JPH0542478B2 - - Google Patents
Info
- Publication number
- JPH0542478B2 JPH0542478B2 JP60023224A JP2322485A JPH0542478B2 JP H0542478 B2 JPH0542478 B2 JP H0542478B2 JP 60023224 A JP60023224 A JP 60023224A JP 2322485 A JP2322485 A JP 2322485A JP H0542478 B2 JPH0542478 B2 JP H0542478B2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- temperature
- cooling water
- oil
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000197 pyrolysis Methods 0.000 claims description 39
- 239000000498 cooling water Substances 0.000 claims description 26
- 239000007788 liquid Substances 0.000 claims description 25
- 239000004215 Carbon black (E152) Substances 0.000 claims description 24
- 229930195733 hydrocarbon Natural products 0.000 claims description 24
- 150000002430 hydrocarbons Chemical class 0.000 claims description 24
- 230000001105 regulatory effect Effects 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 5
- 238000000926 separation method Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000003672 processing method Methods 0.000 claims 1
- 239000000047 product Substances 0.000 description 57
- 239000003921 oil Substances 0.000 description 50
- 238000005979 thermal decomposition reaction Methods 0.000 description 24
- 229910052739 hydrogen Inorganic materials 0.000 description 19
- 239000001257 hydrogen Substances 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- 238000004821 distillation Methods 0.000 description 11
- 238000001816 cooling Methods 0.000 description 7
- 150000002431 hydrogen Chemical class 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 6
- 230000005484 gravity Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000000571 coke Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
〔技術分野〕
本発明は、重質炭化水素油熱分解生成物の処理
方法に関するものである。
〔従来技術〕
従来、重質炭化水素油から軽質化油を得るため
に、重質炭化水素油を水素の存在下又は不存在下
で高温に加熱し、分解軽質化する方法は知られて
いる。
ところで、このような重質炭化水素油の熱分解
において、得られる熱分解生成物は、高温であ
り、コークを発生しやすいものであることから、
その処理には困難が伴い、従来の方法によれば、
例えば、第5図に示すような水素の存在下での処
理方法が採用されている。即ち、第5図から理解
されるように、従来の方法では、ライン56から
導入された重質炭化水素油は、ライン57を通つ
てくる循環水素(ライン64)と補給水素(ライ
ン58)との混合物の形で加熱炉50において熱
分解されるが、この加熱炉50で得られる高温の
熱分解生成物は、混合器51に導入され、ここで
ライン83を通つてくる低温の熱分解生成油と混
合されて急冷される。そして、この急冷生成物
は、気液分離器52に導入され、ここで液体成分
は気体成分から分離され、ライン65を通つて蒸
留塔53に送られて蒸留処理され、一方、気体成
分は、ライン62を通つて凝縮器54に送られ、
ここで気体成分中の炭素数5以上の炭化水素成分
が凝縮され、ライン86から抜出され、塔留塔5
3に送られ、一方、水素及び炭素数1〜4の炭化
水素成分はライン63を通つて抜出され、コンプ
レツサー55を通り、ライン58からの補充水素
と共にライン56を通る重質炭化水素油と混合さ
れる。蒸留塔53においては、塔頂から得られる
留出油の一部はライン74、バルブ75、ライン
76、ライン84及びポンプ85を通つて前記熱
分解生成物急冷用の混合器51に循環され、また
塔底油の一部も、ライン81、バルブ82、ライ
ン83及びポンプ85を通つて同様に混合器51
に循環される。なお、第5図において、符号6
7,78は冷却器、69は槽、71はポンプを各
示す。
前記従来の熱分解生成物の処理法から明らかな
ように、従来の場合は、加熱炉50からの熱分解
生成物は、混合器51において、蒸留塔53から
得られる低温の塔頂留出油の一部及び塔底油の一
部と混合されて急冷されているため、混合器51
から得られる急冷生成物は、その急冷用に用いた
添加熱分解生成油の分だけその容積を増加し、従
つて、その後続の工程で用いる気液分離器52及
び蒸留塔53等の装置系は大型のものとなり、装
置効率が悪いという問題があり、さらに熱回収に
より得られる水蒸気は中低圧のものとならざるを
得ず、回収効率及び経済効果も不充分なものとい
わざるを得なかつた。
〔目的〕
本発明は、従来法に見られる前記問題の解消さ
れた重質炭化水素油熱分解生成物の処理方法を提
供することを目的とする。
〔構成〕
本発明によれば、重質炭化水素油を熱分解して
得られる温度420〜520℃の液状油を主成分とする
熱分解生成物を処理するに際し、
(i) 該熱分解生成物を気液分離することなく、気
液混合物の形で冷却用水と間接的に熱交換させ
て急冷させると共に、高圧高温スチームを発生
させる間接熱交換工程、
(ii) 該間接熱交換工程から得られた液状熱分解生
成油を蒸留処理する工程、
からなり、該間接熱交換工程を、外管と該外管内
に挿入された2重管とからなる3重管構造の間接
熱交換装置を用い、該2重管の内管に冷却用水及
び外管と2重管との間の間隙部に重質炭化水素油
熱分解生成物をそれぞれ導入し、2重管の内管に
導入した冷却用水を2重管の外管より高圧高温ス
チームとして導出させるように行うとともに、得
られた高温高圧スチームを、高温高圧下に保持さ
れ、内部に冷却用水を収容する圧力調節容器に導
き、その容器内の冷却用水中に混入させることを
特徴とする重質炭化水素油熱分解生成物の処理方
法が提供される。
本発明における原料油としては、従来、軽質化
用原料が用いられている各種の重質炭化水素油が
用いられ、このようなものとしては、例えば、常
圧常留残渣油、減圧蒸留残渣油等の各種残渣油の
他、脱アスフアルト油、石炭液化油等が挙げられ
る。
本発明において、前記原料油は、加熱炉におい
て熱分解処理される。この場合、加熱炉として
は、従来公知の各種のものが採用されるが、一般
には、管状型加熱炉が採用される。また、この管
状型加熱炉には、管状型又はベツセル型等の各種
のソーカーを組合せることができる。重質炭化水
素油の熱分解は、水素の存在下又は不存在下で実
施される。
本発明によれば、重質炭化水素油の熱分解処理
によつて得られる気液混相からなる熱分解生成物
は、まず、気液分離することなく、冷却用水との
間で間接熱交換されると共に、冷却用水はその際
の加熱により高圧高温のスチームに変換される。
次に、この間接熱交換により急冷された熱分解生
成物は、気液分離処理された後(水素の存在下で
ないときは、必ずしも気液分離処理の必要はな
い)蒸留処理工程へ送られ、蒸留処理される。
本発明においては、前記したように、熱分解生
成物は冷却用水との間で間接熱交換されるが、こ
の場合、間接熱交換装置としては、外管と、その
外管内に挿入された2重管とからなる3重管構造
の管状型熱交換器が用いられる。このような管状
型熱交換器においては、外管と2重管との間に形
成される間隙部に熱分解生成物が導入され、2重
管の内管に冷却用水が導入され、そして2重管の
内管に導入された冷却用水は、2重管の外管から
高圧高温のスチームとして排出される。
第1図及び第2図に本発明で用いる前記間接熱
交換装置の断面説明図を示す。
第1図は、2つの管状型熱交換器A,Bがその
下端部において連結されたものを示す。この図に
おいて、1は外管を示し、2はその外管内に挿入
された2重管で、内管3と外管4とから構成され
る。一方の熱交換器Aの外管1は、その上部に熱
分解生成物導入管5を有し、他方の熱交換器Bの
外管1は、その上部に熱分解生成物排出管6を有
し、各外管1の上端はいずれもフランジ7により
封止され、各外管1の下端はU字状の連結管8に
より連結されている。
2重管2は、下端が封止された外管4内に、下
端が開口した内管3を挿入し、外管4の上端を内
管3との間で封止した構造を有するもので、2重
管2の上部は外管1の上方に伸びている。また、
各2重管2はその上部にスチーム排出管9が付設
され、各2重管の内管3の上端は、中間に冷却用
水導入口10を有する冷却用水分配管11の各端
部にそれぞれ連結されている。
このような熱交換器においては、熱分解生成物
は、一方の熱交換器Aの外管1の導入管5より導
入され、他方の熱交換器Bの外管1は排出管6よ
り排出される。また、冷却用水は、分配管11の
導入口10より導入され、各2重管2の内管3内
を流下し、そして2重管2の外管4内を上方に流
れるが、その間に、冷却用水は、外管1を流通す
る高温の熱分解生成物との間で間接熱交換を行
い、高圧高温のスチームとなり、2重管2の外管
4の上部に付設された排出管9から排出される。
一方、熱分解生成物は、この熱交換により、急冷
され、その急冷熱分解生成物は、熱交換器Bの外
管1の排出管6より排出される。
第2図に示した熱交換装置は、第1図に示した
ものと構造的に類似するものであるが、各外管1
はその上部で連結管20で連結され、各外管1の
下端部に熱分解生成物導入管21及び熱分解生成
物排出管22を有するものである。
前記した間接熱交換装置は種々変更が可能であ
り、例えば、2重管2の外管4の外表面には、フ
インを付設して、伝熱効率を高めることができる
し、外管1内に複数個の2重管を挿入することが
できるし、また第1図又は第2図で示した間接熱
交換装置を2つ又はそれ以上組合せることもでき
る。
本発明者らの研究によれば、前記のような間接
熱交換装置を用いる場合には、熱分解生成物を効
率的に冷却し得る上、従来のように低温の熱分解
生成油を熱分解生成物に直接混合して冷却するも
のでないことから、冷却処理によつて被処理物の
体積増加を生じず、従つて、従来法に比べて装置
効率は著しく向上される。しかも、このような間
接熱交換によれば、副生物として高圧高温のスチ
ームを回収し得るので、省エネルギーの観点から
も極めて有利である。
本発明により熱分解生成物を前記したような間
接熱交換装置を用いて冷却する場合、間接熱交換
装置から排出される熱分解生成物の温度は、後続
の処理に適合する範囲の温度であり、440℃以下、
通常380〜420℃の範囲の温度に設定される。即
ち、熱分解炉から得られる熱分解生成物は、一般
に450〜500℃という高温で、コークを発生しやす
く、取扱いの困難なものであるが、このような高
温の熱分解生成物は、前記間接熱交換装置によ
り、360〜440℃、好ましくは380〜420℃の温度に
冷却される。本発明で用いる間接熱交換装置の場
合、熱分解生成物の冷却速度は、2重管2の内管
に導入する冷却用水の温度及び流速により制御し
得るので、短い滞留時間でも、熱分解生成物を所
要温度まで急速に冷却することが可能である。ま
た、本発明では、熱分解生成物は、気液分離処理
されることなく、気液混合物の形で、冷却用水と
の間で間接熱交換されることから、その間接熱交
換に際しての伝熱は非常に良好である。また、間
接熱交換装置において、その運転圧力は格別の制
限は不要だが、熱分解を水素の存在下で行うとき
には、80気圧以上、通常100〜200気圧であり、ま
た、間接熱交換装置から排出されるスチームも同
様の高圧のものである。
次に本発明において、熱分解を水素の存在下で
行う場合の方法を第3図〜第4図のフローシート
によりさらに詳細に説明する。
第3図において50は加熱炉、26は圧力調節
容器、27及び28はそれぞれ第1図に示した1
対の熱交換器A,Bからなる間接熱交換装置を示
す。
原料油としての重質炭化水素油はライン56及
び59を通つて加熱炉50に導入されるが、熱分
解を水素の存在下で行う場合、その導入に先立
ち、ライン64からの循環水素及びライン58ら
の補充水素と混合され、水素との混合物の形で加
熱炉50に導入される。この加熱炉50の条件と
しては、一般的に、温度420〜520℃、好ましくは
440〜500℃、圧力1〜250Kg/cm2G、好ましくは
5〜200Kg/cm2Gである。重質炭化水素油の熱分
解を水素の存在下で行う場合、その水素分圧は30
〜250Kg/cm2G、好ましくは100〜200Kg/cm2Gで
ある。
冷却用水はライン30を通り、加熱炉50の煙
道部内に配設された加熱コイル31に入り、ここ
で予熱された後、ライン34を通り、圧力調節容
器26に導入される。
加熱炉50で得られた気液混合物からなる熱分
解生成物は、ライン32及びライン33によつて
抜出され、それぞれ、間接熱交換装置27及び2
8に導入される。また、これらの間接熱交換装置
に対しては、圧力調節容器26からの冷却用水が
それぞれライン37及びライン38を経由して導
入され、これらの間接熱交換装置において、冷却
用水と熱分解生成物との間で間接熱交換が行わ
れ、熱分解生成物は所要の温度まで冷却されると
共に、冷却用水は高圧高温スチームに変換され
る。
前記間接熱交換装置27及び28で得られた高
圧高温スチームは、それぞれライン35及び36
を通つて圧力調節容器26に導入される。ここで
発生した高圧高温スチームはライン44を通つて
抜出される。この圧力調節容器26は、一般的に
は、約300℃、100気圧で運転される。
間接熱交換装置27及び28で冷却された熱分
解生成物は、それぞれライン41及び42により
抜出され、ライン43を経由して、第4図に示す
気液分離器52に導入される。なお、第4図に示
した符号において、第5図に示したものと同一符
号は同一の意味を有する。
次に、第4図を参照して説明すると、ライン4
3を通つて気液分離器52(水素の存在下でない
ときは、必らずしも必要とされない)に導入され
た熱分解生成物は、ここで気液分離され、気体成
分はライン62を通つて凝縮器54に導かれ、こ
こで気体成分中の高沸点分、通常、炭素数5以上
の炭化水素成分が凝縮され、凝縮物はライン86
を通つて抜出され、蒸留塔53に送られる。一
方、水素を含む低沸点の炭化水素ガスは、コンプ
レツサー55で昇圧された後、ライン64を通つ
て、第3図に示す加熱炉50に循環される。
気液分離器52で得られた液体成分(熱分解生
成油)は、ライン65を通つて蒸留塔53に導入
され、ここでナフサ、ガスオイル、減圧ガスオイ
ル、減圧残油に分けられ、ナフサはライン73、
ガスオイルはライン82、減圧ガスオイルはライ
ン81、減圧残油はライン80を通つて抜出され
る。
〔効果〕
本発明は前記の構成であり、熱分解生成物の冷
却に特別の間接熱交換方式を採用したことから、
第5図に示した従来の低温の熱分解生成油を直接
熱分解生成物に混合する冷却方式に比べて、気液
分離器52、蒸留塔53、凝縮器54等の装置系
に導入される液体流量は著しく減少されたもので
あり、従つて、本発明の場合は、装置系を著しく
小型化することが可能になる。その上、本発明の
場合は、特別の3重管構造の間接熱交換装置を用
いたことから、熱交換に際してのコーク発生を著
しく抑制し得ると共に、冷却媒体として用いた水
は、高圧高温のスチームとして回収され、エネル
ギー源として種々の目的に利用することができ
る。
〔実施例〕
次に本発明を実施例によりさらに詳細に説明す
る。
実施例
第3図及び第4図で示したフローシートに従つ
て重質炭化水素油を熱分解処理し、次いで得られ
た熱分解生成物を処理した。この場合の原料油及
び生成油の性状、及び処理条件を、第3図及び第
4図に示したフローシートとの関連において示
す。
(1) 原料油(常留残渣油)
比重(d15/4℃) :1.04
粘度(100℃)(cp) :8800
n−ヘプタン不溶分(wt%) :12.6
(2) ライン56(原料油)
流量(Kg/hr) :100
温度(℃) :300
圧力(Kg/cm2G) :180
(3) 熱分解条件
温度(℃) :480
圧力(Kg/cm2G) :160
液滞留時間(分) :20
水素供給速度(Nl/l) :500
(4) 圧力調節器26
圧力(Kg/cm2G) :100
温度(℃) :310
(5) ライン44(スチーム)
流量(Kg/hr) :13
温度(℃) :310
圧力(Kg/cm2G) :100
(6) ライン30(冷却用水)
流量(Kg/hr) :13
温度(℃) :110
(7) ライン32又は33(熱分解生成物)
流量(Kg/hr) :55.9
温度(℃) :480
圧力(Kg/cm2G) :160
(8) ライン37又は38(冷却用水)
流量(Kg/hr) :33
温度(℃) :310
圧力(Kg/cm2G) :100
(9) ライン35又は36(高圧高温スチーム)
流量(Kg/hr) :33
温度(Kg/cm2G) :310
圧力(Kg/cm2G) :100
(10) ライン43(冷却熱分解生成物)
流量(Kg/hr) :111.8
温度(℃) :400
圧力(Kg/cm2G) :160
(11) ライン63(ガス成分)
流量(Kg/hr) :11.8
(12) ライン80(減圧残油)
流量(Kg/hr) :65.1
比重(d15/4℃) :1.08
(13) ライン81(減圧ガスオイル)
流量(Kg/hr) :20.7
比重(d15/4℃) :0.95
(14) ライン82(ガスオイル)
流量(Kg/hr) :8.6
比重(d15/4℃) :0.84
(15) ライン73(ナフサ)
流量(Kg/hr) :3.7
比重(d15/4℃) :0.77
[Technical Field] The present invention relates to a method for treating heavy hydrocarbon oil thermal decomposition products. [Prior Art] Conventionally, in order to obtain light oil from heavy hydrocarbon oil, a method is known in which heavy hydrocarbon oil is heated to a high temperature in the presence or absence of hydrogen to decompose and lighten the oil. . By the way, in the thermal decomposition of such heavy hydrocarbon oil, the thermal decomposition products obtained are high temperature and tend to generate coke.
Its processing is difficult, and according to traditional methods,
For example, a treatment method in the presence of hydrogen as shown in FIG. 5 has been adopted. That is, as can be understood from FIG. 5, in the conventional method, heavy hydrocarbon oil introduced from line 56 is divided into circulating hydrogen (line 64) and make-up hydrogen (line 58) passing through line 57. The high temperature pyrolysis products obtained in the furnace 50 are introduced into the mixer 51 where they are mixed with the low temperature pyrolysis products coming through line 83. It is mixed with oil and quenched. The quenched product is then introduced into a gas-liquid separator 52, where the liquid component is separated from the gas component and sent through line 65 to the distillation column 53 for distillation treatment, while the gas component is through line 62 to condenser 54;
Here, hydrocarbon components having 5 or more carbon atoms in the gaseous components are condensed and extracted from the line 86, and are removed from the distillation column 5.
3, while the hydrogen and C1-C4 hydrocarbon components are withdrawn through line 63, passed through compressor 55, and combined with heavy hydrocarbon oil through line 56 with make-up hydrogen from line 58. mixed. In the distillation column 53, a part of the distillate obtained from the top of the column is circulated through a line 74, a valve 75, a line 76, a line 84 and a pump 85 to the mixer 51 for quenching the thermal decomposition product, A portion of the bottom oil also passes through line 81, valve 82, line 83 and pump 85 to mixer 51.
is circulated. In addition, in FIG. 5, the reference numeral 6
7 and 78 are coolers, 69 is a tank, and 71 is a pump. As is clear from the conventional method for treating pyrolysis products, in the conventional case, the pyrolysis products from the heating furnace 50 are passed through the mixer 51 to the low-temperature overhead distillate obtained from the distillation column 53. and part of the bottom oil and are rapidly cooled, the mixer 51
The volume of the quenched product obtained is increased by the added pyrolysis product oil used for quenching, and therefore the volume of the quenched product is increased by the amount of added pyrolysis product oil used for the quenching, and therefore the volume of the quenched product is increased by the amount of the added pyrolysis product oil used for the quenching. The problem is that the equipment is large in size and has low efficiency.Furthermore, the steam obtained by heat recovery has to be of medium and low pressure, so the recovery efficiency and economic effect are insufficient. Ta. [Objective] An object of the present invention is to provide a method for treating a heavy hydrocarbon oil thermal decomposition product, which eliminates the above-mentioned problems found in conventional methods. [Structure] According to the present invention, when treating a pyrolysis product whose main component is a liquid oil at a temperature of 420 to 520°C obtained by pyrolyzing heavy hydrocarbon oil, (i) the pyrolysis product an indirect heat exchange process in which the product is quenched by indirect heat exchange with cooling water in the form of a gas-liquid mixture without separating it into gas and liquid, and generates high-pressure and high-temperature steam; (ii) the product obtained from the indirect heat exchange process; The indirect heat exchange step is performed using an indirect heat exchange device having a triple tube structure consisting of an outer tube and a double tube inserted into the outer tube. , cooling water is introduced into the inner pipe of the double pipe, and a heavy hydrocarbon oil thermal decomposition product is introduced into the gap between the outer pipe and the double pipe, and the cooling water is introduced into the inner pipe of the double pipe. The high-temperature, high-pressure steam is led out as high-pressure, high-temperature steam from the outer tube of the double tube, and the resulting high-temperature, high-pressure steam is guided into a pressure regulating container that is maintained at high temperature and high pressure and contains cooling water inside, and the steam is introduced into the container. A method for treating a heavy hydrocarbon oil thermal decomposition product is provided, which comprises mixing the heavy hydrocarbon oil pyrolysis product into cooling water. As the raw material oil in the present invention, various heavy hydrocarbon oils for which lightening raw materials are conventionally used are used, such as normal pressure residual oil, vacuum distillation residual oil, etc. In addition to various residual oils such as, deasphalted oil, coal liquefied oil, etc. In the present invention, the raw material oil is thermally decomposed in a heating furnace. In this case, various conventionally known heating furnaces may be employed, but generally a tubular heating furnace is employed. Further, various types of soakers such as a tubular type or a Bessel type can be combined with this tubular type heating furnace. Thermal cracking of heavy hydrocarbon oils is carried out in the presence or absence of hydrogen. According to the present invention, a thermal decomposition product consisting of a gas-liquid mixed phase obtained by thermal decomposition treatment of heavy hydrocarbon oil is first subjected to indirect heat exchange with cooling water without gas-liquid separation. At the same time, the cooling water is converted into high-pressure, high-temperature steam by heating at that time.
Next, the thermal decomposition product quenched by this indirect heat exchange is subjected to gas-liquid separation treatment (if not in the presence of hydrogen, gas-liquid separation treatment is not necessarily necessary) and sent to a distillation treatment step, Distilled. In the present invention, as described above, the pyrolysis product is indirectly heat exchanged with the cooling water. In this case, the indirect heat exchange device includes an outer tube and a tube inserted into the outer tube. A tubular heat exchanger with a triple tube structure consisting of double tubes is used. In such a tubular heat exchanger, thermal decomposition products are introduced into the gap formed between the outer tube and the double tube, cooling water is introduced into the inner tube of the double tube, and the The cooling water introduced into the inner pipe of the double pipe is discharged as high-pressure and high-temperature steam from the outer pipe of the double pipe. FIGS. 1 and 2 are cross-sectional explanatory views of the indirect heat exchange device used in the present invention. FIG. 1 shows two tubular heat exchangers A and B connected at their lower ends. In this figure, 1 indicates an outer tube, and 2 is a double tube inserted into the outer tube, which is composed of an inner tube 3 and an outer tube 4. The outer tube 1 of one heat exchanger A has a pyrolysis product introduction tube 5 in its upper part, and the outer tube 1 of the other heat exchanger B has a pyrolysis product discharge tube 6 in its upper part. However, the upper end of each outer tube 1 is sealed by a flange 7, and the lower end of each outer tube 1 is connected by a U-shaped connecting tube 8. The double tube 2 has a structure in which an inner tube 3 with an open lower end is inserted into an outer tube 4 whose lower end is sealed, and the upper end of the outer tube 4 is sealed with the inner tube 3. , the upper part of the double tube 2 extends above the outer tube 1. Also,
Each double pipe 2 has a steam discharge pipe 9 attached to its upper part, and the upper end of the inner pipe 3 of each double pipe is connected to each end of a cooling moisture pipe 11 having a cooling water inlet 10 in the middle. has been done. In such a heat exchanger, thermal decomposition products are introduced through the inlet pipe 5 of the outer tube 1 of one heat exchanger A, and are discharged from the outer tube 1 of the other heat exchanger B through the discharge tube 6. Ru. In addition, the cooling water is introduced from the inlet 10 of the distribution pipe 11, flows down inside the inner pipe 3 of each double pipe 2, and flows upward inside the outer pipe 4 of the double pipe 2, but in the meantime, The cooling water undergoes indirect heat exchange with the high-temperature pyrolysis products flowing through the outer tube 1 and becomes high-pressure and high-temperature steam, which is then discharged from the discharge pipe 9 attached to the upper part of the outer tube 4 of the double tube 2. be discharged.
On the other hand, the pyrolysis products are rapidly cooled by this heat exchange, and the quenched pyrolysis products are discharged from the discharge pipe 6 of the outer tube 1 of the heat exchanger B. The heat exchange device shown in FIG. 2 is structurally similar to that shown in FIG.
are connected to each other by a connecting pipe 20 at the upper part thereof, and have a pyrolysis product introduction pipe 21 and a pyrolysis product discharge pipe 22 at the lower end of each outer pipe 1. The indirect heat exchange device described above can be modified in various ways. For example, fins can be attached to the outer surface of the outer tube 4 of the double tube 2 to increase the heat transfer efficiency, and fins can be added to the outer surface of the outer tube 4 of the double tube 2. A plurality of double tubes can be inserted, and two or more indirect heat exchange devices shown in FIG. 1 or 2 can be combined. According to the research conducted by the present inventors, when using the above-mentioned indirect heat exchange device, it is possible to efficiently cool the thermal decomposition products, and it is possible to thermally decompose the low-temperature thermal decomposition product oil unlike the conventional method. Since the cooling process is not directly mixed with the product and cooled, the volume of the processed material does not increase due to the cooling process, and therefore, the efficiency of the apparatus is significantly improved compared to conventional methods. In addition, such indirect heat exchange allows high-pressure, high-temperature steam to be recovered as a by-product, which is extremely advantageous from the standpoint of energy conservation. When the pyrolysis products are cooled using an indirect heat exchange device as described above according to the present invention, the temperature of the pyrolysis products discharged from the indirect heat exchange device is within a temperature range compatible with subsequent processing. , below 440℃,
The temperature is usually set in the range of 380-420°C. That is, the pyrolysis products obtained from the pyrolysis furnace are generally at a high temperature of 450 to 500°C, easily generate coke, and are difficult to handle. It is cooled to a temperature of 360-440°C, preferably 380-420°C by an indirect heat exchanger. In the case of the indirect heat exchange device used in the present invention, the cooling rate of the pyrolysis products can be controlled by the temperature and flow rate of the cooling water introduced into the inner tube of the double tube 2, so even if the residence time is short, the pyrolysis products can be It is possible to rapidly cool objects to the required temperature. In addition, in the present invention, the thermal decomposition products are indirectly heat exchanged with cooling water in the form of a gas-liquid mixture without being subjected to gas-liquid separation treatment, so that the heat transfer during the indirect heat exchange is is very good. In addition, there is no need for special restrictions on the operating pressure of indirect heat exchange equipment, but when pyrolysis is carried out in the presence of hydrogen, the operating pressure must be 80 atm or higher, usually 100 to 200 atm, and the operating pressure must be discharged from the indirect heat exchange equipment. The steam used is also of similar high pressure. Next, in the present invention, a method in which thermal decomposition is carried out in the presence of hydrogen will be explained in more detail with reference to flow sheets shown in FIGS. 3 and 4. In FIG. 3, 50 is a heating furnace, 26 is a pressure regulating vessel, and 27 and 28 are each shown in FIG.
An indirect heat exchange device consisting of a pair of heat exchangers A and B is shown. Heavy hydrocarbon oil as a feedstock is introduced into the heating furnace 50 through lines 56 and 59, but when pyrolysis is carried out in the presence of hydrogen, prior to its introduction, circulating hydrogen from line 64 and 58 and other supplementary hydrogen, and introduced into the heating furnace 50 in the form of a mixture with hydrogen. The conditions for this heating furnace 50 are generally a temperature of 420 to 520°C, preferably
The temperature is 440 to 500°C and the pressure is 1 to 250 kg/cm 2 G, preferably 5 to 200 kg/cm 2 G. When pyrolysis of heavy hydrocarbon oil is carried out in the presence of hydrogen, the hydrogen partial pressure is 30
-250Kg/ cm2G , preferably 100-200Kg/ cm2G . The cooling water passes through a line 30 and enters a heating coil 31 disposed in the flue section of the heating furnace 50, where it is preheated, and then passes through a line 34 and is introduced into the pressure regulating vessel 26. The thermal decomposition products consisting of a gas-liquid mixture obtained in the heating furnace 50 are extracted through lines 32 and 33, and are transferred to indirect heat exchangers 27 and 2, respectively.
8 will be introduced. In addition, cooling water from the pressure regulating vessel 26 is introduced into these indirect heat exchange devices via lines 37 and 38, respectively, and in these indirect heat exchange devices, cooling water and thermal decomposition products are exchanged. An indirect heat exchange takes place between the pyrolysis products and the pyrolysis products to be cooled to the required temperature, and the cooling water is converted to high-pressure and high-temperature steam. The high pressure and high temperature steam obtained in the indirect heat exchangers 27 and 28 is passed through lines 35 and 36, respectively.
is introduced into the pressure regulating vessel 26 through the. The high pressure and high temperature steam generated here is extracted through line 44. This pressure regulating vessel 26 is generally operated at about 300° C. and 100 atmospheres. The thermal decomposition products cooled in the indirect heat exchangers 27 and 28 are extracted through lines 41 and 42, respectively, and introduced into a gas-liquid separator 52 shown in FIG. 4 via a line 43. Note that, in the symbols shown in FIG. 4, the same symbols as those shown in FIG. 5 have the same meanings. Next, referring to FIG. 4, line 4
The thermal decomposition products introduced through line 3 into a gas-liquid separator 52 (not necessarily required when not in the presence of hydrogen) are separated into gas and liquid here, and the gaseous components are passed through line 62. The high-boiling point components in the gaseous components, usually hydrocarbon components having 5 or more carbon atoms, are condensed through the condenser 54, and the condensate is passed through the line 86.
It is extracted through the distillation column 53 and sent to the distillation column 53. On the other hand, the low boiling point hydrocarbon gas containing hydrogen is pressurized by the compressor 55 and then circulated through the line 64 to the heating furnace 50 shown in FIG. 3. The liquid component (thermal decomposition product oil) obtained in the gas-liquid separator 52 is introduced into the distillation column 53 through a line 65, where it is separated into naphtha, gas oil, vacuum gas oil, and vacuum residual oil. is line 73,
Gas oil is discharged through line 82, vacuum gas oil is discharged through line 81, and vacuum residual oil is discharged through line 80. [Effects] The present invention has the above-mentioned configuration, and since a special indirect heat exchange method is adopted for cooling the thermal decomposition products,
Compared to the conventional cooling method shown in FIG. 5, in which low-temperature pyrolysis product oil is directly mixed with the pyrolysis product, it is introduced into equipment systems such as a gas-liquid separator 52, a distillation column 53, and a condenser 54. The liquid flow rate is significantly reduced, so that with the invention it is possible to significantly downsize the system. Furthermore, in the case of the present invention, since an indirect heat exchange device with a special triple-pipe structure is used, it is possible to significantly suppress the generation of coke during heat exchange, and the water used as a cooling medium is heated under high pressure and high temperature. It is recovered as steam and can be used as an energy source for various purposes. [Example] Next, the present invention will be explained in more detail with reference to Examples. Example A heavy hydrocarbon oil was thermally decomposed according to the flow sheet shown in FIGS. 3 and 4, and then the resulting thermal decomposition product was treated. The properties of the raw material oil and produced oil and the processing conditions in this case are shown in relation to the flow sheets shown in FIGS. 3 and 4. (1) Raw material oil (residual residual oil) Specific gravity (d15/4℃): 1.04 Viscosity (100℃) (cp): 8800 N-heptane insoluble content (wt%): 12.6 (2) Line 56 (raw oil) Flow rate (Kg/hr): 100 Temperature (℃): 300 Pressure (Kg/cm 2 G): 180 (3) Pyrolysis conditions Temperature (℃): 480 Pressure (Kg/cm 2 G): 160 Liquid residence time ( (min): 20 Hydrogen supply rate (Nl/l): 500 (4) Pressure regulator 26 Pressure (Kg/cm 2 G): 100 Temperature (°C): 310 (5) Line 44 (steam) Flow rate (Kg/hr) ) : 13 Temperature (℃) : 310 Pressure (Kg/cm 2 G) : 100 (6) Line 30 (cooling water) Flow rate (Kg/hr) : 13 Temperature (℃) : 110 (7) Line 32 or 33 ( Thermal decomposition products) Flow rate (Kg/hr): 55.9 Temperature (℃): 480 Pressure (Kg/ cm2G ): 160 (8) Line 37 or 38 (cooling water) Flow rate (Kg/hr): 33 Temperature ( ℃) : 310 Pressure (Kg/cm 2 G) : 100 (9) Line 35 or 36 (high pressure high temperature steam) Flow rate (Kg/hr) : 33 Temperature (Kg/cm 2 G) : 310 Pressure (Kg/cm 2 G): 100 (10) Line 43 (cooled pyrolysis products) Flow rate (Kg/hr): 111.8 Temperature (°C): 400 Pressure (Kg/cm 2 G): 160 (11) Line 63 (Gas components) Flow rate (Kg/hr): 11.8 (12) Line 80 (vacuum residual oil) Flow rate (Kg/hr): 65.1 Specific gravity (d15/4℃): 1.08 (13) Line 81 (vacuum gas oil) Flow rate (Kg/hr) :20.7 Specific gravity (d15/4℃) :0.95 (14) Line 82 (gas oil) Flow rate (Kg/hr) :8.6 Specific gravity (d15/4℃) :0.84 (15) Line 73 (naphtha) Flow rate (Kg/hr) ): 3.7 Specific gravity (d15/4℃): 0.77
第1図は本発明で用いる間接熱交換装置の1例
についての断面説明図、第2図はその一部変更例
についての断面説明図である。第3図及び第4図
は本発明法のフローシートを示し、第3図はその
前段及び第4図はその後段についてのものであ
る。第5図は従来法のフローシートを示す。
1……外管、2……2重管、5,6……熱分解
生成物導入又は排出管、7……フランジ、8,2
0……連結管、9……スチーム排出管、11……
冷却用水分配管、A,B……熱交換器、26……
圧力調節容器、50……加熱炉、52……気液分
離器、53……蒸留塔、54……凝縮器、55…
…コンプレツサー。
FIG. 1 is a cross-sectional explanatory view of one example of the indirect heat exchange device used in the present invention, and FIG. 2 is a cross-sectional explanatory view of a partially modified example thereof. FIGS. 3 and 4 show flow sheets of the method of the present invention, with FIG. 3 showing the previous stage and FIG. 4 showing the subsequent stage. FIG. 5 shows a flow sheet of the conventional method. 1... Outer pipe, 2... Double pipe, 5, 6... Pyrolysis product introduction or discharge pipe, 7... Flange, 8, 2
0... Connecting pipe, 9... Steam discharge pipe, 11...
Cooling moisture piping, A, B... Heat exchanger, 26...
Pressure adjustment vessel, 50... Heating furnace, 52... Gas-liquid separator, 53... Distillation column, 54... Condenser, 55...
...compressor.
Claims (1)
420〜520℃の液状油を主成分とする熱分解生成物
を処理するに際し、 (i) 該熱分解生成物を気液分離することなく、気
液混合物の形で冷却用水と間接的に熱交換させ
て急冷させると共に、高圧高温スチームを発生
させる間接熱交換工程、 (ii) 該間接熱交換工程から得られた液状熱分解生
成油を蒸留処理する工程、 からなり、該間接熱交換工程を、外管と該外管内
に挿入された2重管とからなる3重管構造の間接
熱交換装置を用い、該2重管の内管に冷却用水及
び外管と2重管との間の間隙部に重質炭化水素油
熱分解生成物をそれぞれ導入し、2重管の内管に
導入した冷却用水を2重管の外管より高圧高温ス
チームとして導出させるように行うとともに、得
られた高温高圧スチームを、高温高圧下に保持さ
れ、内部に冷却用水を収容する圧力調節容器に導
き、その容器内の冷却用水中に混入させることを
特徴とする重質炭化水素油熱分解生成物の処理方
法。[Claims] 1. Temperature obtained by thermally decomposing heavy hydrocarbon oil
When treating pyrolysis products whose main component is liquid oil at a temperature of 420 to 520°C, (i) the pyrolysis products are indirectly heated with cooling water in the form of a gas-liquid mixture without gas-liquid separation; (ii) a step of distilling the liquid pyrolysis product oil obtained from the indirect heat exchange step; , an indirect heat exchange device with a triple tube structure consisting of an outer tube and a double tube inserted into the outer tube is used, and cooling water is supplied to the inner tube of the double tube and water is supplied between the outer tube and the double tube. Heavy hydrocarbon oil pyrolysis products were respectively introduced into the gaps, and the cooling water introduced into the inner tube of the double tube was led out as high-pressure and high-temperature steam from the outer tube of the double tube. A heavy hydrocarbon oil pyrolysis product characterized in that high temperature, high pressure steam is guided into a pressure regulating vessel held under high temperature and high pressure and containing cooling water therein, and mixed into the cooling water in the vessel. Processing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2322485A JPS61183388A (en) | 1985-02-08 | 1985-02-08 | Treatment of thermal cracking product of heavy hydrocarbon oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2322485A JPS61183388A (en) | 1985-02-08 | 1985-02-08 | Treatment of thermal cracking product of heavy hydrocarbon oil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61183388A JPS61183388A (en) | 1986-08-16 |
JPH0542478B2 true JPH0542478B2 (en) | 1993-06-28 |
Family
ID=12104665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2322485A Granted JPS61183388A (en) | 1985-02-08 | 1985-02-08 | Treatment of thermal cracking product of heavy hydrocarbon oil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61183388A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52155457A (en) * | 1975-11-14 | 1977-12-23 | Schmidt Sche Heissdampf | Decomposed gas cooling heat exchanger |
JPS5350103A (en) * | 1976-10-20 | 1978-05-08 | Idemitsu Petrochemical Co | Apparatus for quenching thermal decomposition gas |
JPS5642956B2 (en) * | 1977-10-20 | 1981-10-08 | ||
JPS5740880B2 (en) * | 1977-02-15 | 1982-08-31 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5837934Y2 (en) * | 1979-09-07 | 1983-08-27 | 出光石油化学株式会社 | Hydrocarbon pyrolysis gas quenching equipment |
JPS5740880U (en) * | 1980-08-18 | 1982-03-05 | ||
JPS58168552U (en) * | 1982-05-07 | 1983-11-10 | 出光石油化学株式会社 | Double tube type pyrolysis gas quencher |
JPS58168551U (en) * | 1982-05-07 | 1983-11-10 | 出光石油化学株式会社 | Double tube type pyrolysis gas quencher |
-
1985
- 1985-02-08 JP JP2322485A patent/JPS61183388A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52155457A (en) * | 1975-11-14 | 1977-12-23 | Schmidt Sche Heissdampf | Decomposed gas cooling heat exchanger |
JPS5350103A (en) * | 1976-10-20 | 1978-05-08 | Idemitsu Petrochemical Co | Apparatus for quenching thermal decomposition gas |
JPS5740880B2 (en) * | 1977-02-15 | 1982-08-31 | ||
JPS5642956B2 (en) * | 1977-10-20 | 1981-10-08 |
Also Published As
Publication number | Publication date |
---|---|
JPS61183388A (en) | 1986-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5580443A (en) | Process for cracking low-quality feed stock and system used for said process | |
US7972482B2 (en) | Method for processing hydrocarbon pyrolysis effluent | |
US4279734A (en) | Quench Process | |
US4233137A (en) | Method of heat recovering from high temperature thermally cracked hydrocarbons | |
US4150716A (en) | Method of heat recovery from thermally decomposed high temperature hydrocarbon gas | |
US3647907A (en) | Process for quenching a gas obtained by thermal cracking of hydrocarbons | |
US3690839A (en) | Heat exchange apparatus | |
EP0031609B1 (en) | A process for recovering heat from the effluent of a hydrocarbon pyrolysis reactor | |
US2347805A (en) | Method of converting oil | |
JPS6396141A (en) | Manufacture of vinyl chloride by pyrolysis of 1,2-dichloroethane and apparatus therefor | |
US2093588A (en) | Process of cracking heavy hydrocarbon oils | |
US1956573A (en) | Production of low-boiling hydrocarbons by action of water | |
JPH0542478B2 (en) | ||
JPH0345050B2 (en) | ||
JPH0542479B2 (en) | ||
US1769698A (en) | Process for recovering natural gasoline | |
AU620056B2 (en) | Method for the hydrogenation of fluid carbon-containing applied substances | |
JPS5856598B2 (en) | How to treat hydrocarbon oil | |
US2046502A (en) | Process for the pyrolytic decomposition of hydrocarbons | |
US2049018A (en) | Cracking and apparatus | |
JPH0456873B2 (en) | ||
US1760357A (en) | Art of cracking hydrocarbon oils | |
US1640444A (en) | Process and apparatus for cracking hydrocarbon oils | |
US1934056A (en) | Art of and apparatus for converting hydrocarbons | |
US3347949A (en) | Heat recovery in thermal conversion process |