JPH0542482B2 - - Google Patents

Info

Publication number
JPH0542482B2
JPH0542482B2 JP18110084A JP18110084A JPH0542482B2 JP H0542482 B2 JPH0542482 B2 JP H0542482B2 JP 18110084 A JP18110084 A JP 18110084A JP 18110084 A JP18110084 A JP 18110084A JP H0542482 B2 JPH0542482 B2 JP H0542482B2
Authority
JP
Japan
Prior art keywords
vacuum
cooling fan
heating
cooling
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18110084A
Other languages
Japanese (ja)
Other versions
JPS6160819A (en
Inventor
Tomoyasu Kawasaki
Mitsuhiro Nishimoto
Masao Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP18110084A priority Critical patent/JPS6160819A/en
Publication of JPS6160819A publication Critical patent/JPS6160819A/en
Publication of JPH0542482B2 publication Critical patent/JPH0542482B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/16Arrangements of air or gas supply devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B2005/062Cooling elements
    • F27B2005/066Cooling elements disposed around the fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/14Arrangements of heating devices
    • F27B2005/143Heating rods disposed in the chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/16Arrangements of air or gas supply devices
    • F27B2005/161Gas inflow or outflow
    • F27B2005/162Gas inflow or outflow through closable or non-closable openings of the chamber walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories, or equipment peculiar to furnaces of these types
    • F27B5/16Arrangements of air or gas supply devices
    • F27B2005/166Means to circulate the atmosphere
    • F27B2005/167Means to circulate the atmosphere the atmosphere being recirculated through the treatment chamber by a turbine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Details (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明は加熱終了後不活性ガス(主として窒
素ガス)を真空炉に導入し、焼入れ冷却する焼入
れ冷却方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a quenching cooling method in which an inert gas (mainly nitrogen gas) is introduced into a vacuum furnace after heating is completed for quenching cooling.

(ロ) 従技来術 真空炉でもつて処理物を加熱したあと炉内を冷
却するために、普通、炉内に設けてある冷却フア
ンを駆動モータで駆動するようになつている。
(B) Prior Art In order to cool the inside of a vacuum furnace after heating the material to be processed, a cooling fan provided inside the furnace is usually driven by a drive motor.

しかしながら、冷却フアン駆動モータを真空中
で駆動させるとモータ内部において放電が発生し
やすいという傾向がある。そのため従来の焼入れ
冷却方法は、加熱終了後に不活性ガスを導入し、
炉内の気圧が約300torr以上になつてから冷却フ
アンを始動するようにしている。
However, when a cooling fan drive motor is driven in a vacuum, electric discharge tends to occur inside the motor. Therefore, in the conventional quenching cooling method, inert gas is introduced after heating,
The cooling fan is started only after the pressure inside the furnace reaches approximately 300 torr.

しかしながら、この方法によれば冷却フアンが
最大限の冷却能力を発揮する回転数にまで達する
のに相当の時間を要する。例えば大型フアンにな
れば、数10秒もの起動時間を要する。その結果、
処理物の冷却速度が遅くなり、処理物がハイス鋼
の場合では炭化物が析出し、処理物の硬度が低く
なるという問題を生じる。
However, according to this method, it takes a considerable amount of time for the cooling fan to reach the rotational speed at which it exhibits its maximum cooling capacity. For example, a large fan requires startup time of several tens of seconds. the result,
This causes a problem in that the cooling rate of the processed material becomes slow, and when the processed material is high-speed steel, carbides precipitate, resulting in a decrease in the hardness of the processed material.

(ハ) 目的 この発明は、冷却速度が早い焼入れ冷却方法を
提供することを目的としている。
(c) Purpose The purpose of the present invention is to provide a quenching cooling method with a fast cooling rate.

(ニ) 構成 この発明に係る焼入れ冷却方法は、加熱完了時
に最大限の冷却能力を発揮させるように、駆動軸
が真空シールされた冷却フアンを加熱完了前に駆
動するとともに加熱完了と同時に不活性ガスを真
空炉内に導入することを特徴としている。
(D) Structure The quenching cooling method according to the present invention drives a cooling fan whose drive shaft is vacuum-sealed before the heating is completed, and deactivates the cooling fan at the same time as the heating is completed, in order to maximize the cooling capacity when the heating is completed. It is characterized by introducing gas into the vacuum furnace.

(ホ) 実施例 第1図はこの発明の一実施例に係る方法を使用
した真空焼入れ炉の構成を略示した説明図、第2
図は第1図のA−A断面図である。
(E) Embodiment FIG. 1 is an explanatory diagram schematically showing the structure of a vacuum quenching furnace using a method according to an embodiment of the present invention, and FIG.
The figure is a sectional view taken along the line AA in FIG. 1.

同図において、1は真空炉、2は真空炉内に収
納される処理物、3は処理物を加熱するヒータ、
4はヒータ3を取り囲む断熱材である。断熱材の
両端には、窒素ガスが流出する開口5a,5bが
設けられている。この開口5a,5bは、遮蔽板
6a,6bで交互に覆われる。即ち、遮蔽板6
a,6bはシリンダ7によつて軸方向に連動して
駆動される結果、開口5a,5bを交互に遮蔽す
る。
In the figure, 1 is a vacuum furnace, 2 is a workpiece stored in the vacuum furnace, 3 is a heater that heats the workpiece,
4 is a heat insulating material surrounding the heater 3. Openings 5a and 5b through which nitrogen gas flows out are provided at both ends of the heat insulating material. The openings 5a, 5b are alternately covered with shielding plates 6a, 6b. That is, the shielding plate 6
a and 6b are driven in conjunction with each other in the axial direction by the cylinder 7, so that they alternately cover the openings 5a and 5b.

8は真空炉1内に導入された窒素ガスを循環さ
せる冷却フアンである。この冷却フアン8は駆動
モータ9によつて駆動される。冷却フアン駆動軸
は、例えば磁気シール等の真空シール10によつ
て真空的にシールされている。したがつて、駆動
モータ9の周囲は略大気圧になつている。
8 is a cooling fan that circulates nitrogen gas introduced into the vacuum furnace 1. This cooling fan 8 is driven by a drive motor 9. The cooling fan drive shaft is vacuum sealed by a vacuum seal 10 such as a magnetic seal. Therefore, the pressure around the drive motor 9 is approximately atmospheric.

11は炉内を流通する窒素ガスを冷却する冷却
器であつて、例えば図外の冷却水タンクに連結さ
れた金属パイプからなる熱交換器である。
Reference numeral 11 denotes a cooler for cooling nitrogen gas flowing through the furnace, and is, for example, a heat exchanger made of a metal pipe connected to a cooling water tank (not shown).

12は断熱材4で覆われた処理室内へ窒素ガス
を送るためのガス流通路である。
Reference numeral 12 denotes a gas flow path for sending nitrogen gas into the processing chamber covered with the heat insulating material 4.

13は開口5aから流出した窒素ガスを冷却器
11へ送るためのガス流通路、14は処理室に窒
素ガスを噴射させるノズルであつて、この窒素ガ
スは炉外に設けてある窒素ガスボンベ15よりバ
ルブ17を介して前記ノズル14に送られる。
13 is a gas flow path for sending the nitrogen gas flowing out from the opening 5a to the cooler 11, and 14 is a nozzle for injecting nitrogen gas into the processing chamber, and this nitrogen gas is supplied from a nitrogen gas cylinder 15 provided outside the furnace. It is sent to the nozzle 14 via a valve 17.

16はバルブ18を介して真空炉1内を真空排
気する真空ポンプである。
16 is a vacuum pump that evacuates the inside of the vacuum furnace 1 via a valve 18.

19は前記ヒータ3を駆動する加熱電源であ
る。
19 is a heating power source for driving the heater 3;

20は真空ポンプ16、バルブ17,18、加
熱電源19の動作を制御する制御回路である。
A control circuit 20 controls the operations of the vacuum pump 16, valves 17 and 18, and heating power source 19.

次に、上述した構成の真空焼入れ炉の動作説明
を通じて、この実施例に係る方法の説明を行う。
Next, the method according to this embodiment will be explained by explaining the operation of the vacuum hardening furnace configured as described above.

真空炉1内に処理物2を収納した後、真空ポ
ンプ16によつて真空炉1内を10-1torr程度ま
で排気する。
After the workpiece 2 is placed in the vacuum furnace 1, the vacuum pump 16 evacuates the inside of the vacuum furnace 1 to about 10 -1 torr.

ヒータ3を駆動し、処理物2を所定の温度ま
で加熱する。
The heater 3 is driven to heat the processing object 2 to a predetermined temperature.

加熱完了と同時にバルブ17を開放して窒素
ガスを真空炉1内に導入するが、冷却フアン8
は加熱完了の所定時間前に始動を開始してい
る。この時間は、加熱完了時に冷却フアン8の
回転数が最大となるように制御回路20に予め
設定される。窒素ガスは、炉内の圧力が1〜10
Kg/cm2になるように導入される。
At the same time as the heating is completed, the valve 17 is opened to introduce nitrogen gas into the vacuum furnace 1, but the cooling fan 8
starts a predetermined time before the completion of heating. This time is preset in the control circuit 20 so that the number of rotations of the cooling fan 8 reaches the maximum when heating is completed. Nitrogen gas has a pressure in the furnace of 1 to 10
Kg/ cm2 .

冷却フアン8の回転数が最大値に達する直前
に加熱電源19が遮断される。
Just before the rotational speed of the cooling fan 8 reaches its maximum value, the heating power source 19 is cut off.

シリンダ7により遮蔽板6a,6bを駆動す
ることにより、処理室内の窒素ガスを開口5
a,5bから交互に排出させる。
By driving the shielding plates 6a and 6b with the cylinder 7, nitrogen gas in the processing chamber is removed from the opening 5.
Discharge from a and 5b alternately.

処理室から排出された窒素ガスは冷却器11
で冷却された後冷却フアンに流入し、ガス流通
路12を介して再び処理室に向けて流出され
る。
Nitrogen gas discharged from the processing chamber is passed through the cooler 11
After being cooled, the gas flows into the cooling fan and flows out again toward the processing chamber via the gas flow path 12.

なお、上述の実施例では加熱完了前に冷却フア
ン8を始動し、加熱完了と同時に窒素ガスを導入
するものとして説明した。しかし、加熱完了時に
冷却能力を最大にするために、窒素ガスの導入お
よび冷却フアンの始動時刻は適宜に設定され得る
ものである。
In the above embodiment, the cooling fan 8 is started before the heating is completed, and the nitrogen gas is introduced at the same time as the heating is completed. However, in order to maximize the cooling capacity upon completion of heating, the introduction of nitrogen gas and the starting time of the cooling fan can be set as appropriate.

また、冷却能力を一層高めるためには、実施例
で説明したように、真空炉1内を窒素ガスで加圧
することが望ましい。しかしこの発明は、真空炉
1内を窒素ガスで加圧しない場合にも所期の目的
を達成するものであり、従つてこの場合も本発明
に含まれる。
Furthermore, in order to further increase the cooling capacity, it is desirable to pressurize the inside of the vacuum furnace 1 with nitrogen gas, as explained in the embodiment. However, the present invention achieves the intended purpose even when the inside of the vacuum furnace 1 is not pressurized with nitrogen gas, and therefore, this case is also included in the present invention.

(ヘ) 効果 この発明は、加熱完了時に最大限の冷却能力を
発揮させるように、冷却フアンを加熱完了前に駆
動するとともに加熱完了と同時に不活性ガスを真
空炉内に導入している。したがつてこの発明によ
れば、冷却時間を短することができるので、ハイ
ス鋼の炭化物の析出を防止でき、その硬度を充分
高めることができる。また冷却時間が短くなつた
ことにより、従来その適用が困難であつたSKS
材等の油冷鋼にもガス焼入れを適用することがで
きる。
(f) Effects In this invention, in order to maximize the cooling capacity when heating is completed, the cooling fan is driven before heating is completed, and at the same time, inert gas is introduced into the vacuum furnace at the same time as heating is completed. Therefore, according to the present invention, since the cooling time can be shortened, precipitation of carbides in high speed steel can be prevented and the hardness can be sufficiently increased. In addition, due to the shorter cooling time, SKS, which was difficult to apply in the past,
Gas quenching can also be applied to oil-cooled steel such as steel.

さらにこの発明によれば、冷却フアン駆動モー
タは駆動軸の真空シールによつて略大気圧に保た
れるので、真空排気された状態で冷却フアンを駆
動してもモータ内で放電することはない。また、
冷却フアンを真空中で始動させるので、負荷が小
さい。そのため、この発明によれば冷却フアン駆
動モータの起動電流を押さえることができるとい
う効果をも奏する。
Furthermore, according to this invention, the cooling fan drive motor is maintained at approximately atmospheric pressure by the vacuum seal on the drive shaft, so even if the cooling fan is driven in an evacuated state, no electrical discharge occurs within the motor. . Also,
Since the cooling fan is started in a vacuum, the load is small. Therefore, according to the present invention, there is also an effect that the starting current of the cooling fan drive motor can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る方法を使用
した真空焼入れ炉の構成を略示した説明図、第2
図は第1図のA−A断面図である。 1……真空炉、2……処理物、3……ヒータ、
4……断熱材、8……冷却フアン、9……駆動モ
ータ、10……真空シール、11……冷却器、1
2,13……ガス流通炉、14……ルズル。
FIG. 1 is an explanatory diagram schematically showing the structure of a vacuum quenching furnace using a method according to an embodiment of the present invention, and FIG.
The figure is a sectional view taken along the line AA in FIG. 1. 1... Vacuum furnace, 2... Processing object, 3... Heater,
4...Insulating material, 8...Cooling fan, 9...Drive motor, 10...Vacuum seal, 11...Cooler, 1
2, 13... Gas flow furnace, 14... Ruzzle.

Claims (1)

【特許請求の範囲】[Claims] 1 真空炉内に導入された不活性ガスを冷却フア
ンで循環させることにより、加熱処理された処理
物を冷却するガス焼き入れ方法において、加熱完
了時に最大限の冷却能力を発揮させるように、駆
動軸が真空シールされた冷却フアンを加熱完了前
に駆動するとともに加熱完了と同時に不活性ガス
を真空炉内に導入することを特徴とする焼入れ冷
却方法。
1 In the gas quenching method, which cools the heat-treated product by circulating an inert gas introduced into the vacuum furnace with a cooling fan, the drive is A quenching cooling method characterized by driving a cooling fan whose shaft is vacuum-sealed before heating is completed, and introducing an inert gas into a vacuum furnace at the same time as heating is completed.
JP18110084A 1984-08-29 1984-08-29 Cooling method for hardening Granted JPS6160819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18110084A JPS6160819A (en) 1984-08-29 1984-08-29 Cooling method for hardening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18110084A JPS6160819A (en) 1984-08-29 1984-08-29 Cooling method for hardening

Publications (2)

Publication Number Publication Date
JPS6160819A JPS6160819A (en) 1986-03-28
JPH0542482B2 true JPH0542482B2 (en) 1993-06-28

Family

ID=16094835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18110084A Granted JPS6160819A (en) 1984-08-29 1984-08-29 Cooling method for hardening

Country Status (1)

Country Link
JP (1) JPS6160819A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194752U (en) * 1986-05-31 1987-12-11
FR2651307B1 (en) * 1989-08-29 1993-12-17 Traitement Sous Vide HEAT TREATMENT OVEN EQUIPPED WITH IMPROVED COOLING MEANS.
US6352430B1 (en) 1998-10-23 2002-03-05 Goodrich Corporation Method and apparatus for cooling a CVI/CVD furnace
EP1063319B1 (en) * 1999-06-04 2005-12-07 Goodrich Corporation Method and apparatus for cooling a CVI/CVD furnace
DE59903032D1 (en) * 1999-09-24 2002-11-14 Ipsen Int Gmbh Process for the heat treatment of metallic workpieces
JP5116074B2 (en) * 2006-11-21 2013-01-09 株式会社アルバック Inert gas oven
KR100722859B1 (en) 2006-12-22 2007-05-30 김철영 Vacuum furnace
JP5407281B2 (en) * 2008-11-04 2014-02-05 トヨタ自動車株式会社 Heat treatment method
DE102009000200B3 (en) * 2009-01-14 2010-09-02 Robert Bosch Gmbh Quenching device and quenching method
CN110421162B (en) * 2019-08-02 2021-05-04 金华中烨超硬材料有限公司 Preparation process of mixed-granularity polycrystalline diamond compact

Also Published As

Publication number Publication date
JPS6160819A (en) 1986-03-28

Similar Documents

Publication Publication Date Title
JPH0542482B2 (en)
US4869470A (en) Vacuum furnace for heat treatment of metallic workpieces
US5630322A (en) Process and apparatus for heat treatment of workpieces by quenching with gases
JP5178975B2 (en) Heat treatment method for metal workpieces
JP2000017305A (en) Degreasing sintering furnace
DE59202520D1 (en) Vacuum furnace for plasma carburizing metallic workpieces.
JP2750747B2 (en) Continuous vacuum brazing furnace
JPS6342111Y2 (en)
US4183773A (en) Continuous annealing process for strip coils
JP2012515262A (en) Quenching apparatus and quenching method
JP2859704B2 (en) Vacuum heat treatment furnace
JPH10183236A (en) Vacuum heat treatment furnace
US4146567A (en) Zone melting apparatus having resiliently biased cooling means
JPH05302113A (en) Closed circulating type gas quenching device and gas quenching method
JP2725008B2 (en) Vacuum heat treatment furnace
JP2010111893A (en) Heat-treating method
KR20010036663A (en) Water Cooling Structure of Electric Motors provided with Solenoid pipes
JPH10212530A (en) Method for sealing base fan motor part of bell type annealing furnace
JPS61243115A (en) Vacuum heat treatment device
JPH05148650A (en) Thin film treating device
JP3310997B2 (en) Continuous processing equipment
CN215144050U (en) Thermoforming apparatus
JP2000087136A (en) Method for gas-cooling steel parts and device therefor
JPH0792348B2 (en) High temperature vacuum heating furnace and cooling method thereof
JPH03188213A (en) Heat treatment furnace

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term