーク
の側断面図である。サドル型水平偏向巻線1の外
側に、成形部品のセパレータ2を介してその外側
にサドル型垂直偏向巻線3が配置されており、さ
らにその外側に高透磁率コア4が全体を囲つてい
る。ここでは、水平偏向電流の方が垂直偏向電流
よりも高周波である一般の場合を例にとつて説明
する。
FIG. 2 is a side sectional view of a conventional saddle-saddle type deflection yoke. A saddle-type vertical deflection winding 3 is arranged on the outside of the saddle-type horizontal deflection winding 1 via a separator 2 of a molded part, and a high magnetic permeability core 4 surrounds the entire outside of the saddle-type vertical deflection winding 3. . Here, a general case in which the horizontal deflection current has a higher frequency than the vertical deflection current will be described as an example.

偏向ヨークの動作状態を考えると、水平および
垂直偏向巻線1,3(以下、単に巻線1,3とい
う)には、走査のためののこぎり波電流が流れ、
その際、これらの巻線1,3には交流損失(銅
損、うず電流損および表皮損失)が発生し、他
方、コア4内には鉄損(ヒステリシス損、渦電流
損)が発生する。これらの損失は巻線に流れるの
こぎり波電流の周波数が高くなるのにともなつて
大となり、これらの損失によつて偏向ヨーク各部
の温度は上昇する。
Considering the operating state of the deflection yoke, a sawtooth wave current for scanning flows through the horizontal and vertical deflection windings 1 and 3 (hereinafter simply referred to as windings 1 and 3).
At this time, alternating current losses (copper loss, eddy current loss, and skin loss) occur in these windings 1 and 3, while iron loss (hysteresis loss, eddy current loss) occurs in the core 4. These losses increase as the frequency of the sawtooth current flowing through the windings increases, and the temperature of each part of the deflection yoke increases due to these losses.

ところで、近年、画像の解像度を上げるため
に、水平偏向電流の周波数を高くする手段が採用
されるようになり、上述のように周波数が高くな
ると、巻線1,3内の交流損失およびコア4内の
鉄損は大となり、偏向ヨークの各部の温度上昇が
大となる。これによつて成形部品のセパレータ2
の変形および偏向ヨーク全体の変形に伴うコンバ
ーゼンス変化をひきおこし、また、絶縁物の熱劣
化による偏向ヨークの耐久性低下をきたす等の問
題が生ずるようになつた。
By the way, in recent years, in order to increase the resolution of images, means have been adopted to increase the frequency of the horizontal deflection current, and as mentioned above, when the frequency increases, the AC loss in the windings 1 and 3 and the core 4 The iron loss inside the deflection yoke becomes large, and the temperature rise in each part of the deflection yoke becomes large. As a result, the separator 2 of the molded part
This has caused problems such as deformation of the deflection yoke and convergence changes due to deformation of the entire deflection yoke, and a decrease in the durability of the deflection yoke due to thermal deterioration of the insulator.

また、解像度アツプを狙つた水平偏向巻線1の
のこぎり波電流の高周波化に伴い、温度上昇を生
じさせる熱源の大きさを考えると、垂直偏向巻線
3内で発生する損失に対して、相対的に水平偏向
巻線1内で発生する損失が大きくなつてきた。特
に、水平偏向巻線1の周波数が35KHz以上になる
と、この現象が顕著になることが経験的にわかつ
ている。
Furthermore, as the frequency of the sawtooth current in the horizontal deflection winding 1 increases with the aim of increasing the resolution, considering the size of the heat source that causes the temperature rise, it is necessary to Therefore, the loss occurring within the horizontal deflection winding 1 has become large. In particular, it has been empirically found that this phenomenon becomes noticeable when the frequency of the horizontal deflection winding 1 becomes 35 KHz or higher.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、高解像度を狙つた水平偏向巻線1
の高周波化に対して、偏向ヨークの各部の温度上
昇を低く抑えるために、巻線の断面積またはコア
の体積の増加、あるいは冷却用の冷却フアンの新
設または容量アツプ等の手段を構じているが、コ
ストアツプおよび装置の大形化を招く欠点があつ
た。
In this way, horizontal deflection winding 1 aiming at high resolution
In response to higher frequencies, measures such as increasing the cross-sectional area of the winding or the volume of the core, or installing a new cooling fan or increasing the capacity are taken to suppress the temperature rise in each part of the deflection yoke. However, it has the disadvantage of increasing costs and increasing the size of the device.

従来、この高周波損失を改善するため、高周波
のサドル型巻線をリツツ線のような細線を多数本
並列巻きすることが行なわれており、テレビジヨ
ン受像機のような15.75KHzあるいは31.5KHz程度
位までの高周波巻線に対しては十分な効果が得ら
れている。その目的は巻線を細線に分割すること
によつて巻線内に発生するうず電流損失を低減す
ることである。
Conventionally, in order to improve this high-frequency loss, high-frequency saddle-type windings were wound in parallel with many thin wires such as Ritsu wire. Sufficient effects have been obtained for high-frequency windings up to The purpose is to reduce the eddy current losses occurring in the windings by dividing the windings into thin wires.

しかしながら、35KHz以上の高周波化に対し、
上記細線の多数本並列巻きによるうず電流損失の
低減策を行つても、偏向ヨークの温度上昇は大き
な問題となつている。
However, for higher frequencies of 35KHz or higher,
Even if measures are taken to reduce eddy current loss by winding a large number of thin wires in parallel, the temperature increase in the deflection yoke remains a serious problem.

また、リツツ線のような細線をサドル型偏向巻
線材料として使うことは、巻線の作業性の面から
好ましくない。即ち、従来の断面積の大きな1本
のコイルで巻線するのに比べて、断面積の小さな
多数本のコイルを巻線することは巻線の精度の面
から巻線の作業性が悪くなることは明らかであ
る。高周波化が進むにつれて、その分割数はます
ます増加し、巻線の作業性の面から細線の多数本
並列巻きのサドル型偏向巻線が偏向ヨークの最も
内径側に存在することは不適当といえる。
Further, it is not preferable to use a thin wire such as Ritsu wire as a material for the saddle-type deflection winding from the viewpoint of workability of the winding. In other words, compared to the conventional method of winding a single coil with a large cross-sectional area, winding multiple coils with a small cross-sectional area results in poor winding workability in terms of winding accuracy. That is clear. As the frequency becomes higher, the number of divisions increases more and more, and from the viewpoint of winding workability, it is inappropriate to have a saddle-type deflection winding made of many thin wires wound in parallel at the innermost side of the deflection yoke. I can say that.

この発明は、上記のような従来のものの欠点を
除去するためになされたもので、2つの巻線の発
熱量が相対的に異なることに注目して、絶縁物な
どの昇温抑制のための特別な部材を用いることな
く、簡単な構成改良で各部の温度上昇を低減する
ことができる偏向ヨークを提供することを目的と
している。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by focusing on the fact that the amount of heat generated by the two windings is relatively different, it was developed to suppress the temperature rise of insulators. It is an object of the present invention to provide a deflection yoke that can reduce the temperature rise of each part by simple structural improvement without using any special members.

〔問題点を解決するための手段〕 この発明に係る偏向ヨークは、コアの内側に細
線を多数本並列巻きして35Hz以上の高周波偏向電
流が通電されるサドル型高周波偏向巻線を配置
し、この高周波偏向巻線の内側にセパレータを介
して低周波偏向巻線を配置させたことを特徴とす
る。
[Means for Solving the Problems] The deflection yoke according to the present invention has a saddle-type high-frequency deflection winding in which a large number of fine wires are wound in parallel inside the core and a high-frequency deflection current of 35 Hz or more is passed through the saddle-type high-frequency deflection winding. A feature is that a low frequency deflection winding is arranged inside this high frequency deflection winding with a separator interposed therebetween.

〔作用〕[Effect]

この発明によれば、第1に、高周波偏向巻線を
細線の多数本並列巻きから構成することで、当該
巻線内に発生するうず電流損を低減して、その低
減損失分に相当する温度の上昇を抑えつつ、それ
でもなお、低周波偏向巻線よりも損失が相対的に
大きい高周波偏向巻線を低周波偏向巻線の外側、
つまり熱抵抗の低い部位に配置することにより、
偏向ヨーク全体としての放熱特性が改善されて、
偏向ヨーク各部の温度上昇を極力抑制し性能およ
び信頼性の向上を図ることが可能となる。
According to this invention, firstly, by configuring the high-frequency deflection winding from a large number of parallel windings of thin wire, the eddy current loss generated in the winding can be reduced, and the temperature corresponding to the reduced loss can be reduced. The high-frequency deflection winding, which has a relatively higher loss than the low-frequency deflection winding, is placed outside the low-frequency deflection winding while suppressing the increase in the
In other words, by placing it in a location with low thermal resistance,
The heat dissipation characteristics of the deflection yoke as a whole have been improved,
It is possible to suppress the temperature rise in each part of the deflection yoke as much as possible and improve performance and reliability.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明に係る偏向ヨークの一実施例を
図によつて説明する。第1図において、3は垂直
偏向巻線であり、セパレータ2を介してその外側
に多数本の細線を並列巻きしてなり、35Hz以上の
高周波偏向電流が通電されるサドル型水平偏向巻
線1が配置され、さらに、その水平偏向巻線1の
外側にコア4が配置されている。
Hereinafter, one embodiment of the deflection yoke according to the present invention will be described with reference to the drawings. In FIG. 1, 3 is a vertical deflection winding, which is made by winding a large number of fine wires in parallel on the outside through a separator 2, and is a saddle type horizontal deflection winding 1 to which a high frequency deflection current of 35 Hz or higher is passed. is arranged, and furthermore, a core 4 is arranged outside the horizontal deflection winding 1.

偏向ヨークの等価熱回路を考える。水平偏向巻
線1、垂直偏向巻線3およびコア4で発生する熱
流(損失)をQh,QvおよびQcとする。従来のサ
ドル−サドル型偏向ヨークの等価熱回路は第3図
であらわされる。熱源は水平偏向巻線1で発生す
るQh、垂直偏向巻線3で発生するQv、そしてコ
ア4で発生するQcであり、それらは水平偏向巻
線1の熱抵抗Rh、セパレータ2の熱抵抗Rs、垂
直偏向巻線3の熱抵抗Rv、コア4の熱抵抗Rc
よびコア4と周囲空気との間の熱伝達に伴う熱抵
抗Raでシリーズにつながれて、熱流は矢印の方
向へ流れるものと考えられる。
Consider the equivalent thermal circuit of the deflection yoke. Let the heat flows (losses) generated in the horizontal deflection winding 1, the vertical deflection winding 3, and the core 4 be Q h , Q v , and Q c . The equivalent thermal circuit of a conventional saddle-saddle type deflection yoke is shown in FIG. The heat sources are Q h generated in the horizontal deflection winding 1, Q v generated in the vertical deflection winding 3, and Q c generated in the core 4, and these are the thermal resistance R h of the horizontal deflection winding 1, the separator 2 Connected in series with the thermal resistance R s of the vertical deflection winding 3, the thermal resistance R v of the vertical deflection winding 3, the thermal resistance R c of the core 4 and the thermal resistance R a due to heat transfer between the core 4 and the surrounding air, the heat flow is It is thought that it flows in the direction of the arrow.

またθh,θs,θv,θc,θaは水平偏向巻線1、セ
パレータ2、垂直偏向巻線3、コア4および周囲
空気の温度をそれぞれあらわしている。
Further, θ h , θ s , θ v , θ c , and θ a represent the temperatures of the horizontal deflection winding 1, the separator 2, the vertical deflection winding 3, the core 4, and the surrounding air, respectively.

第4図はこの実施例の等価熱回路である。熱源
Qh,Qv,Qcおよび熱抵抗Rh,Rs,Rv,Rc,Ra
それぞれ第3図で説明したものと同一であるが、
各部の温度θh,θs,θv,θcは両者で差があるため、
上記実施例の等価熱回路である第4図には添字1
が付してある。ただし、周囲空気温度θaは両者同
一である。熱流、熱抵抗および温度との間の関係
は、熱回路理論より第3図に関して次式が成り立
つ。
FIG. 4 is an equivalent thermal circuit of this embodiment. heat source
Q h , Q v , Q c and thermal resistance R h , R s , R v , R c , R a are respectively the same as those explained in FIG. 3, but
Since the temperatures of each part θ h , θ s , θ v , θ c are different between the two,
Figure 4, which is the equivalent thermal circuit of the above example, has a subscript 1.
is attached. However, the ambient air temperature θ a is the same in both cases. Regarding the relationship between heat flow, thermal resistance, and temperature, the following equation holds true with respect to FIG. 3 from thermal circuit theory.

θc=θa+(Rc+Ra)(Qh+Qv+Qc) θv=θc+Rv(Qh+Qv) θs=θv+RsQh θh=θs+RhQh (1) 同様に、この実施例の偏向ヨークの熱等価回路
の第4図に対して次式が成立する。
θ c = θ a + (R c + R a ) (Q h + Q v + Q c ) θ v = θ c + R v (Q h + Q v ) θ s = θ v + R s Q h θ h = θ s + R h Q h (1) Similarly, the following equation holds true for the thermal equivalent circuit of the deflection yoke of this embodiment in FIG.

θc1=θa+(Rc+Ra)(Qv+Qh+Qc) θh1=θc1+Rh(Qv+Qh) θs1=θh1+RsQv θv1=θs1+RvQv (2) ここで、簡単のため、QhがQv,Qcに比較して
非常に大である場合に、(1)、(2)式はそれぞれ(3)、
(4)式のようになる。
θ c1 = θ a + (R c + R a ) (Q v + Q h + Q c ) θ h1 = θ c1 + R h (Q v + Q h ) θ s1 = θ h1 + R s Q v θ v1 = θ s1 + R v Q v (2) Here, for simplicity, if Q h is very large compared to Q v and Q c , equations (1) and (2) will be replaced by (3), respectively.
It becomes as shown in equation (4).

θc=θa+(Rc+Ra)Qh θv=θc+RvQh θs=θv+RsQh θh=θs+RhQh (3) θc1=θa+(Rc+Ra)Qh θh1=θc1+RhQh θs1=θh1 θv1=θs1 (4) これらを図にあらわすと、第5図、第6図とな
る。第5図は従来の偏向ヨークの各部の温度分布
であり、第6図がこの実施例の偏向ヨークの各部
の温度分布である。なお、これらの図において、
RvとRhは同一の値であるものとして便宜上かい
てある。
θ c = θ a + (R c + R a ) Q h θ v = θ c + R v Q h θ s = θ v + R s Q h θ h = θ s + R h Q h (3) θ c1 = θ a + (R c +R a ) Q h θ h1 = θ c1 +R h Q h θ s1 = θ h1 θ v1 = θ s1 (4) When these are expressed in figures, they are shown in Figs. 5 and 6. FIG. 5 shows the temperature distribution of each part of the conventional deflection yoke, and FIG. 6 shows the temperature distribution of each part of the deflection yoke of this embodiment. In addition, in these figures,
For convenience, it is assumed that R v and R h are the same value.

これらの図より、この実施例の偏向ヨークは従
来の偏向ヨークに比較して偏向ヨークの全体の温
度が低く改善されていることが良くわかる。
From these figures, it is clearly seen that the deflection yoke of this embodiment has an improved overall temperature lower than that of the conventional deflection yoke.

なお、上記実施例では水平偏向巻線1を高周波
側として説明したが、垂直偏向巻線3が高周波の
場合には、当然のことながら垂直偏向巻線3を水
平偏向巻線1の外側に配置すれば、上記実施例と
同様の効果を奏する。
In the above embodiment, the horizontal deflection winding 1 was explained as being on the high frequency side, but if the vertical deflection winding 3 is on the high frequency side, the vertical deflection winding 3 can of course be placed outside the horizontal deflection winding 1. In this case, the same effects as in the above embodiment can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、通電する偏
向電流の周波数が異なる2つの偏向巻線の相対的
な位置関係において、高周波偏向電流の通電によ
り巻線内に発生する損失の大きい側の高周波偏向
巻線を低周波偏向巻線よりも外側に配置し、その
外側配置の高周波偏向巻線を多数本の細線の並列
巻きから構成することにより、外側の偏向巻線内
に発生するうず電流損などの交流損失を低減し
て、その低減損失分に相当する温度の上昇を抑え
ることができるとともに、それでもなお低周波偏
向巻線に比べて損失の大きい高周波偏向巻線を熱
抵抗の低い部位に配置することで、偏向ヨーク全
体としての放熱特性を改善し、画像の解像度を上
げるために高周波側の周波数を35Hz以上に高めた
としても、各部の温度の上昇を極力抑制すること
ができる。しかも、絶縁物などの昇温抑制のため
に特別な部材を用いることなく、2つの巻線の配
置を工夫するのみの簡単かつ安価な改良構成でよ
く、また、多数本の細線の並列巻きから構成され
る高周波偏向巻線を外側に配置することにより、
該巻線の径を大きくして、巻線の作業性も良くす
ることができるという付随的な効果も奏する。
As described above, according to the present invention, in the relative positional relationship of two deflection windings with different frequencies of applied deflection currents, the high frequency loss generated in the windings due to the high frequency deflection current is larger. By arranging the deflection winding outside the low-frequency deflection winding, and configuring the high-frequency deflection winding located outside the low-frequency deflection winding from parallel windings of many thin wires, the eddy current loss generated in the outside deflection winding can be reduced. It is possible to reduce AC losses such as AC losses, and suppress the temperature rise corresponding to the reduced loss, and the high-frequency deflection winding, which has a higher loss than the low-frequency deflection winding, can be moved to a location with lower thermal resistance. This arrangement improves the heat dissipation characteristics of the deflection yoke as a whole, and even if the high-frequency side frequency is increased to 35 Hz or higher to increase image resolution, it is possible to suppress the rise in temperature of each part as much as possible. In addition, a simple and inexpensive improved configuration can be achieved by simply changing the arrangement of the two windings without using any special components to suppress the temperature rise of the insulator, and it is possible to reduce the number of parallel windings of a large number of thin wires. By placing the high-frequency deflection windings on the outside,
An additional effect is that the diameter of the winding wire can be increased to improve the workability of the winding wire.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す側断面図、
第2図は従来の偏向ヨークの側断面図、第3図は
従来の偏向ヨークの熱等価回路図、第4図はこの
実施例の熱等価回路図、第5図は従来の偏向ヨー
クの各部の温度分布図、第6図はこの実施例の各
部の温度分布図である。 1……サドル型水平偏向巻線、2……セパレー
タ、3……サドル型垂直偏向巻線、4……高透磁
率コア。なお、図中、同一符号はそれぞれ同一、
または相当部分を示す。
FIG. 1 is a side sectional view showing an embodiment of the present invention;
Fig. 2 is a side sectional view of a conventional deflection yoke, Fig. 3 is a thermal equivalent circuit diagram of a conventional deflection yoke, Fig. 4 is a thermal equivalent circuit diagram of this embodiment, and Fig. 5 is each part of a conventional deflection yoke. FIG. 6 is a temperature distribution diagram of each part of this embodiment. 1...Saddle type horizontal deflection winding, 2...Separator, 3...Saddle type vertical deflection winding, 4...High magnetic permeability core. In addition, in the figures, the same symbols are the same,
or a significant portion.

Claims (1)

【特許請求の範囲】[Claims] 1 陰極線管に内蔵される自己集中型式の偏向ヨ
ークであつて、細線を多数本並列巻きして35Hz以
上の高周波偏向電流が通電されるサドル型偏向巻
線と、この偏向巻線とセパレータを介して重合配
置されかつ当該偏向巻線から発生する磁束と直交
する向きの磁束を発生する低周波偏向電流が通電
されるサドル型偏向巻線と、これら2つの偏向巻
線の外側を覆うコアとを備えた偏向ヨークにおい
て、上記コアの内側に高周波偏向巻線を配置し、
この高周波偏向巻線の内側にセパレータを介して
低周波偏向巻線を配置させたことを特徴とする偏
向ヨーク。
1. A self-concentrating type deflection yoke built into a cathode ray tube, which consists of a saddle-type deflection winding made by winding many fine wires in parallel to which a high-frequency deflection current of 35 Hz or higher is passed, and a separator connected to the saddle-type deflection winding. A saddle-type deflection winding that is arranged in an overlapping manner and is energized with a low-frequency deflection current that generates a magnetic flux perpendicular to the magnetic flux generated from the deflection winding, and a core that covers the outside of these two deflection windings. A high-frequency deflection winding is arranged inside the core in the deflection yoke provided with the
A deflection yoke characterized in that a low frequency deflection winding is arranged inside the high frequency deflection winding with a separator interposed therebetween.
JP7768785A 1985-04-10 1985-04-10 Deflection yoke Granted JPS61237343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7768785A JPS61237343A (en) 1985-04-10 1985-04-10 Deflection yoke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7768785A JPS61237343A (en) 1985-04-10 1985-04-10 Deflection yoke

Publications (2)

Publication Number Publication Date
JPS61237343A JPS61237343A (en) 1986-10-22
JPH0542775B2 true JPH0542775B2 (en) 1993-06-29

Family

ID=13640802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7768785A Granted JPS61237343A (en) 1985-04-10 1985-04-10 Deflection yoke

Country Status (1)

Country Link
JP (1) JPS61237343A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220343A (en) * 1982-06-15 1983-12-21 Matsushita Electric Ind Co Ltd Cathode-ray tube apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220343A (en) * 1982-06-15 1983-12-21 Matsushita Electric Ind Co Ltd Cathode-ray tube apparatus

Also Published As

Publication number Publication date
JPS61237343A (en) 1986-10-22

Similar Documents

Publication Publication Date Title
KR930000791B1 (en) Deflection yoke
JPH0677440B2 (en) Deflection yoke for oscilloscope equipped with heat dissipation mechanism
JPH0542775B2 (en)
US11443882B2 (en) Coil device
JPH10323012A (en) Linear motor
JP3436956B2 (en) High frequency induction heating transformer
JP4711568B2 (en) Transformer
JPH03155028A (en) Deflection yoke
JPH02301942A (en) Deflecting yoke
JPH08222442A (en) Reactor with cooling device for electric car
JPH03187205A (en) Deflection yoke
JPS5829897Y2 (en) electromagnetic deflection yoke
JPH084680Y2 (en) Deflection yoke
JPH01200542A (en) Deflecting device
JPS6317222Y2 (en)
JPS62180Y2 (en)
JP2766760B2 (en) Gas insulated induction appliance
JP3327460B2 (en) Current transformer
JP3642109B2 (en) Deflection yoke
JPS63138638A (en) Deflecting coil for cathode-ray tube
JPH01157037A (en) Deflection yoke
JPS5933785A (en) High frequency induction heating roller
JPS5810157Y2 (en) Coil for nuclear fusion device
US2944173A (en) Cathode-ray tube scanning apparatus
JPS63138686A (en) Induction heater