JP3642109B2 - Deflection yoke - Google Patents

Deflection yoke Download PDF

Info

Publication number
JP3642109B2
JP3642109B2 JP13806096A JP13806096A JP3642109B2 JP 3642109 B2 JP3642109 B2 JP 3642109B2 JP 13806096 A JP13806096 A JP 13806096A JP 13806096 A JP13806096 A JP 13806096A JP 3642109 B2 JP3642109 B2 JP 3642109B2
Authority
JP
Japan
Prior art keywords
deflection coil
arc
shaped connecting
axis direction
horizontal deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13806096A
Other languages
Japanese (ja)
Other versions
JPH09320487A (en
Inventor
勝利 出田
光則 原田
廉士 諸岡
勝彦 汐見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP13806096A priority Critical patent/JP3642109B2/en
Publication of JPH09320487A publication Critical patent/JPH09320487A/en
Application granted granted Critical
Publication of JP3642109B2 publication Critical patent/JP3642109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はテレビジョン受像機等に使用される陰極線管に組み合わせる偏向ヨークに関するものである。
【0002】
【従来の技術】
以下、従来の偏向ヨークについて図を参照しながら説明する。図8は従来の偏向ヨークの半裁側面図を示すものである。図8において、1はファンネル形状からなる一対のコア、2はコア1の内側に設けられ鞍型輪郭形状に形成された一対の垂直偏向コイル、3は垂直偏向コイル2の内側に設けられ鞍型輪郭形状に形成された一対の水平偏向コイル、4は垂直偏向コイル2と水平偏向コイル3を電気的に絶縁する絶縁枠である。
【0003】
このように構成した従来の偏向ヨークの動作について説明する。垂直偏向コイル2及び水平偏向コイル3にそれぞれ鋸歯状波電流を流し、この電流によって発生する偏向磁界で電子ビームの偏向が行われる。
【0004】
【発明が解決しようとする課題】
このような偏向ヨークでは、大画面化や解像度向上の要求に伴い、水平偏向コイル3に流れる水平偏向電流の電流量の増大や、水平偏向電圧の高周波数化等が行われる。それに伴って水平偏向コイル3の発生する発熱量の増大により偏向ヨークが温度上昇し、偏向ヨーク及び回路部品の寿命を低下させ、信頼性を低下させるという問題点を有していた。
【0005】
本発明は、偏向コイル間の発熱が抑制され、信頼性を向上させた偏向ヨークを提供することを目的とする。
【0006】
【課題を解決するための手段】
この課題を解決するために本発明は、2つの長手部と小弧状連結部と大弧状連結部から構成された一対の垂直偏向コイルと、2つの長手部と小弧状連結部と大弧状連結部から構成された一対の水平偏向コイルを備え、垂直偏向コイルと水平偏向コイルとは管軸方向長さが略等しく管軸方向に5〜15mmずらせて配設されているものである。
【0007】
この発明によれば、偏向コイル間の発熱が抑制され、信頼性を向上させた偏向ヨークが得られる。
【0008】
【発明の実施の形態】
本発明の請求項1に記載の発明は、2つの長手部と小弧状連結部と大弧状連結部から構成された一対の垂直偏向コイルと、垂直偏向コイルの内側に絶縁枠を介して配設され2つの長手部と小弧状連結部と大弧状連結部から構成された一対の水平偏向コイルを備え、垂直偏向コイルと水平偏向コイルとは管軸方向長さが略等しく管軸方向に5〜15mmずらせて配設されているものであり、偏向コイル間に生ずる渦電流損を低減させ、偏向コイル間の発熱を低減させるという作用を有する。
【0009】
請求項2に記載の発明は、2つの長手部と小弧状連結部と大弧状連結部から構成された一対の垂直偏向コイルと、垂直偏向コイルの内側に絶縁枠を介して配設され2つの長手部と小弧状連結部と大弧状連結部から構成された一対の水平偏向コイルを備え、垂直偏向コイルの大弧状連結部と水平偏向コイルの大弧状連結部とは管軸方向に5〜15mmの間隔をおいて配設されているものであり、大弧状連結部間に生ずる渦電流損を低減させ、偏向コイル間の発熱を低減させるという作用を有する。
【0010】
請求項3に記載の発明は、2つの長手部と小弧状連結部と大弧状連結部から構成された一対の垂直偏向コイルと、垂直偏向コイルの内側に絶縁枠を介して配設され2つの長手部と小弧状連結部と大弧状連結部から構成された一対の水平偏向コイルを備え、垂直偏向コイルの小弧状連結部と水平偏向コイルの小弧状連結部とは管軸方向に5〜15mmの間隔をおいて配設されているものであり、小弧状連結部間に生ずる渦電流損を低減させ、偏向コイル間の発熱を低減させるという作用を有する。
【0013】
以下、本発明の実施の形態について、図1から図7を用いて説明する。
(実施の形態1)
図1は本発明の実施の形態1による偏向ヨークを示す半裁側面図、図2(a)は本発明の実施の形態1による偏向ヨークの垂直偏向コイルの形成を示す斜視図、図2(b)は本発明の実施の形態1による偏向ヨークの水平偏向コイルの形成を示す斜視図である。図1,図2(a)及び図2(b)において、5はファンネル形状からなる一対のコア、6はコア5の内側に設けられた一対の垂直偏向コイルであり、2つの長手部7と小弧状連結部8と大弧状連結部9から構成される。10は垂直偏向コイル6の内側に設けられ、垂直偏向コイル6と後記する水平偏向コイル11との間を電気的に絶縁する絶縁枠、11は絶縁枠10の内側に設けられた一対の水平偏向コイルであり、2つの長手部12と小弧状連結部13と大弧状連結部14から構成される。15は陰極線管に装着される際のネック側、16は陰極線管に装着される際の画面側である。
【0014】
この様に構成された偏向ヨークの垂直偏向コイル6及び水平偏向コイル11の形成について以下説明する。図2(a)に示すように、単線或いは複数の導線を小弧状連結部8から屈曲させて長手部7の一方の矢印17方向に導き、長手部7の一方を形成した後、長手部7の端部で導線を屈曲させて大弧状連結部9を形成し、大弧状連結部9の端部で導線を屈曲させて他方の長手部7に導かれ小弧状連結部8に向けて他方の長手部7が形成され、長手部7の端部で導線を屈曲させて小弧状連結部8を形成する。これを繰り返し巻回して一方の垂直偏向コイル6が形成される。その際、小弧状連結部8の径方向の厚みは、長手部7の径方向のネット側15の厚みと略等しく形成される。
【0015】
そして、図2(b)に示す水平偏向コイル11においては、図2(a)に示した垂直偏向コイル6と同様に巻回して水平偏向コイル11を形成することができる。その際、水平偏向コイル11の小弧状連結部13の径方向の厚みは、長手部12の径方向のネット側15の厚みと略等しく形成される。そして、小弧状連結部8の径方向の厚みと小弧状連結部13の径方向の厚みをそれぞれの長手部7、12の径方向の厚みと等しくするのは、垂直偏向コイル6と水平偏向コイル11を管軸方向にずらすことができるようにするためである。また垂直偏向コイル6と水平偏向コイル11は管軸方向長さが略等しく形成されている。
【0016】
従って、垂直偏向コイル6の大弧状連結部9と水平偏向コイル11の大弧状連結部14とは管軸方向に5〜20mmの間隔をおいて配設され、垂直偏向コイル6の小弧状連結部8と水平偏向コイル11の小弧状連結部13とは管軸方向に5〜15mmの間隔をおいて配設されることになる。
【0017】
次に、この様に構成された偏向ヨークの動作について説明する。垂直偏向コイル6及び水平偏向コイル11にそれぞれ鋸歯状波電流を流し、この電流によって発生する偏向磁界で電子ビームの偏向が行われる。この時の水平偏向電流や磁界による渦電流によって、垂直偏向コイル6及び水平偏向コイル11が発熱し、この発熱量に依存して偏向ヨークが温度上昇する。
【0018】
ところで、本発明の実施の形態1においては、垂直偏向コイル6と水平偏向コイル11の大弧状連結部間が管軸方向に5〜15mmの間隔をおいて配設され、又、垂直偏向コイル6と水平偏向コイル11の小弧状連結部間が管軸方向に5〜15mmの間隔をおいて配設されている。この様な構成を採用することで、水平偏向コイル11と垂直偏向コイル6の大弧状連結部間には、高い周波数の水平偏向電流により励起される磁界によって生じる渦電流損失を減少させることができる。又、水平偏向コイル11と垂直偏向コイル6の小弧状連結部間において渦電流損失を減少させることができる。この様にして偏向コイルの発熱が抑制される。さらに、水平偏向コイル11の大弧状連結部14の部分と小弧状連結部13の部分から放熱させ、偏向ヨークの温度上昇を低減させることができるものである。
【0019】
そこで、図3及び図4に基づいて垂直偏向コイル6の大弧状連結部9と水平偏向コイル11の大弧状連結部14を管軸方向に2〜20mmの間隔をずらせて配設し、垂直偏向コイル6の小弧状連結部8と水平偏向コイル11の小弧状連結部13を管軸方向に2〜20mmの間隔をずらせて配設した構成について、以下詳細に説明する。
【0020】
本発明の偏向ヨークの動作中の温度上昇を調べるために、次の様な試験を行った。図3は本発明の実施の形態1による偏向ヨークの垂直偏向コイルと水平偏向コイルの大弧状連結部間を管軸方向にずらせた間隔と温度上昇との関係を示す図である。図3において、縦軸は温度上昇ΔT(℃)、横軸は大弧状連結部間の管軸方向の間隔(mm)を示す。18は水平偏向コイル11の長手部12と絶縁枠10の間の最高温度位置を示す長手部12の中央部の温度上昇を実線白丸印で示す曲線、19は水平偏向コイル11の大弧状連結部14の中央部位置の温度上昇を点線黒丸印で示す曲線である。そして、この偏向ヨークの温度上昇の試験を行うために、垂直偏向コイル6と水平偏向コイル11の大弧状連結部間の管軸方向に2〜20mmの間で間隔を変化させた。このとき水平偏向コイル11と垂直偏向コイル6の小弧状連結部間を管軸方向に2mmの間隔を一定にした。
【0021】
図4は本発明の実施の形態1による偏向ヨークの垂直偏向コイルと水平偏向コイルの小弧状連結部間を管軸方向にずらせた間隔と温度上昇との関係を示す図である。図4において、縦軸は温度上昇ΔT(℃)、横軸は小弧状連結部間の管軸方向の間隔(mm)を示す。20は水平偏向コイル11の長手部12と絶縁枠10の間の最高温度位置を示す長手部12の中央部の温度上昇を実線白三角印で示す曲線、21は水平偏向コイル11の小弧状連結部13の中央部位置の温度上昇を点線黒三角印で示す曲線である。そして、この偏向ヨークの温度上昇の試験を行うために、垂直偏向コイル6と水平偏向コイル11の小弧状連結部間の管軸方向に2〜20mmの間で間隔を変化させた。このとき水平偏向コイル11と垂直偏向コイル6の大弧状連結部間を管軸方向に2mmの間隔を一定にした。この2mmの間隔は絶縁枠10が2mmの厚みを有するからである。そして、図3及び図4においては、それぞれの測定位置に熱電対を挿入し、4時間に亘り偏向ヨークを動作させた時点で測定位置の温度と室温との温度差を温度上昇ΔTとして調べた。
【0022】
図3に示すように、垂直偏向コイル6と水平偏向コイル11の大弧状連結部間を管軸方向に2〜20mmの間隔にずらせて配設すると、偏向ヨークの最高温度位置の中央部の温度上昇ΔTについては、曲線18に示すように管軸方向の間隔が5〜20mmの場合に40℃で略一定になる。又、水平偏向コイル11の大弧状連結部14の中央部位置の温度上昇ΔTは、曲線19に示すように管軸方向の間隔が5〜20mmの場合に32℃で略一定になる。これは水平偏向電流により励起される磁界によって大弧状連結部間に生じる渦電流の損失が減少したからである。しかし、大弧状連結部間の管軸方向の間隔が4mm、2mmと狭くなると、間隔が4mmより狭くなるに伴って温度上昇ΔTはそれぞれ高くなる。これは、水平偏向電流により励起される磁界によって大弧状連結部間に渦電流による損失が増加するからと考えられる。従って、大弧状連結部間の管軸方向の間隔が5mm以下では偏向コイルの発熱量が増加し、偏向ヨークを温度上昇させる。
【0023】
図4に示すように、垂直偏向コイル6と水平偏向コイル11の小弧状連結部間を管軸方向に2〜20mmの間隔にずらせて配設すると、偏向ヨークの最高温度位置の中央部の温度上昇ΔTについては、曲線20に示すように管軸方向の間隔が5〜20mmの場合に43℃で略一定になる。又、水平偏向コイル11の小弧状連結部13の中央部位置の温度上昇ΔTは、曲線21に示すように管軸方向の間隔が5〜20mmの場合に35℃で略一定になる。しかし、小弧状連結部間の管軸方向の間隔が4mm、2mmと狭くなると、間隔が4mmより狭くなるに伴って温度上昇ΔTはそれぞれ高くなる。これは、水平偏向電流により励起される磁界によって小弧状連結部間に渦電流による損失が増加するからである。従って、小弧状連結部間の管軸方向の間隔が5mm以下では偏向コイルの発熱量が増加し、偏向ヨークを温度上昇させる。
【0024】
この様に垂直偏向コイル6と水平偏向コイル11の大弧状連結部間を管軸方向の間隔が5〜20mmの場合に、偏向ヨークの温度上昇を低くさせることができる。又、小弧状連結部間を管軸方向の間隔が5〜20mmの場合にも同じことがいえる。そして、温度上昇ΔTの曲線18の40℃と曲線20の43℃の温度の差は、大弧状連結部間の渦電流と小弧状連結部間の渦電流を比較したとき、大弧状連結部間の渦電流損失の影響が大きいことを示すものである。
【0025】
ところで、垂直偏向コイル6と水平偏向コイル11の大弧状連結部間を管軸方向に15mm以上の間隔をおいて配設すると、主要素であるラスター歪みや偏向能率を低下させ、偏向ヨークの性能を低下させる。従って、管軸方向に15mm以上の間隔をおくのは好ましくない。同様に、小弧状連結部間を管軸方向に15mm以上の間隔をおいて配設すると、ラスター歪みや偏向能率を低下させ、偏向ヨークの性能を低下させる。
【0026】
この様に本発明の実施の形態1によれば、垂直偏向コイル6と水平偏向コイル11の大弧状連結部間を管軸方向に5〜15mmの間隔をおいて配設すると、大弧状連結部間に生ずる渦電流損失を減少させ、偏向ヨークの発熱が抑えられる。又、水平偏向コイル11の小弧状連結部13の部分と大弧状連結部14の部分から放熱するので、偏向ヨークの温度上昇が抑制され、偏向ヨークが効率よく動作して信頼性を向上させることができる。又、小弧状連結部間を管軸方向に5〜15mmの間隔をおいて配設すると、大弧状連結部間と略同じ効果が得られるものである。
【0027】
ところで、大弧状連結部間の間隔を5〜15mm、小弧状連結部間の間隔を5〜15mmとして別々に説明したが、大弧状連結部間と小弧状連結部間の管軸長さを略等しく形成した場合、垂直偏向コイル6と水平偏向コイル11を5〜15mmずらせば、上記の効果を同時に期待することができ、それぞれ一方だけより効果的である。
【0028】
尚、本発明の実施の形態1においては、図1に示すように、管軸方向のネック側15に水平偏向コイル11の小弧状連結部13を垂直偏向コイル6の小弧状連結部8より突出させているが、図5に示すようにしても良い。図5は本発明の実施の形態1による偏向ヨークの垂直偏向コイルの小弧状連結部と水平偏向コイルの小弧状連結部の位置関係を示す一部側面図である。図5において、垂直偏向コイル6の小弧状連結部8と水平偏向コイル11の小弧状連結部13の位置関係は、管軸方向のネック側15に垂直偏向コイル6の小弧状連結部8が水平偏向コイル11の小弧状連結部13より突出したものである。そして、垂直偏向コイル6と水平偏向コイル11の小弧状連結部間を管軸方向に5〜15mmの間隔をおいて配設するのであれば、図4に示す場合と同様に略同じ効果が得られるものである。
【0029】
(実施の形態2)
図6(a)は本発明の実施の形態2による偏向ヨークの鞍型輪郭形状の垂直偏向コイルを示す斜視図、図6(b)は本発明の実施の形態2による偏向ヨークの鞍型輪郭形状の水平偏向コイルを示す斜視図である。図6(a)及び図6(b)において、22は鞍型輪郭形状からなる垂直偏向コイルであり、2つの長手部23と小弧状連結部24と大弧状連結部25から構成される。26は鞍型輪郭形状からなる水平偏向コイルであり、2つの長手部27と小弧状連結部28と大弧状連結部29から構成される。
【0030】
そして、本発明の実施の形態1においては、垂直偏向コイル6の小弧状連結部8の径方向の厚みを長手部7の径方向の厚みと略等しく形成し、又、水平偏向コイル11の小弧状連結部13の径方向の厚みを長手部12の径方向の厚みと略等しく形成したが、図6(a)及び図6(b)に示すように、垂直偏向コイル22と水平偏向コイル26の形状を鞍型輪郭形状に形成しても良い。そして、垂直偏向コイル22の大弧状連結部25と水平偏向コイル26の大弧状連結部29を管軸方向に5〜15mmの間隔をおいて配設されれば、実施の形態1と同じ効果が得られるものである。
【0031】
関連形態
図7は本発明の関連形態による偏向ヨークを示す半裁側面図である。図7において実施の形態2と同符号のものは基本的には同一である。図7において、26は水平偏向コイル、30はファンネル形状からなる一対のコア、31はコア30にそれぞれ巻回された垂直偏向コイルであり、ネック側端部32、画面側端部33を備えている。34は垂直偏向コイル31と水平偏向コイル26との間を電気的に絶縁する絶縁枠である。
【0032】
この様に構成した関連形態において、図7に示すように、垂直偏向コイル31のネック側端部32と水平偏向コイル26の小弧状連結部28を管軸方向に5〜15mmの間隔をおいて配設される。又、垂直偏向コイル31の画面側端部33と水平偏向コイル26の大弧状連結部29を管軸方向に5〜15mmの間隔をおいて配設される。
【0033】
この様に本発明の関連形態においては、垂直偏向コイル31の画面側端部33と水平偏向コイル26の大弧状連結部29を管軸方向に5〜15mmの間隔をおいて配設すると、図示はしないが実施の形態1の図3と略同様な温度上昇ΔTの曲線が得られる。そして、垂直偏向コイル31の画面側端部33と水平偏向コイル26の大弧状連結部29の間に生ずる渦電流損失を減少させ、偏向コイルの発熱を抑制させる。又、垂直偏向コイル31のネック側端部32と水平偏向コイル26の小弧状連結部28を管軸方向に5〜15mmの間隔をおいて配設すると、図示はしないが実施の形態1の図4と略同様な温度上昇ΔTの曲線が得られる。そして、垂直偏向コイル31のネック側端部32と水平偏向コイル26の小弧状連結部28の間に生ずる渦電流損失を減少させ、偏向コイルの発熱を抑制させる。
【0034】
そして、実施の形態1と同様に垂直偏向コイル31の画面側端部33と水平偏向コイル26の大弧状連結部29を管軸方向に15mm以上の間隔で配設すると、主要素であるラスター歪みや偏向能率を低下させ、偏向ヨークの性能を低下させる。又、垂直偏向コイル31のネック側端部32と水平偏向コイル26の小弧状連結部28を管軸方向に15mm以上の間隔で配設すると、主要素であるラスター歪みや偏向能率を低下させ、偏向ヨークの性能を低下させるものである。
【0035】
この様に本発明の関連形態において、垂直偏向コイル31のネック側端部32と水平偏向コイル26の小弧状連結部28を管軸方向に5〜15mmの間隔をおいて配設されるので、渦電流損失を減少させ、偏向コイル間の発熱を抑制させることができる。そして、水平偏向コイル26の大弧状連結部29の部分と小弧状連結部28の部分から放熱させ、偏向ヨークの温度上昇を低減させることができるものである。
【0036】
又、垂直偏向コイル31の画面側端部33と水平偏向コイル26の大弧状連結部29を管軸方向に5〜15mmの間隔をおいて配設されるので、渦電流損失を減少させ、偏向コイル間の発熱を抑制させることができる。そして、水平偏向コイル26の大弧状連結部29の部分と小弧状連結部28の部分から放熱させ、偏向ヨークの温度上昇を低減させることができるものである。
【0037】
尚、本発明の関連形態においては、実施の形態2の図6(b)に示す水平偏向コイル26を用いたが、実施の形態1の図2(b)に示すような水平偏向コイル11を用いても、実施の形態1と同じ効果が得られるものである。
【0038】
【発明の効果】
以上のように本発明によれば、垂直偏向コイルと水平偏向コイルを管軸方向に5〜15mmずらせて配設したので、渦電流損失が減少し、偏向ヨークの温度上昇が抑制される。又、大弧状連結部間を管軸方向に5〜15mmの間隔をおいて配設したので、大弧状連結部間に生ずる渦電流損失が減少し、偏向ヨークの温度上昇が抑制される。又、小弧状連結部間を管軸方向に5〜15mmの間隔をおいて配設したので、小弧状連結部間に生ずる渦電流損失が減少し、偏向ヨークの温度上昇が抑制される。
【図面の簡単な説明】
【図1】 本発明の実施の形態1による偏向ヨークを示す半裁側面図
【図2】 (a)本発明の実施の形態1による偏向ヨークの垂直偏向コイルの形成を示す斜視図
(b)本発明の実施の形態1による偏向ヨークの水平偏向コイルの形成を示す斜視図
【図3】 本発明の実施の形態1による偏向ヨークの垂直偏向コイルと水平偏向コイルの大弧状連結部間を管軸方向にずらせた間隔と温度上昇との関係を示す図
【図4】 本発明の実施の形態1による偏向ヨークの垂直偏向コイルと水平偏向コイルの小弧状連結部間を管軸方向にずらせた間隔と温度上昇との関係を示す図
【図5】 本発明の実施の形態1による偏向ヨークの垂直偏向コイルの小弧状連結部と水平偏向コイルの小弧状連結部の位置関係を示す一部側面図
【図6】 (a)本発明の実施の形態2による偏向ヨークの鞍型輪郭形状の垂直偏向コイルを示す斜視図
(b)本発明の実施の形態2による偏向ヨークの鞍型輪郭形状の水平偏向コイルを示す斜視図
【図7】 本発明の関連形態による偏向ヨークを示す半裁側面図
【図8】 従来の偏向ヨークの半裁側面図
【符号の説明】
5,30 コア
6,22,31 垂直偏向コイル
7,12,23,27 長手部
8,13,24,28 小弧状連結部
9,14,25,29 大弧状連結部
10,34 絶縁枠
11,26 水平偏向コイル
15 ネック側
16 画面側
17 矢印
18,19,20,21 曲線
32 ネック側端部
33 画面側端部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deflection yoke combined with a cathode ray tube used in a television receiver or the like.
[0002]
[Prior art]
A conventional deflection yoke will be described below with reference to the drawings. FIG. 8 shows a half-cut side view of a conventional deflection yoke. In FIG. 8, 1 is a pair of cores having a funnel shape, 2 is a pair of vertical deflection coils provided inside the core 1 and having a saddle-shaped contour shape, and 3 is a saddle type provided inside the vertical deflection coil 2. A pair of horizontal deflection coils 4 formed in a contour shape is an insulating frame that electrically insulates the vertical deflection coil 2 and the horizontal deflection coil 3 from each other.
[0003]
The operation of the conventional deflection yoke configured as described above will be described. A sawtooth wave current is passed through each of the vertical deflection coil 2 and the horizontal deflection coil 3, and the electron beam is deflected by a deflection magnetic field generated by the current.
[0004]
[Problems to be solved by the invention]
In such a deflection yoke, an increase in the amount of horizontal deflection current flowing through the horizontal deflection coil 3 and an increase in the frequency of the horizontal deflection voltage are performed in accordance with demands for larger screens and higher resolution. Along with this, there is a problem that the temperature of the deflection yoke rises due to an increase in the amount of heat generated by the horizontal deflection coil 3, thereby reducing the life of the deflection yoke and circuit components and lowering the reliability.
[0005]
An object of the present invention is to provide a deflection yoke in which heat generation between deflection coils is suppressed and reliability is improved.
[0006]
[Means for Solving the Problems]
In order to solve this problem, the present invention provides a pair of vertical deflection coils composed of two longitudinal portions, a small arc-shaped coupling portion, and a large arc-shaped coupling portion, two longitudinal portions, a small arc-shaped coupling portion, and a large arc-shaped coupling portion. The vertical deflection coil and the horizontal deflection coil are arranged so that their lengths in the tube axis direction are substantially equal and are shifted by 5 to 15 mm in the tube axis direction.
[0007]
According to the present invention, it is possible to obtain a deflection yoke in which heat generation between the deflection coils is suppressed and reliability is improved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, a pair of vertical deflection coils each composed of two longitudinal portions, a small arc-shaped connection portion, and a large arc-shaped connection portion, and an insulating frame is disposed inside the vertical deflection coil. And a pair of horizontal deflection coils each composed of two longitudinal portions, a small arc-shaped coupling portion, and a large arc-shaped coupling portion, and the vertical deflection coil and the horizontal deflection coil have substantially the same length in the tube axis direction and 5 to 5 in the tube axis direction. It is arranged by being shifted by 15 mm, and has effects of reducing eddy current loss generated between the deflection coils and reducing heat generation between the deflection coils.
[0009]
According to the second aspect of the present invention, a pair of vertical deflection coils each composed of two longitudinal portions, a small arc-shaped coupling portion, and a large arc-shaped coupling portion, and two insulating layers disposed inside the vertical deflection coil are provided. It has a pair of horizontal deflection coils composed of a longitudinal part, a small arc connection part and a large arc connection part, and the large arc connection part of the vertical deflection coil and the large arc connection part of the horizontal deflection coil are 5 to 15 mm in the tube axis direction. The eddy current loss generated between the large arc-shaped connecting portions is reduced, and the heat generation between the deflection coils is reduced.
[0010]
According to a third aspect of the present invention, a pair of vertical deflection coils each composed of two longitudinal portions, a small arc-shaped coupling portion, and a large arc-shaped coupling portion; A pair of horizontal deflection coils each composed of a longitudinal portion, a small arc-shaped coupling portion, and a large arc-shaped coupling portion are provided. The small arc-shaped coupling portion of the vertical deflection coil and the small arc-shaped coupling portion of the horizontal deflection coil are 5 to 15 mm in the tube axis direction. The eddy current loss generated between the small arc-shaped connecting portions is reduced, and the heat generation between the deflection coils is reduced.
[0013]
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
(Embodiment 1)
1 is a half side view showing a deflection yoke according to Embodiment 1 of the present invention, FIG. 2A is a perspective view showing formation of a vertical deflection coil of the deflection yoke according to Embodiment 1 of the present invention, and FIG. ) Is a perspective view showing formation of a horizontal deflection coil of the deflection yoke according to the first embodiment of the present invention. FIG. In FIGS. 1, 2A and 2B, 5 is a pair of cores having a funnel shape, 6 is a pair of vertical deflection coils provided inside the core 5, and two longitudinal portions 7 and It is composed of a small arc connecting portion 8 and a large arc connecting portion 9. An insulating frame 10 is provided inside the vertical deflection coil 6 to electrically insulate between the vertical deflection coil 6 and a horizontal deflection coil 11 described later, and 11 is a pair of horizontal deflections provided inside the insulating frame 10. It is a coil, and is composed of two longitudinal portions 12, a small arc-shaped connecting portion 13, and a large arc-shaped connecting portion 14. Reference numeral 15 denotes a neck side when attached to the cathode ray tube, and reference numeral 16 denotes a screen side when attached to the cathode ray tube.
[0014]
The formation of the vertical deflection coil 6 and the horizontal deflection coil 11 of the deflection yoke configured as described above will be described below. As shown in FIG. 2A, a single wire or a plurality of conducting wires are bent from the small arc-shaped connecting portion 8 and guided in the direction of one arrow 17 of the longitudinal portion 7 to form one of the longitudinal portions 7, and then the longitudinal portion 7 The lead wire is bent at the end of the large arc-shaped connecting portion 9, the lead wire is bent at the end of the large arc-shaped connecting portion 9 and guided to the other longitudinal portion 7 toward the small arc-shaped connecting portion 8. A longitudinal portion 7 is formed, and a conducting wire is bent at an end portion of the longitudinal portion 7 to form a small arc-shaped connecting portion 8. This is repeatedly wound to form one vertical deflection coil 6. At this time, the radial thickness of the small arc-shaped connecting portion 8 is formed to be substantially equal to the thickness of the net side 15 of the longitudinal portion 7 in the radial direction.
[0015]
In the horizontal deflection coil 11 shown in FIG. 2B, the horizontal deflection coil 11 can be formed by winding in the same manner as the vertical deflection coil 6 shown in FIG. At this time, the radial thickness of the small arc-shaped connecting portion 13 of the horizontal deflection coil 11 is formed to be substantially equal to the thickness of the net side 15 of the longitudinal portion 12 in the radial direction. The vertical deflection coil 6 and the horizontal deflection coil are set so that the radial thickness of the small arc-shaped connecting portion 8 and the radial thickness of the small arc-shaped connecting portion 13 are equal to the radial thicknesses of the respective longitudinal portions 7 and 12. This is because 11 can be shifted in the tube axis direction. The vertical deflection coil 6 and the horizontal deflection coil 11 are formed to have substantially the same length in the tube axis direction.
[0016]
Therefore, the large arc-shaped connecting portion 9 of the vertical deflection coil 6 and the large arc-shaped connecting portion 14 of the horizontal deflection coil 11 are disposed at an interval of 5 to 20 mm in the tube axis direction. 8 and the small arc-shaped connecting portion 13 of the horizontal deflection coil 11 are disposed at an interval of 5 to 15 mm in the tube axis direction.
[0017]
Next, the operation of the deflection yoke configured as described above will be described. A sawtooth wave current is passed through each of the vertical deflection coil 6 and the horizontal deflection coil 11, and the electron beam is deflected by a deflection magnetic field generated by the current. The vertical deflection coil 6 and the horizontal deflection coil 11 generate heat due to the horizontal deflection current and the eddy current due to the magnetic field at this time, and the temperature of the deflection yoke rises depending on the amount of generated heat.
[0018]
By the way, in the first embodiment of the present invention, the large arc-shaped connecting portion between the vertical deflection coil 6 and the horizontal deflection coil 11 is disposed at an interval of 5 to 15 mm in the tube axis direction. And a small arc-shaped connecting portion of the horizontal deflection coil 11 are arranged at an interval of 5 to 15 mm in the tube axis direction. By adopting such a configuration, an eddy current loss caused by a magnetic field excited by a high-frequency horizontal deflection current can be reduced between the large arc-shaped coupling portions of the horizontal deflection coil 11 and the vertical deflection coil 6. . Further, eddy current loss can be reduced between the small arc-shaped connecting portions of the horizontal deflection coil 11 and the vertical deflection coil 6. In this way, the heat generation of the deflection coil is suppressed. Furthermore, heat can be radiated from the large arc-shaped connecting portion 14 and the small arc-shaped connecting portion 13 of the horizontal deflection coil 11 to reduce the temperature rise of the deflection yoke.
[0019]
Therefore, based on FIGS. 3 and 4, the large arc-shaped connecting portion 9 of the vertical deflection coil 6 and the large arc-shaped connecting portion 14 of the horizontal deflection coil 11 are arranged with a gap of 2 to 20 mm in the tube axis direction so as to be vertically deflected. A configuration in which the small arc-shaped connecting portion 8 of the coil 6 and the small arc-shaped connecting portion 13 of the horizontal deflection coil 11 are disposed with a gap of 2 to 20 mm in the tube axis direction will be described in detail below.
[0020]
In order to investigate the temperature rise during operation of the deflection yoke of the present invention, the following test was conducted. FIG. 3 is a diagram showing the relationship between the temperature rise and the distance between the large arc-shaped connecting portions of the vertical deflection coil and horizontal deflection coil of the deflection yoke according to Embodiment 1 of the present invention. In FIG. 3, the vertical axis indicates the temperature rise ΔT (° C.), and the horizontal axis indicates the interval (mm) in the tube axis direction between the large arc-shaped connecting portions. 18 is a curve showing a temperature rise in the center of the longitudinal portion 12 indicating the maximum temperature position between the longitudinal portion 12 of the horizontal deflection coil 11 and the insulating frame 10 by a solid white circle, and 19 is a large arc connecting portion of the horizontal deflection coil 11. 14 is a curve showing the temperature rise at the center position of 14 by dotted black dots. In order to test the temperature rise of the deflection yoke, the interval was changed between 2 and 20 mm in the tube axis direction between the large arc-shaped connecting portions of the vertical deflection coil 6 and the horizontal deflection coil 11. At this time, a distance of 2 mm between the small arc-shaped connecting portions of the horizontal deflection coil 11 and the vertical deflection coil 6 was made constant in the tube axis direction.
[0021]
FIG. 4 is a diagram showing the relationship between the temperature rise and the distance between the small arcuate connecting portions of the vertical deflection coil and horizontal deflection coil of the deflection yoke according to Embodiment 1 of the present invention. In FIG. 4, the vertical axis indicates the temperature rise ΔT (° C.), and the horizontal axis indicates the interval (mm) in the tube axis direction between the small arc-shaped connecting portions. 20 is a curve showing the temperature rise at the central portion of the longitudinal portion 12 indicating the maximum temperature position between the longitudinal portion 12 of the horizontal deflection coil 11 and the insulating frame 10 by a solid white triangle mark, and 21 is a small arc connection of the horizontal deflection coil 11. It is a curve which shows the temperature rise of the center part position of the part 13 with a dotted-line black triangle mark. In order to test the temperature rise of the deflection yoke, the interval was changed between 2 and 20 mm in the tube axis direction between the small arc-shaped connecting portions of the vertical deflection coil 6 and the horizontal deflection coil 11. At this time, a distance of 2 mm between the large arc-shaped connecting portions of the horizontal deflection coil 11 and the vertical deflection coil 6 was made constant in the tube axis direction. This is because the insulating frame 10 has a thickness of 2 mm. 3 and 4, a thermocouple was inserted into each measurement position, and when the deflection yoke was operated for 4 hours, the temperature difference between the measurement position and room temperature was examined as a temperature rise ΔT. .
[0022]
As shown in FIG. 3, when the large arc-shaped connecting portions of the vertical deflection coil 6 and the horizontal deflection coil 11 are arranged at a distance of 2 to 20 mm in the tube axis direction, the temperature at the central portion of the highest temperature position of the deflection yoke is set. The increase ΔT becomes substantially constant at 40 ° C. when the interval in the tube axis direction is 5 to 20 mm as shown by the curve 18. Further, the temperature rise ΔT at the central portion of the large arc connecting portion 14 of the horizontal deflection coil 11 becomes substantially constant at 32 ° C. when the interval in the tube axis direction is 5 to 20 mm as shown by the curve 19. This is because the loss of eddy current generated between the large arc-shaped joints is reduced by the magnetic field excited by the horizontal deflection current. However, when the interval in the tube axis direction between the large arc-shaped connecting portions is reduced to 4 mm and 2 mm, the temperature rise ΔT increases as the interval becomes smaller than 4 mm. This is presumably because the loss due to the eddy current increases between the large arc-shaped connecting portions due to the magnetic field excited by the horizontal deflection current. Accordingly, when the distance between the large arc-shaped connecting portions in the tube axis direction is 5 mm or less, the amount of heat generated by the deflection coil increases, and the temperature of the deflection yoke is increased.
[0023]
As shown in FIG. 4, when the small arc-shaped coupling portions of the vertical deflection coil 6 and the horizontal deflection coil 11 are arranged at a distance of 2 to 20 mm in the tube axis direction, the temperature at the central portion of the highest temperature position of the deflection yoke is set. The increase ΔT becomes substantially constant at 43 ° C. when the interval in the tube axis direction is 5 to 20 mm as shown by the curve 20. Further, the temperature rise ΔT at the center position of the small arc-shaped connecting portion 13 of the horizontal deflection coil 11 becomes substantially constant at 35 ° C. when the interval in the tube axis direction is 5 to 20 mm as shown by the curve 21. However, when the interval in the tube axis direction between the small arc-shaped connecting portions is reduced to 4 mm and 2 mm, the temperature increase ΔT increases as the interval becomes smaller than 4 mm. This is because the loss due to the eddy current increases between the small arc-shaped coupling portions due to the magnetic field excited by the horizontal deflection current. Therefore, if the distance between the small arc-shaped connecting portions in the tube axis direction is 5 mm or less, the amount of heat generated by the deflection coil increases, and the temperature of the deflection yoke is increased.
[0024]
In this way, when the distance between the large arc-shaped connecting portions of the vertical deflection coil 6 and the horizontal deflection coil 11 is 5 to 20 mm in the tube axis direction, the temperature rise of the deflection yoke can be reduced. The same can be said when the distance between the small arc-shaped connecting portions in the tube axis direction is 5 to 20 mm. The difference between the temperature rise 40T of the curve 18 of the temperature rise ΔT and the temperature of 43 ° C. of the curve 20 is the difference between the eddy currents between the large arc-shaped connecting portions and the eddy currents between the small arc-shaped connecting portions. This shows that the influence of eddy current loss is large.
[0025]
By the way, if the large arc-shaped connecting portion between the vertical deflection coil 6 and the horizontal deflection coil 11 is disposed at an interval of 15 mm or more in the tube axis direction, raster distortion and deflection efficiency which are main elements are reduced, and the performance of the deflection yoke is reduced. Reduce. Therefore, it is not preferable to set an interval of 15 mm or more in the tube axis direction. Similarly, if the small arc-shaped connecting portions are arranged at intervals of 15 mm or more in the tube axis direction, the raster distortion and the deflection efficiency are lowered, and the performance of the deflection yoke is lowered.
[0026]
As described above, according to the first embodiment of the present invention, when the large arc-shaped coupling portion between the vertical deflection coil 6 and the horizontal deflection coil 11 is disposed at an interval of 5 to 15 mm in the tube axis direction, the large arc-shaped coupling portion. The loss of eddy current generated between them is reduced, and the heat generation of the deflection yoke is suppressed. Further, since heat is radiated from the small arc connecting portion 13 and the large arc connecting portion 14 of the horizontal deflection coil 11, the temperature rise of the deflection yoke is suppressed, and the deflection yoke operates efficiently to improve reliability. Can do. Further, when the small arc-shaped connecting portions are arranged with an interval of 5 to 15 mm in the tube axis direction, substantially the same effect as that between the large arc-shaped connecting portions can be obtained.
[0027]
By the way, although it demonstrated separately that the space | interval between large arc-shaped connection parts was 5-15 mm and the space | interval between small arc-shaped connection parts was 5-15 mm, the pipe-axis length between large arc-shaped connection parts and between small arc-shaped connection parts is substantially shown. In the case of equal formation, if the vertical deflection coil 6 and the horizontal deflection coil 11 are shifted by 5 to 15 mm, the above effects can be expected at the same time, and only one of them is more effective.
[0028]
In the first embodiment of the present invention, as shown in FIG. 1, the small arc-shaped connecting portion 13 of the horizontal deflection coil 11 protrudes from the small arc-shaped connecting portion 8 of the vertical deflection coil 6 on the neck side 15 in the tube axis direction. However, it may be as shown in FIG. FIG. 5 is a partial side view showing the positional relationship between the small arc-shaped connecting portion of the vertical deflection coil and the small arc-shaped connecting portion of the horizontal deflection coil according to the first embodiment of the present invention. In FIG. 5, the positional relationship between the small arc-shaped coupling portion 8 of the vertical deflection coil 6 and the small arc-shaped coupling portion 13 of the horizontal deflection coil 11 is such that the small arc-shaped coupling portion 8 of the vertical deflection coil 6 is horizontal to the neck side 15 in the tube axis direction. It protrudes from the small arc-shaped connecting portion 13 of the deflection coil 11. If the small arc-shaped connecting portions of the vertical deflection coil 6 and the horizontal deflection coil 11 are arranged with an interval of 5 to 15 mm in the tube axis direction, substantially the same effect is obtained as in the case shown in FIG. It is what
[0029]
(Embodiment 2)
6A is a perspective view showing a vertical deflection coil having a saddle-shaped contour shape of a deflection yoke according to the second embodiment of the present invention, and FIG. 6B is a saddle-shaped contour of the deflection yoke according to the second embodiment of the present invention. It is a perspective view which shows the horizontal deflection coil of a shape. 6 (a) and 6 (b), reference numeral 22 denotes a vertical deflection coil having a saddle-shaped contour shape, which includes two longitudinal portions 23, a small arc-shaped connecting portion 24, and a large arc-shaped connecting portion 25. Reference numeral 26 denotes a horizontal deflection coil having a saddle-shaped contour shape, which includes two longitudinal portions 27, a small arc-shaped connection portion 28, and a large arc-shaped connection portion 29.
[0030]
In Embodiment 1 of the present invention, the radial thickness of the small arc-shaped connecting portion 8 of the vertical deflection coil 6 is formed to be substantially equal to the radial thickness of the longitudinal portion 7, and the horizontal deflection coil 11 is small. Although the radial thickness of the arc-shaped connecting portion 13 is substantially equal to the radial thickness of the longitudinal portion 12, as shown in FIGS. 6 (a) and 6 (b), the vertical deflection coil 22 and the horizontal deflection coil 26 are formed. The shape may be formed into a saddle-shaped contour shape. If the large arc-shaped connecting portion 25 of the vertical deflection coil 22 and the large arc-shaped connecting portion 29 of the horizontal deflection coil 26 are arranged at intervals of 5 to 15 mm in the tube axis direction, the same effect as in the first embodiment is obtained. It is obtained.
[0031]
( Related form )
FIG. 7 is a half-cut side view showing a deflection yoke according to a related embodiment of the present invention. In FIG. 7, the same reference numerals as those in the second embodiment are basically the same. In FIG. 7, 26 is a horizontal deflection coil, 30 is a pair of funnel-shaped cores, 31 is a vertical deflection coil wound around the core 30, and includes a neck side end portion 32 and a screen side end portion 33. Yes. An insulating frame 34 electrically insulates the vertical deflection coil 31 and the horizontal deflection coil 26 from each other.
[0032]
In the related configuration configured as described above, as shown in FIG. 7, the neck side end portion 32 of the vertical deflection coil 31 and the small arc-shaped connecting portion 28 of the horizontal deflection coil 26 are spaced by 5 to 15 mm in the tube axis direction. Arranged. Further, the screen-side end portion 33 of the vertical deflection coil 31 and the large arc-shaped connecting portion 29 of the horizontal deflection coil 26 are arranged at an interval of 5 to 15 mm in the tube axis direction.
[0033]
As described above, in the related embodiment of the present invention, when the screen-side end portion 33 of the vertical deflection coil 31 and the large arc-shaped connection portion 29 of the horizontal deflection coil 26 are arranged at intervals of 5 to 15 mm in the tube axis direction, Although not, a curve of the temperature rise ΔT that is substantially the same as in FIG. 3 of the first embodiment is obtained. And the eddy current loss which arises between the screen side edge part 33 of the vertical deflection coil 31 and the large arc-shaped connection part 29 of the horizontal deflection coil 26 is reduced, and the heat generation of the deflection coil is suppressed. Further, when the neck side end portion 32 of the vertical deflection coil 31 and the small arc-shaped connecting portion 28 of the horizontal deflection coil 26 are arranged at an interval of 5 to 15 mm in the tube axis direction, although not shown, the diagram of the first embodiment. A curve of the temperature rise ΔT substantially similar to 4 is obtained. And the eddy current loss which arises between the neck side edge part 32 of the vertical deflection coil 31 and the small arc-shaped connection part 28 of the horizontal deflection coil 26 is reduced, and the heat generation of the deflection coil is suppressed.
[0034]
Similarly to the first embodiment, when the screen side end portion 33 of the vertical deflection coil 31 and the large arc-shaped connecting portion 29 of the horizontal deflection coil 26 are arranged at intervals of 15 mm or more in the tube axis direction, the raster distortion which is the main element. And the deflection efficiency is lowered, and the performance of the deflection yoke is lowered. Further, when the neck side end portion 32 of the vertical deflection coil 31 and the small arc-shaped connection portion 28 of the horizontal deflection coil 26 are arranged at intervals of 15 mm or more in the tube axis direction, the raster distortion and the deflection efficiency which are main elements are reduced, The performance of the deflection yoke is lowered.
[0035]
Thus, in the related form of the present invention, the neck side end portion 32 of the vertical deflection coil 31 and the small arc-shaped connecting portion 28 of the horizontal deflection coil 26 are arranged at intervals of 5 to 15 mm in the tube axis direction. Eddy current loss can be reduced and heat generation between the deflection coils can be suppressed. Then, heat is radiated from the large arc-shaped connecting portion 29 and the small arc-shaped connecting portion 28 of the horizontal deflection coil 26, and the temperature rise of the deflection yoke can be reduced.
[0036]
Further, since the screen side end 33 of the vertical deflection coil 31 and the large arc-shaped connecting portion 29 of the horizontal deflection coil 26 are arranged at intervals of 5 to 15 mm in the tube axis direction, eddy current loss is reduced and deflection is performed. Heat generation between the coils can be suppressed. Then, heat is radiated from the large arc-shaped connecting portion 29 and the small arc-shaped connecting portion 28 of the horizontal deflection coil 26, and the temperature rise of the deflection yoke can be reduced.
[0037]
In the related embodiment of the present invention, the horizontal deflection coil 26 shown in FIG. 6B of the second embodiment is used. However, the horizontal deflection coil 11 shown in FIG. 2B of the first embodiment is used. Even if it is used, the same effect as in the first embodiment can be obtained.
[0038]
【The invention's effect】
As described above, according to the present invention, since the vertical deflection coil and the horizontal deflection coil are shifted by 5 to 15 mm in the tube axis direction, the eddy current loss is reduced and the temperature rise of the deflection yoke is suppressed. Further, since the large arc-shaped connecting portions are arranged at intervals of 5 to 15 mm in the tube axis direction, eddy current loss generated between the large arc-shaped connecting portions is reduced, and the temperature rise of the deflection yoke is suppressed. Further, since the small arc-shaped connecting portions are arranged at intervals of 5 to 15 mm in the tube axis direction, eddy current loss generated between the small arc-shaped connecting portions is reduced, and the temperature rise of the deflection yoke is suppressed.
[Brief description of the drawings]
FIG. 1 is a half-cut side view showing a deflection yoke according to Embodiment 1 of the present invention. FIG. 2 (a) is a perspective view showing formation of a vertical deflection coil of the deflection yoke according to Embodiment 1 of the present invention. FIG. 3 is a perspective view showing formation of a horizontal deflection coil of a deflection yoke according to the first embodiment of the present invention. FIG. 3 shows a tube axis between a vertical deflection coil of the deflection yoke and a large arc-shaped connecting portion of the horizontal deflection coil according to the first embodiment of the present invention. FIG. 4 is a diagram showing the relationship between the gap shifted in the direction and the temperature rise. FIG. 4 is a gap shifted in the tube axis direction between the small arc-shaped connecting portions of the vertical deflection coil and the horizontal deflection coil of the deflection yoke according to the first embodiment of the present invention. FIG. 5 is a partial side view showing the positional relationship between a small arc-shaped connecting portion of a vertical deflection coil and a small arc-shaped connecting portion of a horizontal deflection coil according to Embodiment 1 of the present invention. FIG. 6 (a) Implementation of the present invention FIG. 7 is a perspective view showing a vertical deflection coil having a saddle-shaped outline of a deflection yoke according to a second embodiment. [FIG. 8] A half side view of a deflection yoke according to a related embodiment of the present invention.
5,30 Core 6,22,31 Vertical deflection coil 7,12,23,27 Longitudinal part 8,13,24,28 Small arc-shaped connecting part 9,14,25,29 Large arc-shaped connecting part 10,34 Insulating frame 11, 26 Horizontal deflection coil 15 Neck side 16 Screen side 17 Arrow 18, 19, 20, 21 Curve 32 Neck side end 33 Screen side end

Claims (3)

2つの長手部と小弧状連結部と大弧状連結部から構成された一対の垂直偏向コイルと、前記垂直偏向コイルの内側に絶縁枠を介して配設され2つの長手部と小弧状連結部と大弧状連結部から構成された一対の水平偏向コイルを備え、前記垂直偏向コイルと前記水平偏向コイルとは管軸方向長さが略等しく管軸方向に5〜15mmずらせて配設されていることを特徴とする偏向ヨーク。A pair of vertical deflection coils composed of two longitudinal portions, a small arc-shaped coupling portion and a large arc-shaped coupling portion; and two longitudinal portions and a small arc-shaped coupling portion which are disposed inside the vertical deflection coil via an insulating frame; A pair of horizontal deflection coils each composed of a large arc-shaped connecting portion are provided, and the vertical deflection coil and the horizontal deflection coil are substantially equal in length in the tube axis direction and are shifted by 5 to 15 mm in the tube axis direction. A deflection yoke. 2つの長手部と小弧状連結部と大弧状連結部から構成された一対の垂直偏向コイルと、前記垂直偏向コイルの内側に絶縁枠を介して配設され2つの長手部と小弧状連結部と大弧状連結部から構成された一対の水平偏向コイルを備え、前記垂直偏向コイルの大弧状連結部と前記水平偏向コイルの大弧状連結部とは管軸方向に5〜15mmの間隔をおいて配設されていることを特徴とする偏向ヨーク。A pair of vertical deflection coils composed of two longitudinal portions, a small arc-shaped coupling portion and a large arc-shaped coupling portion; and two longitudinal portions and a small arc-shaped coupling portion which are disposed inside the vertical deflection coil via an insulating frame; A pair of horizontal deflection coils each composed of a large arc-shaped coupling portion is provided, and the large arc-shaped coupling portion of the vertical deflection coil and the large arc-shaped coupling portion of the horizontal deflection coil are arranged at an interval of 5 to 15 mm in the tube axis direction. A deflection yoke characterized by being provided. 2つの長手部と小弧状連結部と大弧状連結部から構成された一対の垂直偏向コイルと、前記垂直偏向コイルの内側に絶縁枠を介して配設され2つの長手部と小弧状連結部と大弧状連結部から構成された一対の水平偏向コイルを備え、前記垂直偏向コイルの小弧状連結部と前記水平偏向コイルの小弧状連結部とは管軸方向に5〜15mmの間隔をおいて配設されていることを特徴とする偏向ヨーク。A pair of vertical deflection coils composed of two longitudinal portions, a small arc-shaped coupling portion and a large arc-shaped coupling portion; and two longitudinal portions and a small arc-shaped coupling portion which are disposed inside the vertical deflection coil via an insulating frame; A pair of horizontal deflection coils each composed of a large arc-shaped coupling portion is provided, and the small arc-shaped coupling portion of the vertical deflection coil and the small arc-shaped coupling portion of the horizontal deflection coil are arranged at an interval of 5 to 15 mm in the tube axis direction. A deflection yoke characterized by being provided.
JP13806096A 1996-05-31 1996-05-31 Deflection yoke Expired - Fee Related JP3642109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13806096A JP3642109B2 (en) 1996-05-31 1996-05-31 Deflection yoke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13806096A JP3642109B2 (en) 1996-05-31 1996-05-31 Deflection yoke

Publications (2)

Publication Number Publication Date
JPH09320487A JPH09320487A (en) 1997-12-12
JP3642109B2 true JP3642109B2 (en) 2005-04-27

Family

ID=15213047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13806096A Expired - Fee Related JP3642109B2 (en) 1996-05-31 1996-05-31 Deflection yoke

Country Status (1)

Country Link
JP (1) JP3642109B2 (en)

Also Published As

Publication number Publication date
JPH09320487A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
JP3642109B2 (en) Deflection yoke
JPH0677440B2 (en) Deflection yoke for oscilloscope equipped with heat dissipation mechanism
US2722621A (en) Device for deflecting the cathode-ray in cathode-ray tubes
US2813212A (en) Electromagnetic cathode ray beam deflection system
JPH02216738A (en) Deflection yoke
US6787977B2 (en) Electron gun for cathode-ray tube and method for manufacturing the same
JPS62274535A (en) Deflection yoke
JP3368025B2 (en) Deflection yoke and cathode ray tube display
US6650040B2 (en) Cathode ray tube having a deflection yoke with heat radiator
JP3927461B2 (en) Deflection yoke and cathode ray tube apparatus using the deflection yoke
US3274418A (en) Field concentrator having conductive loop proximate beam
JPH01200542A (en) Deflecting device
JP2584699B2 (en) Degaussing coil
JPH11144646A (en) Deflection yoke
JP2757401B2 (en) Deflection device
JPS62216140A (en) Deflecting yoke
JP3501589B2 (en) Cathode ray tube
KR19990020158A (en) Assembly structure with air-cooled air space of deflection yoke for cathode ray tube
JPH0121474Y2 (en)
JP2002532827A (en) Saddle-type deflection coil and winding method
JP3446085B2 (en) Deflection yoke
JPH11312477A (en) Cathode-ray tube display device
JPH02142037A (en) Deflection yoke
JPH10125257A (en) Deflection yoke
JP2007042661A (en) Deflection yoke and cathode-ray tube device using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

LAPS Cancellation because of no payment of annual fees