JPH0542479B2 - - Google Patents

Info

Publication number
JPH0542479B2
JPH0542479B2 JP60023225A JP2322585A JPH0542479B2 JP H0542479 B2 JPH0542479 B2 JP H0542479B2 JP 60023225 A JP60023225 A JP 60023225A JP 2322585 A JP2322585 A JP 2322585A JP H0542479 B2 JPH0542479 B2 JP H0542479B2
Authority
JP
Japan
Prior art keywords
pipe
cooling water
indirect heat
tube
pressure regulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60023225A
Other languages
Japanese (ja)
Other versions
JPS61183389A (en
Inventor
Kyoji Ozaki
Yoshihiko Shoji
Nobuhiko Asakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Chemical Engineering and Construction Co Ltd
Priority to JP2322585A priority Critical patent/JPS61183389A/en
Publication of JPS61183389A publication Critical patent/JPS61183389A/en
Publication of JPH0542479B2 publication Critical patent/JPH0542479B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、重圧蒸留残渣油、減圧蒸留残渣油、
石炭液化油等の重質炭化水素油の分解生成物を急
冷するための装置に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to heavy pressure distillation residue oil, vacuum distillation residue oil,
This invention relates to an apparatus for rapidly cooling decomposition products of heavy hydrocarbon oil such as coal liquefied oil.

〔従来技術〕[Prior art]

従来、重質炭化水素油から軽質化炭化水素油を
得るために、重質炭化水素油を水素の存在下又は
不存在下で加熱分解する方法は知られている。
BACKGROUND ART Conventionally, in order to obtain light hydrocarbon oil from heavy hydrocarbon oil, a method is known in which heavy hydrocarbon oil is thermally decomposed in the presence or absence of hydrogen.

ところで、このような重質炭化水素油の分解に
おいて、得られる分解生成物は高温であり、コー
クを発生しやすいものであることから、その急冷
処理には困難が伴い、従来は、低温の分解生成油
を直接高温の分解生成物に混合し、急冷する方法
が行われてきた。しかしながら、この場合には、
急冷生成物は、その急冷用に用いた添加分解生成
油の分だけその容積を増加し、従つて、その後続
の処理工程で用いる気液分離器や、蒸留塔等の装
置系は大型のものとなり、装置効率が悪く、ま
た、十分に高圧なスチームが回収出来ないという
問題があつた。また、高温の分解生成物を、従来
一般の間接熱交換器、例えば、多管式熱交換器、
あるいはナフサ、灯軽油等を原料とする分解プロ
セスで使用される各種の熱交換器で急冷しようと
すると、分解生成物中の重質成分の割合が多いた
め、コーク発生が著しいばかりでなく、また発生
したコークをデコーキングすることが著しく困難
である。
By the way, in the decomposition of such heavy hydrocarbon oils, the decomposition products obtained are at high temperatures and are likely to generate coke, so quenching them is difficult, and conventionally low-temperature decomposition A method has been used in which the produced oil is directly mixed with the high-temperature decomposition products and then rapidly cooled. However, in this case,
The volume of the quenched product increases by the amount of added cracked oil used for quenching, and therefore the equipment systems such as gas-liquid separators and distillation columns used in subsequent processing steps are large-sized. As a result, there was a problem that the efficiency of the equipment was poor and that steam at a sufficiently high pressure could not be recovered. In addition, high-temperature decomposition products can be transferred to conventional indirect heat exchangers, such as shell-and-tube heat exchangers,
Alternatively, when trying to rapidly cool naphtha, kerosene, etc. using various heat exchangers used in cracking processes, the high proportion of heavy components in the cracked products not only results in significant coke generation, but also It is extremely difficult to decoke generated coke.

〔目的〕〔the purpose〕

本発明は、重質炭化水素油分解生成物を間接熱
交換により効率よく急冷し、急冷処理におけるコ
ーク発生を著しく抑制すると共に、デコーキング
処理の容易な重質炭化水素油急冷装置を提供する
ことを目的とする。
The present invention provides a heavy hydrocarbon oil quenching device that efficiently quenches heavy hydrocarbon oil decomposition products by indirect heat exchange, significantly suppresses coke generation during quenching treatment, and facilitates decoking treatment. With the goal.

〔構成〕〔composition〕

本発明によれば、第1の発明として、2つの間
接熱交換器と1つの圧力調節器との組合せからな
り、該間接熱交換器は、両端開口する内管と、上
端が内管との間で封止され、下端封止され、上部
にスチーム排出口を有する中間管と、上端が中間
管のスチーム排出口より下方に位置し、中間管と
の間で封止され、下端開口し、かつ上部に開口を
有する外管とを同心円状に配設した3重管構造を
有し、該圧力調節容器は、冷却用水導入口、スチ
ーム導入口、スチーム排出口及び冷却用水排出口
を有し、また該2つの間接熱交換器の内管の各上
端開口部は中間に冷却用水導入口を有する分配管
の両端開口部にそれぞれ連結され、該2つの間接
熱交換器の外管の各下端開口部は連結管により連
結され、かつ該分配管の冷却用水導入口は連結管
により圧力調節容器の冷却水用排出口に連結さ
れ、該中間管のスチーム排出口は連結管により圧
力調節容器のスチーム導入口に連結され、該2つ
の熱交換器の外管の一方に設けた開口を重質炭化
水素油分解生成物導入口及び他方に設けた開口を
急冷重質炭化水素油分解生成物排出口としたこと
を特徴とする重質炭化水素油分解生成物の急冷装
置が提供され、また第2の発明として、2つの間
接熱交換器と1つの圧力調節容器との組合せから
なり、該間接熱交換器は、両端開口する内管と、
上端が内管との間で封止され、下端封止され、上
部にスチーム排出口を有する中間管と、上端が中
間管のスチーム排出口より下方に位置し、中間管
との間で封止され、下端開口し、かつ上部に開口
を有する外管とを同心円状に配設した3重管構造
を有し、該圧力調節容器は、冷却用水導入口、ス
チーム導入口、スチーム排出口及び冷却用水排出
口を有し、また該2つの間接熱交換器の内管の各
上端開口部は中間に冷却用水導入口を有する分配
管の両端開口部にそれぞれ連結され、該2つの間
接熱交換器の外管の各開口部は連結管により連結
され、かつ該分配管の冷却用水導入口は連結管に
より圧力調節容器の冷却用水排出口に連結され、
該中間管のスチーム排出口は連結管により圧力調
節容器のスチーム導入口に連結され、該2つの熱
交換器の外管の一方の下端開口部を重質炭化水素
油分解生成物導入口及び他方の下端開口部を急冷
重質炭化水素油分解生成物排出口としたことを特
徴とする重質炭化水素油分解生成物の急冷装置が
提供される。
According to the present invention, as a first invention, the indirect heat exchanger is composed of a combination of two indirect heat exchangers and one pressure regulator, and the indirect heat exchanger has an inner tube that is open at both ends and an inner tube that has an upper end. an intermediate tube whose upper end is located below the steam outlet of the intermediate tube, which is sealed between the intermediate tube and whose lower end is sealed and whose lower end is open; The pressure regulating vessel has a triple tube structure in which an outer tube having an opening at the top and an outer tube are arranged concentrically, and the pressure regulating vessel has a cooling water inlet, a steam inlet, a steam outlet, and a cooling water outlet. In addition, each upper end opening of the inner pipe of the two indirect heat exchangers is connected to both end openings of a distribution pipe having a cooling water inlet in the middle, and each lower end of the outer pipe of the two indirect heat exchangers The openings are connected by a connecting pipe, the cooling water inlet of the distribution pipe is connected to the cooling water outlet of the pressure regulating vessel by the connecting pipe, and the steam outlet of the intermediate pipe is connected to the cooling water outlet of the pressure regulating vessel by the connecting pipe. The opening provided on one of the outer tubes of the two heat exchangers is connected to the steam inlet, and the opening provided on the other side is connected to the quenching heavy hydrocarbon oil cracked product discharge port. A second invention provides a quenching device for heavy hydrocarbon oil cracking products, characterized in that the The heat exchanger has an inner tube that is open at both ends,
An intermediate tube whose upper end is sealed with the inner tube and whose lower end is sealed and has a steam outlet at the top, and whose upper end is located below the steam outlet of the intermediate tube and is sealed between the intermediate tube. The pressure regulating vessel has a triple tube structure in which an outer tube having an opening at the bottom and an outer tube having an opening at the top are arranged concentrically. Each upper end opening of the inner pipe of the two indirect heat exchangers is connected to both end openings of a distribution pipe having a cooling water inlet in the middle, and the two indirect heat exchangers have a water outlet. each opening of the outer pipe is connected by a connecting pipe, and the cooling water inlet of the distribution pipe is connected to the cooling water outlet of the pressure regulating vessel by the connecting pipe,
The steam outlet of the intermediate pipe is connected to the steam inlet of the pressure regulating vessel by a connecting pipe, and the lower end opening of one of the outer pipes of the two heat exchangers is connected to the heavy hydrocarbon oil decomposition product inlet and the other There is provided an apparatus for rapidly cooling heavy hydrocarbon oil decomposition products, characterized in that the lower end opening of the quenching heavy hydrocarbon oil decomposition products is used as a discharge port for the quenched heavy hydrocarbon oil decomposition products.

なお、本明細書においていう「分解生成物」と
は、熱分解又は接触分解によつて得られる生成物
を意味する。
Note that the term "decomposition product" as used herein means a product obtained by thermal decomposition or catalytic decomposition.

次に本発明を図面によりさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to the drawings.

第1図は、本発明で用いる間接熱交換器の断面
説明図を示すもので、2つの間接熱交換器A,B
がその下端部において連結されたものを示す。各
間接熱交換器A,Bは内管1と中間管2と外管3
とを同心円状に配設した3重管構造を有するもの
で、このような管は、外管1内に、あらかじめ形
成した内管1と中間管2とからなる2重管4を挿
入することによつて得ることができる。
FIG. 1 shows a cross-sectional view of the indirect heat exchanger used in the present invention, and shows two indirect heat exchangers A and B.
are connected at their lower ends. Each indirect heat exchanger A, B has an inner pipe 1, an intermediate pipe 2, and an outer pipe 3.
This type of tube has a triple tube structure in which the inner tube 1 and the intermediate tube 2 are arranged in a concentric manner. It can be obtained by

内管1は両端開口したものであり、その上端の
開口部は冷却用水導入口を形成する。中間管2
は、その上端は内管1との間で封止され、また、
下端も封止されたものであり、そして、上部には
スチーム排出口を有し、スチーム排出管5が付設
されている。従つて、内管1と中間管2とはその
下端部において流体的に連絡している。外管3
は、その上端は中間管2との間でフランジ6によ
り封止され、また下端開口するものであり、その
封止上端部は中間管のスチーム排出口5よりも下
方に位置している。そして、外管3の上部には、
開口を有し、分解生成物の導入管又は排出管7が
付設されている。
The inner tube 1 is open at both ends, and the opening at the upper end forms a cooling water inlet. intermediate tube 2
is sealed at its upper end with the inner tube 1, and
The lower end is also sealed, and the upper part has a steam discharge port and a steam discharge pipe 5 is attached thereto. The inner tube 1 and the intermediate tube 2 are therefore in fluid communication at their lower ends. Outer tube 3
The upper end is sealed with a flange 6 between the intermediate pipe 2 and the lower end is open, and the sealed upper end is located below the steam outlet 5 of the intermediate pipe. And at the top of the outer tube 3,
It has an opening and is provided with an inlet pipe or discharge pipe 7 for decomposition products.

本発明においては、前記した3重管構造の2つ
の熱交換器A,Bの各外管1の下端開口部は、連
結管8により連結されている。従つて、一方の間
接熱交換器Aの外管の開口に付設した導入管7か
ら導入した分解生成物は、他方の間接熱交換器B
の外管の開口に付設した排出管7より排出され
る。また、2つの間接熱交換器A,Bの内管1の
上端開口部は、中央に冷却用水導入口及び冷却用
水導入管9を有する分配管10の両端開口部に連
結され、冷却用水導入管9より導入された冷却用
水は、この分配管により2つの間接熱交換器A,
Bに分配される。
In the present invention, the lower end openings of each of the outer tubes 1 of the two heat exchangers A and B having the triple tube structure described above are connected by a connecting tube 8. Therefore, the decomposition products introduced from the introduction pipe 7 attached to the opening of the outer pipe of one indirect heat exchanger A are transferred to the other indirect heat exchanger B.
It is discharged from the discharge pipe 7 attached to the opening of the outer tube. Further, the upper end openings of the inner pipes 1 of the two indirect heat exchangers A and B are connected to the openings at both ends of a distribution pipe 10 having a cooling water inlet and a cooling water inlet pipe 9 in the center. The cooling water introduced from 9 is transferred to two indirect heat exchangers A and 9 through this distribution pipe.
distributed to B.

第2図は、基本的な構造では第1図のものと類
似する間接熱交換器の断面説明図を示すものであ
るが、この場合には、外管1の上部に開口を有
し、2つの間接熱交換器A,Bの開口部は、連結
管20によつて連結され、各外管3の下端は開口
し、導入管又は排出管21が付設されている。従
つて、この間接熱交換器A,Bの組合せでは、一
方の外管の下端開口部に設けた導入管21より導
入された分解生成物は、他方の外管下端開口部に
設けた排出管21より排出される。
FIG. 2 shows a cross-sectional explanatory diagram of an indirect heat exchanger similar in basic structure to that in FIG. The openings of the two indirect heat exchangers A and B are connected by a connecting pipe 20, the lower end of each outer pipe 3 is open, and an inlet pipe or discharge pipe 21 is attached. Therefore, in this combination of indirect heat exchangers A and B, the decomposition products introduced through the introduction pipe 21 provided at the lower end opening of one outer tube are removed from the decomposition products introduced through the discharge pipe provided at the lower end opening of the other outer tube. It is discharged from 21.

前記した間接熱交換器は種々変更が可能であ
り、例えば、中間管2の外表面には、フインを付
設して、伝熱効率を高めることができるし、また
第1図又は第2図で示した一対の間接熱交換器を
2つ又はそれ以上組合せることもできる。
The indirect heat exchanger described above can be modified in various ways. For example, fins can be added to the outer surface of the intermediate tube 2 to increase the heat transfer efficiency, and the indirect heat exchanger shown in FIGS. It is also possible to combine two or more pairs of indirect heat exchangers.

第3図は、本発明で用いる圧力調節容器Cの断
面説明図を示す。この圧力調節容器Cは、耐圧容
器25に、冷却用水導入口及び導入管26、スチ
ーム排出口及び排出管27、スチーム導入口及び
導入管29、及び冷却用水排出口及び排出管28
を有する。この圧力調節容器C内においては、導
入管26から導入された冷却用水と、スチーム導
入管29から導入されたスチームとが混合されて
両者の間で直接熱交換が行われ、この直接熱交換
で発生したスチームはスチーム排出管27から排
出される。一方、この直接熱交換により加熱され
た冷却用水は、冷却用水排出管28より排出され
る。
FIG. 3 shows a cross-sectional explanatory view of the pressure regulating container C used in the present invention. This pressure regulating vessel C includes a pressure vessel 25, a cooling water inlet and an inlet pipe 26, a steam outlet and an outlet pipe 27, a steam inlet and an inlet pipe 29, and a cooling water outlet and an outlet pipe 28.
has. In this pressure regulating vessel C, the cooling water introduced from the introduction pipe 26 and the steam introduced from the steam introduction pipe 29 are mixed, and direct heat exchange is performed between them. The generated steam is discharged from the steam discharge pipe 27. On the other hand, the cooling water heated by this direct heat exchange is discharged from the cooling water discharge pipe 28.

第4図は、間接熱交換器A,Bと圧力調節容器
Cとを組合せて形成した本発明の分解生成物急冷
装置を用いて分解生成物を急冷する場合のフロー
シートの1例を示す。
FIG. 4 shows an example of a flow sheet for quenching decomposition products using the decomposition product quenching device of the present invention formed by combining indirect heat exchangers A and B and pressure regulating vessel C.

第4図において、50は熱分解炉、Cは圧力調
節容器、51及び52はそれぞれ第1図に示した
1対の間接熱交換器A,Bからなる間接熱交換装
置を示す。
In FIG. 4, 50 is a pyrolysis furnace, C is a pressure regulating vessel, and 51 and 52 are indirect heat exchange apparatuses each consisting of a pair of indirect heat exchangers A and B shown in FIG. 1.

原料油としての重質炭化水素油はライン56及
び59を通つて熱分解炉50に導入されるが、こ
の場合、分解反応が水素の存在下で行われるとき
は、その導入に先立ち、ライン64からの循環水
素及びライン58からの補充水素と混合され、水
素との混合物の形で加熱炉50に導入される。ま
た、原料油には、必要に応じ、加熱炉50におけ
るコーク析出防止のために、例えば、アルミナ、
アルミナ/シリカ、水素化触媒微粉末、カーボ
ン、ホワイトカーボン等が添加される。この加熱
炉50の条件としては、一般的に、温度420〜520
℃、好ましくは440〜500℃、圧力1〜250Kg/cm2
G、好ましくは5〜200Kg/cm2Gである。重質炭
化水素油の分解を水素の存在下で行う場合、その
水素分圧は30〜250Kg/cm2G、好ましくは100〜
200Kg/cm2Gである。
Heavy hydrocarbon oil as a feedstock is introduced into the pyrolysis furnace 50 through lines 56 and 59. In this case, when the cracking reaction is carried out in the presence of hydrogen, the heavy hydrocarbon oil is introduced into the pyrolysis furnace 50 through lines 64 and 59 prior to its introduction. and the make-up hydrogen from line 58 and introduced into the furnace 50 in a mixture with hydrogen. In addition, the feedstock oil may contain, for example, alumina or
Alumina/silica, hydrogenation catalyst fine powder, carbon, white carbon, etc. are added. The conditions for this heating furnace 50 are generally a temperature of 420 to 520.
℃, preferably 440-500℃, pressure 1-250Kg/cm 2
G, preferably 5 to 200 Kg/cm 2 G. When cracking heavy hydrocarbon oil in the presence of hydrogen, the hydrogen partial pressure is 30 to 250 Kg/cm 2 G, preferably 100 to
It is 200Kg/cm 2 G.

冷却用水はライン30を通り、分解炉50の煙
空部内に配設された加熱コイル31に入り、ここ
で予熱された後、ライン34を通り、圧力調節容
器Cに導入される。
The cooling water passes through a line 30 and enters a heating coil 31 disposed in the smoke cavity of the cracking furnace 50, where it is preheated, and then passes through a line 34 and is introduced into the pressure regulating vessel C.

加熱炉50で得られた気液混合物からなる分解
生成物は、ライン32及びライン33によつて抜
出され、それぞれ、間接熱交換装置51及び52
に導入される。また、これらの間接熱交換装置に
対しては、圧力調節容器Cからの冷却用水がそれ
ぞれライン37及びライン38を経由して導入さ
れ、これらの間接熱交換装置において、冷却用水
と分解生成物との間で間接熱交換が行われ、分解
生成物は所要の温度まで冷却されると共に、冷却
用水は高圧高温スチームに変換される。
The decomposition products consisting of a gas-liquid mixture obtained in the heating furnace 50 are extracted through lines 32 and 33, and are transferred to indirect heat exchangers 51 and 52, respectively.
will be introduced in In addition, cooling water from the pressure regulating vessel C is introduced into these indirect heat exchange devices via lines 37 and 38, respectively, and in these indirect heat exchange devices, the cooling water and decomposition products are separated. An indirect heat exchange takes place between the two, cooling the decomposition products to the required temperature and converting the cooling water into high-pressure, high-temperature steam.

前記間接熱交換装置51及び52で得られた高
圧高温スチームは、それぞれライン35及び36
を通つて圧力調節容器Cに導入され、ここでライ
ン34から導入された冷却用水と接触熱交換し、
この直接熱交換で発生した高圧高温スチームはラ
イン44を通つて抜出される。この圧力調節容器
Cは、一般的には、約300℃、100気圧程度の条件
で運転される。
The high pressure and high temperature steam obtained in the indirect heat exchange devices 51 and 52 is passed through lines 35 and 36, respectively.
is introduced into the pressure regulating vessel C through the line 34, where it exchanges contact heat with the cooling water introduced from the line 34,
The high pressure and high temperature steam generated by this direct heat exchange is extracted through line 44. This pressure regulating vessel C is generally operated under conditions of about 300° C. and about 100 atmospheres.

間接熱交換装置51及び52で冷却された分解
生成物は、それぞれライン41及び42により抜
出され、ライン43を経由して、後続の処理、例
えば気液分離器に導入された後、蒸留処理され
る。
The decomposition products cooled in the indirect heat exchangers 51 and 52 are extracted through lines 41 and 42, respectively, and are introduced into a subsequent treatment, for example, a gas-liquid separator, via a line 43, and then subjected to distillation treatment. be done.

前記したように間接熱交換器と圧力調節容器と
の組合せからなる急冷装置を用いて分解生成物を
冷却する場合、間接熱交換器から排出される分解
生成物の温度は、後続の処理に適合する範囲の温
度であり、440℃以下、通常380〜420℃の範囲の
温度に設定される。即ち、分解炉から得られる分
解生成物は、一般に450〜500℃という高温で、コ
ークを発生しやすく、取扱いの困難なものである
が、このような高温の分解生成物は、前記間接熱
交換装置により、360〜440℃、好ましくは380〜
420℃の温度に冷却される。本発明で用いる間接
熱交換装置の場合、分解生成物の冷却速度は、3
重管の内管に導入する冷却用水の温度及び流速に
より抑制し得るので、短い滞留時間でも、分解生
成物を所要温度まで急速に冷却することが可能で
ある。また、本発明では、分解生成物は、気液分
離処理されることなく、気液混合物の形で、冷却
用水との間で間接熱交換されることから、その間
接熱交換に際しての伝熱は非常に良好である。ま
た、間接熱交換装置において、その運転圧力は格
別の制限は必要ないが、分解を水素の存在下で行
うときは、80気圧以上、通常100〜200気圧であ
り、また、間接熱交換装置から排出されるスチー
ムも同様の高圧である。
When the decomposition product is cooled using a quenching device consisting of a combination of an indirect heat exchanger and a pressure regulating vessel as described above, the temperature of the decomposition product discharged from the indirect heat exchanger is suitable for subsequent processing. The temperature is set at a temperature below 440°C, usually between 380 and 420°C. That is, the decomposition products obtained from the cracking furnace are generally at a high temperature of 450 to 500°C, easily generate coke, and are difficult to handle. Depending on the equipment, 360~440℃, preferably 380~
Cooled to a temperature of 420℃. In the case of the indirect heat exchange device used in the present invention, the cooling rate of the decomposition product is 3
Since this can be controlled by the temperature and flow rate of the cooling water introduced into the inner pipe of the heavy pipe, it is possible to rapidly cool the decomposition products to the required temperature even with a short residence time. Furthermore, in the present invention, the decomposition products are indirectly heat exchanged with the cooling water in the form of a gas-liquid mixture without being subjected to gas-liquid separation treatment, so that the heat transfer during the indirect heat exchange is Very good. In addition, the operating pressure of indirect heat exchange equipment does not require any special restrictions, but when decomposition is performed in the presence of hydrogen, the operating pressure is 80 atm or higher, usually 100 to 200 atm, and The steam discharged is also at a similar high pressure.

〔効果〕〔effect〕

本発明は前記の構成であり、分解生成物の冷却
に特別の間接熱交換器と圧力調節容器との組合せ
を採用したことから、その冷却に際して被処理物
の体積増加がなく、従来の低温の分解生成油を直
接分解生成物に混合する冷却方式に比べて、後続
の処理装置、例えば、気液分離器、蒸留塔、凝縮
等の装置系に導入される液体流量は著しく減少さ
れたものであり、従つて、本発明の場合は、後続
の処理装置系を著しく小型化することが可能にな
る。その上、本発明の場合は、特別の3重管構造
の間接熱交換装置を用いたことから、熱交換に際
してのコーク発生を著しく抑制し得ると共に、冷
却媒体として用いた水は、高圧高温のスチームと
して回収され、エネルギー源として種々の目的に
利用することができる。
The present invention has the above-mentioned configuration, and because it employs a combination of a special indirect heat exchanger and a pressure regulating vessel for cooling the decomposition products, there is no increase in the volume of the material to be treated during cooling, and the conventional low-temperature Compared to the cooling method in which the cracked oil is directly mixed with the cracked products, the flow rate of liquid introduced into subsequent processing equipment, such as gas-liquid separators, distillation columns, condensers, etc., is significantly reduced. Therefore, in the case of the present invention, it is possible to significantly downsize the subsequent processing device system. Furthermore, in the case of the present invention, since an indirect heat exchange device with a special triple-pipe structure is used, it is possible to significantly suppress the generation of coke during heat exchange, and the water used as a cooling medium is heated under high pressure and high temperature. It is recovered as steam and can be used as an energy source for various purposes.

さらに、本発明によれば、次のような効果を得
ることができる。
Furthermore, according to the present invention, the following effects can be obtained.

(1) 多管式の冷却装置に比べ、デツドスペースが
少なく、コークの沈積が少ない。
(1) Compared to multi-tube cooling equipment, there is less dead space and less coke deposits.

(2) 装置が単純化されているため、運転に異常が
あつて、誤つてコークアツプした場合の対処が
簡単である。
(2) Since the device is simple, it is easy to deal with any abnormality in operation and accidental coke-up.

〔実施例〕〔Example〕

次に、本発明を実施例によりさらに詳細に説明
する。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 第4図で示したフローシートに従つて重質炭化
水素油を分解処理し、次いで得られた分解生成物
を急冷処理した。この場合の原料油の性状、及び
処理条件を、第4図に示したフローシートとの関
連において示す。
Example A heavy hydrocarbon oil was decomposed according to the flow sheet shown in FIG. 4, and the resulting decomposed product was then rapidly cooled. The properties of the raw material oil and processing conditions in this case are shown in relation to the flow sheet shown in FIG.

(1) 原料油(蒸留残渣油) 比重(d15/4℃) :1.04 粘度(100℃)(cp) :8800 n−ヘプタン不溶分(wt%):12.6 (2) ライン56(原料油) 流量(Kg/hr):100 温度(℃) :300 圧力(Kg/cm2G):180 (3) 熱分解条件 温度(℃) :480 圧力(Kg/cm2G) :160 液滞留時間(分) : 20 水素供給速度(N/):500 (4) 圧力調節器(C) 圧力(Kg/cm2G):100 温度(℃) :310 (5) ライン44(スチーム) 流量(Kg/hr): 13 温度(℃) :310 圧力(Kg/cm2) :100 (6) ライン30(冷却用水) 流量(Kg/hr): 13 温度(℃) :110 (7) ライン32又は33(分解生成物) 流量(Kg/hr):55.9 温度(℃) :480 (8) ライン37又は38(冷却用水) 流量(Kg/hr): 33 温度(℃) :310 圧力(Kg/cm2g):100 (9) ライン35又は36(高圧高温スチーム) 流量(Kg/cm2G): 33 温度(℃) :310 圧力(Kg/cm2G):100 (10) ライン43(冷却分解生成物) 流量(Kg/hr):111.8 温度(℃) :400 圧力(Kg/cm2G):160(1) Raw material oil (distillation residue oil) Specific gravity (d15/4℃): 1.04 Viscosity (100℃) (cp): 8800 N-heptane insoluble content (wt%): 12.6 (2) Line 56 (raw oil) Flow rate (Kg/hr): 100 Temperature (℃): 300 Pressure (Kg/cm 2 G): 180 (3) Pyrolysis conditions Temperature (℃): 480 Pressure (Kg/cm 2 G): 160 Liquid residence time (minutes) ): 20 Hydrogen supply rate (N/): 500 (4) Pressure regulator (C) Pressure (Kg/cm 2 G): 100 Temperature (℃): 310 (5) Line 44 (steam) Flow rate (Kg/hr) ): 13 Temperature (℃): 310 Pressure (Kg/cm 2 ): 100 (6) Line 30 (cooling water) Flow rate (Kg/hr): 13 Temperature (℃): 110 (7) Line 32 or 33 (decomposition water) Product) Flow rate (Kg/hr): 55.9 Temperature (℃): 480 (8) Line 37 or 38 (cooling water) Flow rate (Kg/hr): 33 Temperature (℃): 310 Pressure (Kg/cm 2 g) :100 (9) Line 35 or 36 (high pressure high temperature steam) Flow rate (Kg/cm 2 G): 33 Temperature (℃) : 310 Pressure (Kg/cm 2 G): 100 (10) Line 43 (cooled decomposition product ) Flow rate (Kg/hr): 111.8 Temperature (℃): 400 Pressure (Kg/ cm2G ): 160

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いる2つの間接熱交換器
A,Bをその外管下端部において連結させた例に
ついての断面説明図、第2図はその変更例を示す
もので、2つの間接熱交換器A,Bをその外管上
端部において連結させた例についての断面説明図
を示す。第3図は本発明で用いる圧力調節容器の
1例についての説明図である。第4図は本発明の
急冷装置を用いて重質油分解生成物を急冷する場
合のフローシートを示す。 1……内管、2……中間管、3……外管、5…
…スチーム排出管、6……フランジ、7,21…
…分解生成物導入又は排出管、8,20……連結
管、9……冷却用水導入管、10……冷却用水分
配管、26……冷却用水導入管、27……スチー
ム排出管、28……冷却用水排出管、29……ス
チーム導入管、50……加熱炉、A,B……熱交
換器、C……圧力調節容器。
Fig. 1 is a cross-sectional explanatory diagram of an example in which two indirect heat exchangers A and B used in the present invention are connected at the lower end of their outer tubes, and Fig. 2 shows a modified example of the two indirect heat exchangers A and B used in the present invention. A cross-sectional explanatory view of an example in which exchangers A and B are connected at the upper ends of their outer tubes is shown. FIG. 3 is an explanatory diagram of an example of a pressure regulating container used in the present invention. FIG. 4 shows a flow sheet for quenching heavy oil decomposition products using the quenching apparatus of the present invention. 1... Inner tube, 2... Middle tube, 3... Outer tube, 5...
...Steam discharge pipe, 6...Flange, 7, 21...
... Decomposition product introduction or discharge pipe, 8, 20 ... Connection pipe, 9 ... Cooling water introduction pipe, 10 ... Cooling water pipe, 26 ... Cooling water introduction pipe, 27 ... Steam discharge pipe, 28 ... ...Cooling water discharge pipe, 29...Steam introduction pipe, 50...Heating furnace, A, B...Heat exchanger, C...Pressure adjustment vessel.

Claims (1)

【特許請求の範囲】 1 2つの間接熱交換器と1つの圧力調節器との
組合せからなり、該間接熱交換器は、両端開口す
る内管と、上端が内管との間で封止され、下端封
止され、上部にスチーム排出口を有する中間管
と、上端が中間管のスチーム排出口より下方に位
置し、中間管との間で封止され、下端開口し、か
つ上部に開口を有する外管とを同心円状に配設し
た3重管構造を有し、該圧力調節容器は、冷却用
水導入口、スチーム導入口、スチーム排出口及び
冷却用水排出口を有し、また該2つの間接熱交換
器の内管の各上端開口部は中間に冷却用水導入口
を有する分配管の両端開口部にそれぞれ連結さ
れ、該2つの間接熱交換器の外管の各下端開口部
は連結管により連結され、かつ該分配管の冷却用
水導入口は連結管により圧力調節容器の冷却用水
排出口に連結され、該中間管のスチーム排出口は
連結管により圧力調節容器のスチーム導入口に連
結され、該2つの熱交換器の外管の一方に設けた
開口を重質炭化水素油分解生成物導入口及び他方
に設けた開口を急冷重質炭化水素油分解生成物排
出口としたことを特徴とする重質炭化水素油分解
生成物の急冷装置。 2 2つの間接熱交換器と1つの圧力調節容器と
の組合せからなり、該間接熱交換器は、両端開口
する内管と、上端が内管との間で封止され、下端
封止され、上部にスチーム排出口を有する中間管
と、上端が中間管のスチーム排出口より下方に位
置し、中間管との間で封止され、下端開口し、か
つ上部に開口を有する外管とを同心円状に配設し
た3重管構造を有し、該圧力調節容器は、冷却用
水導入口、スチーム導入口、スチーム排出口及び
冷却用水排出口を有し、また該2つの間接熱交換
器の内管の各上端開口部は中間に冷却用水導入口
を有する分配管の両端開口部にそれぞれ連結さ
れ、該2つの間接熱交換器の外管の上部各開口部
は連結管により連結され、かつ該分配管の冷却用
水導入口は連結管により圧力調節容器の冷却用水
排出口に連結され、該中間管のスチーム排出口は
連結管により圧力調節容器のスチーム導入口に連
結され、該2つの熱交換器の外管の一方の下端開
口部を重質炭化水素油分解生成物導入口及び他方
の下端開口部を急冷重質炭化水素油分解生成物排
出口としたことを特徴とする重質炭化水素油分解
生成物の急冷装置。
[Claims] 1. Consisting of a combination of two indirect heat exchangers and one pressure regulator, the indirect heat exchanger has an inner tube that is open at both ends, and an upper end that is sealed between the inner tube. , an intermediate tube whose lower end is sealed and has a steam outlet at the upper part; and an intermediate tube whose upper end is located below the steam outlet of the intermediate tube, is sealed between the intermediate tube, has an open lower end, and has an opening at the upper part. The pressure regulating vessel has a triple tube structure in which an outer tube with a Each upper end opening of the inner pipe of the indirect heat exchanger is connected to both end openings of a distribution pipe having a cooling water inlet in the middle, and each lower end opening of the outer pipe of the two indirect heat exchangers is connected to a connecting pipe. The cooling water inlet of the distribution pipe is connected to the cooling water outlet of the pressure regulating vessel by a connecting pipe, and the steam outlet of the intermediate pipe is connected to the steam inlet of the pressure regulating vessel by a connecting pipe. , characterized in that the opening provided in one of the outer tubes of the two heat exchangers is used as a heavy hydrocarbon oil decomposition product inlet, and the opening provided in the other is used as a quenched heavy hydrocarbon oil decomposition product outlet. Rapid cooling equipment for heavy hydrocarbon oil decomposition products. 2. Consisting of a combination of two indirect heat exchangers and one pressure regulating container, the indirect heat exchanger has an inner tube that is open at both ends, the upper end is sealed between the inner tube, and the lower end is sealed, An intermediate tube with a steam outlet at the top and an outer tube whose upper end is located below the steam outlet of the intermediate tube, is sealed with the intermediate tube, has an opening at the bottom, and an opening at the top, are connected in a concentric circle. The pressure regulating vessel has a triple pipe structure arranged in a shape, and the pressure regulating vessel has a cooling water inlet, a steam inlet, a steam outlet, and a cooling water outlet. Each upper end opening of the pipe is connected to both end openings of a distribution pipe having a cooling water inlet in the middle, and each upper opening of the outer pipe of the two indirect heat exchangers is connected by a connecting pipe, and The cooling water inlet of the distribution pipe is connected to the cooling water outlet of the pressure regulating vessel by a connecting pipe, the steam outlet of the intermediate pipe is connected to the steam inlet of the pressure regulating vessel by a connecting pipe, and the two heat exchange A heavy hydrocarbon, characterized in that one lower end opening of the outer tube of the vessel is used as a heavy hydrocarbon oil decomposition product inlet, and the other lower end opening is used as a quenched heavy hydrocarbon oil decomposition product outlet. Rapid cooling device for oil decomposition products.
JP2322585A 1985-02-08 1985-02-08 Equipment for quenching product of heavy hydrocarbon oil cracking Granted JPS61183389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2322585A JPS61183389A (en) 1985-02-08 1985-02-08 Equipment for quenching product of heavy hydrocarbon oil cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2322585A JPS61183389A (en) 1985-02-08 1985-02-08 Equipment for quenching product of heavy hydrocarbon oil cracking

Publications (2)

Publication Number Publication Date
JPS61183389A JPS61183389A (en) 1986-08-16
JPH0542479B2 true JPH0542479B2 (en) 1993-06-28

Family

ID=12104690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2322585A Granted JPS61183389A (en) 1985-02-08 1985-02-08 Equipment for quenching product of heavy hydrocarbon oil cracking

Country Status (1)

Country Link
JP (1) JPS61183389A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147511A (en) * 1990-11-29 1992-09-15 Stone & Webster Engineering Corp. Apparatus for pyrolysis of hydrocarbons
US5271827A (en) * 1990-11-29 1993-12-21 Stone & Webster Engineering Corp. Process for pyrolysis of hydrocarbons
CN101974363B (en) * 2010-09-29 2013-04-03 潘校良 Method for recovering and treating waste industrial oil and equipment for implementing method
CN106244223A (en) * 2016-08-29 2016-12-21 广饶科力达石化科技有限公司 A kind of crude lube stock pretreatment unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155457A (en) * 1975-11-14 1977-12-23 Schmidt Sche Heissdampf Decomposed gas cooling heat exchanger
JPS5350103A (en) * 1976-10-20 1978-05-08 Idemitsu Petrochemical Co Apparatus for quenching thermal decomposition gas
JPS5642956B2 (en) * 1977-10-20 1981-10-08
JPS5740880B2 (en) * 1977-02-15 1982-08-31

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837934Y2 (en) * 1979-09-07 1983-08-27 出光石油化学株式会社 Hydrocarbon pyrolysis gas quenching equipment
JPS5740880U (en) * 1980-08-18 1982-03-05
JPS58168551U (en) * 1982-05-07 1983-11-10 出光石油化学株式会社 Double tube type pyrolysis gas quencher
JPS58168552U (en) * 1982-05-07 1983-11-10 出光石油化学株式会社 Double tube type pyrolysis gas quencher

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52155457A (en) * 1975-11-14 1977-12-23 Schmidt Sche Heissdampf Decomposed gas cooling heat exchanger
JPS5350103A (en) * 1976-10-20 1978-05-08 Idemitsu Petrochemical Co Apparatus for quenching thermal decomposition gas
JPS5740880B2 (en) * 1977-02-15 1982-08-31
JPS5642956B2 (en) * 1977-10-20 1981-10-08

Also Published As

Publication number Publication date
JPS61183389A (en) 1986-08-16

Similar Documents

Publication Publication Date Title
US4279734A (en) Quench Process
US4714109A (en) Gas cooling with heat recovery
KR0138649B1 (en) Method and apparatus for decomposing low quality materials
US2471104A (en) Production of unsaturated hydrocarbons and hydrogen
US2448922A (en) Continuous cracking process
US3647907A (en) Process for quenching a gas obtained by thermal cracking of hydrocarbons
EP0031609A1 (en) A process for recovering heat from the effluent of a hydrocarbon pyrolysis reactor
JPH0542479B2 (en)
US4426359A (en) Solids quench boiler
US2031987A (en) Conversion of hydrocarbons
US2055313A (en) Conversion of hydrocarbons
US2093588A (en) Process of cracking heavy hydrocarbon oils
US2931843A (en) Pyrolytic conversion of hydrocarbons employing a molten metal as a heat transfer medium
US2603591A (en) Pulsating hydrocarbon conversion
US4437979A (en) Solids quench boiler and process
JPS63162787A (en) Method and apparatus for cooling cracking gas
US4550769A (en) Solids quench boiler and process
US1763609A (en) Process of treating hydrocarbon oils
US2200463A (en) Converting heavy mineral oils into lighter oils
JPS61183388A (en) Treatment of thermal cracking product of heavy hydrocarbon oil
US2147399A (en) Process for cracking hydrocarbons
RU1809834C (en) Plant for processing hydrocarbon materials in presence of film of molten metal or salt
US2053211A (en) Conversion of hydrocarbons
US1640444A (en) Process and apparatus for cracking hydrocarbon oils
USRE20950E (en) Process fob polymerizing hydrocar