JPH0542461B2 - - Google Patents

Info

Publication number
JPH0542461B2
JPH0542461B2 JP59198566A JP19856684A JPH0542461B2 JP H0542461 B2 JPH0542461 B2 JP H0542461B2 JP 59198566 A JP59198566 A JP 59198566A JP 19856684 A JP19856684 A JP 19856684A JP H0542461 B2 JPH0542461 B2 JP H0542461B2
Authority
JP
Japan
Prior art keywords
molecular weight
polymer
high molecular
low molecular
weight polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59198566A
Other languages
Japanese (ja)
Other versions
JPS6176528A (en
Inventor
Toshinori Sugie
Toheiji Kawabata
Sugio Hasegawa
Fumihiro Furuhata
Koichi Kodera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP59198566A priority Critical patent/JPS6176528A/en
Priority to DE3527492A priority patent/DE3527492C2/en
Publication of JPS6176528A publication Critical patent/JPS6176528A/en
Priority to US07/213,436 priority patent/US4960861A/en
Publication of JPH0542461B2 publication Critical patent/JPH0542461B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高分子量アリーレンスルフイドポリマ
ーの製造方法に関する。 ポリフエニレンスルフイドを代表とするアリー
レンスルフイドポリマーは特公昭45−3368号に開
示されている如き方法で製造されている。即ち、
N−メチルピロリドン等の有機溶媒中でp−ジク
ロルベンゼンと硫化ナトリウムを反応して得た樹
脂液を反応容器から取り出し、次いで溶媒を除い
て製造されている。この方法で得られるポリフエ
ニレンスルフイドは極めて低重合度でありこのま
までは使用に適さず、工業的にはこの低重合度ポ
リマーを空気中で加熱し、酸化架橋させ、三次元
架橋により高分子量化して射出成形用などの実用
用途に使用されている。しかしこの高分子量化さ
れたものでも押出成形性に劣り、繊維、フイル
ム、パイプ、シートなどの用途には使うことがで
きなかつた。 又、重合反応により比較的高分子量のアリーレ
ンスルフイドポリマーを得る方法も既に知られて
いる。すなわち、特開昭53−136100号、特開昭51
−144495号、特開昭51−144497号、特開昭56−
28217号に示される如く、各種の重合助剤の存在
下で重合反応を行なうことにより比較的高分子量
のポリマーが得られる。 しかしながら、多くの用途においては従来より
も更に狭い範囲の分子量分布を有する比較的高分
子量アリーレンスルフイドポリマー、特に低分子
量成分を含まないアリーレンスルフイドポリマー
が要求されている。これを目的とする特許も既に
開示されている。すなわち特公昭48−16078号に
は低分子量ポリフエニレンスルフイドポリマーを
適当な溶剤で溶剤抽出し回収し重合時モノマーと
ともに使用することにより、より高い分子量のポ
リフエニレンスルフイドを得る方法が示されてい
る。しかしながらこの方法にはいくつかの問題点
がある。第1に、生成樹脂液中の比較的高分子量
のポリマーの量が比較的低分子量のポリマー量に
比べて少なく、歩留りが悪いことである。第2
に、重合工程の後で溶媒抽出工程が必要なことで
ある。すなわち、重合工程により製造される生成
物は低分子量ポリマーと高分子量ポリマーとの混
合物であり、これを分別するためには別に溶媒抽
出工程が必要となる。この抽出工程はN−メチル
ピロリドンを用いて135〜148.9℃の温度範囲で、
あるいは79.4〜148.9℃の温度範囲におけるベン
ゼンを用いて、また110〜148.9℃の温度範囲にお
けるトルエンおよびその類似物で行ない、抽出溶
媒が重合溶媒と異なる場合は勿論であるが、同じ
場合でも抽出温度が重合温度と異なる。第2には
この特許の実施例から明らかな如く、きわめて低
分子量のアリーレンスルフイドポリマーしか分別
できず、残分の樹脂液中のポリマーが比較的低分
子量のポリマーを多く含むため分子量分布の狭い
比較的高分子量のポリマーを得ることが難しいこ
とである。 本発明者らは、鋭意検討した結果、重合反応に
より生成した比較的高分子量のアリーレンスルフ
イドポリマー層と比較的低分子量のアリーレンス
ルフイドポリマー層とからなる樹脂液から該低分
子量のポリマー層を分別し、次いでこれにポリマ
ー原料を加えて重合反応を行なうことにより上記
の欠点が改善されることを見い出し、本発明に到
達した。 すなわち、本発明はアミド系極性溶媒中で、重
合助剤の存在下ポリハロ芳香族化合物とスルフイ
ド化剤とを反応せしめた後、比較的高分子量ポリ
マーの濃厚層()と比較的低分子量ポリマーの
濃厚層()とからなる生成樹脂液から該層
()を分別し、次いでこれにポリハロ芳香族化
合物及びスルフイド化剤、必要によりアミド系極
性溶媒及び重合助剤を加えて反応せしめることを
特徴とする高分子量アリーレンスルフイドポリマ
ーの製造方法を提供する。 本発明では、先づ比較的高分子量のアリーレン
スルフイドポリマー層と比較的低分子量のアリー
レンスルフイドポリマー層とからなる樹脂液を製
造せしめる必要がある。そのためには、例えば有
機アミド系の極性溶媒中で、重合助剤の存在下、
ポリハロ芳香族化合物とスルフイド化剤とを少な
くとも200℃以上の高温で重合反応が行なわれる。
その際、アリーレンスルフイドポリマーの200℃
以下での溶解不溶性、200℃以上での溶解性、特
にその温度依存性、及び重合溶媒及び重合助剤の
溶解性に及ぼす影響、系の比重等を考慮すること
によつて、生成樹脂液に於いて比較的高分子量と
比較的低分子量のアリーレンスルフイドポリマー
の各層の分離を生じせしめる。 本発明の方法で用いるポリハロ芳香族化合物は
芳香核に直接結合した2個以上のハロゲン原子を
有するハロゲン化芳香族化合物であり、具体的に
はp−ジクロルベンゼン、m−ジクロルベンゼ
ン、o−ジクロルベンゼン、トリクロルベンゼ
ン、テトラクロルベンゼン、ジクロルナフタレ
ン、トリクロルナフタレン、ジブロムベンゼン、
トリブロムベンゼン、ジブロムナフタレン、ジヨ
ードベンゼン、トリヨードベンゼン、ジクロルジ
フエニルスルホン、ジブロムジフエニルスルホ
ン、ジクロルベンゾフエノン、ジブロムベンゾフ
エノン、ジクロルジフエニルエーテル、ジブロム
ジフエニルエーテル、ジクロルジフエニルスルフ
イド、ジブロムジフエニルスルフイド、ジクロル
ビフエニル、ジブロムビフエニル等およびこれら
の混合物が挙げられる。通常はジハロ芳香族化合
物が使用され、好適にはp−ジクロルベンゼンが
使用される。尚、分岐構造によるポリマーの粘度
増大を図るために、1分子中に3個以上のハロゲ
ン置換基をもつポリハロ芳香族化合物を少量ジハ
ロ芳香族化合物と併用させてもよい。 本発明で用いられるスルフイド化剤としては、
硫化アルカリ金属化合物;イオウ源と水酸化アル
カリ金属化合物の併用等が挙げられる。 硫化アルカリ金属化合物としては硫化リチウ
ム、硫化ナトリウム、硫化カリウム、硫化ルビジ
ウム、硫化セシウム、およびこれらの混合物が含
まれる。かかる硫化アルカリ金属化合物は水和物
および/または水性混合物として、あるいは無水
の形として用いることができる。なお、硫化アル
カリ金属中に微量存在する重硫化アルカリ金属、
チオ硫酸アルカリ金属と反応させるために少量の
水酸化アルカリ金属を加えても問題ない。尚、硫
化アルカリ金属化合物としては1〜2水塩の硫化
ナトリウムが好ましい。 イオウ源としては、例えば水硫化アルカリ金属
化合物、硫化水素、チオアミド、チオ尿素、チオ
カルバネート、チオカルボン酸、二硫化炭素、チ
オカルボキシレート、イオウ、五硫化燐等であ
る。好ましいイオウ源としては水硫化アルカリ金
属化合物である。特に水硫化アルカリ金属化合物
としては、水硫化リチウム、水硫化ナトリウム、
水硫化カリウム、水硫化ルビジウム、水硫化セシ
ウムおよびこれらの混合物が含まれる。かかる水
硫化アルカリ金属化合物は水和物および/または
水性混合物あるいは無水の形で用いることができ
る。かかる水硫化アルカリ金属化合物としては水
硫化ナトリウムが好ましく、水酸化アルカリ金属
化合物と併用して用いられるが、該化合物の代わ
りにN−メチル−4−アミノ酪酸ナトリウム又は
炭酸アルカリ金属化合物を併用しても良い。 又、水酸化アルカリ金属化合物としては、水酸
化カリウム、水酸化ナトリウム、水酸化リチウ
ム、水酸化ルビジウム、水酸化セシウムおよびこ
れらの混合物が挙げられ、水酸化ナトリウムが好
ましい。 上記硫化アルカリ金属化合物又は水硫化アルカ
リ金属化合物の各水和物を使用する場合には予め
溶媒中で脱水せしめた後に反応に用いる必要があ
る。水硫化アルカリ金属化合物の脱水の際には水
酸化アルカリ金属化合物又はN−メチル−4−ア
ミノ酪酸ナトリウムを共存せしめた方がよい。 尚、イオウ源と水酸化アルカリ金属化合物との
割合はイオウ元素1モルに対して水酸化アルカリ
金属化合物0.8〜3.0モルが適当である。特に水酸
化アルカリ金属化合物を併用する場合その使用量
は水硫化アルカリ金属化合物1.00モルに対し0.9
〜1.2モルの範囲が適当である。又、N−メチル
−4−アミノ酪酸ナトリウムを併用する場合のそ
の使用量はアルカリ金属水硫化物1.00モルに対し
0.9〜1.2モルの範囲が適当である。 本発明の方法において使用される有機アミド系
極性溶媒としては、N,N−ジメチルホルムアミ
ド、N,N−ジメチルアセトアミド、N−メチル
−2−ピロリドン、N−エチル−2−ピロリド
ン、N−メチル−ε−カプロラクタム、ヘキサメ
チルホスホルアミド等あるいはこれらの混合物よ
り選択される。これらの溶媒のうちではN−メチ
ル−2−ピロリドン(NMP)が特に好ましい。 重合助剤としては有機スルホン酸金属塩、ハロ
ゲン化リチウム、カルボン酸金属塩、リン酸アル
カリ塩がある。 有機スルホン酸金属塩は下記一般式〜に示
される群から選ばれる。 : (式中、R3は水素もしくは炭素数1ないし30
のアルキル基、nは0,1あるいは2の整数をあ
らわし、Mはナトリウム、カリウム、ルビジウム
およびセシウムから選ばれたアルカリ金属をあら
わし、Xは直接結合、−CH2−、−C(CH32−、−
O−、−S−、 からなる群から選ばれることを示す。)これらの
スルホン酸金属を構成する酸基成分の具体例とし
ては、ベンゼンスルホン酸、p−トルエンスルホ
ン酸、2,4−ジメチルスルホン酸、2,5−ジ
メチルベンゼンスルホン酸、p−エチルベンゼン
スルホン酸、ドデシルベンゼンスルホン酸、α−
ナフタレンスルホン酸、ビフエニルスルホン酸、
アルキルナフタレンスルホン酸、ラウリルベンゼ
ンスルホン酸およびアルキルジフエニルエーテル
ジスルホン酸などが挙げられる。これらのスルホ
ン酸の塩は無水塩あるいは水和塩のいずれでもよ
いし、また水溶液でもかまわないが、本発明の目
的から無水塩のものが好ましいことは言うまでも
ない。 ハロゲン化リチウムは塩化リチウム、臭化リチ
ウム、沃化リチウム、及びその混合物より選ばれ
る。 有機カルボン酸金属塩のカルボキシル基を除く
有機基は通常、その炭素数が1ないし50であり、
また窒素、酸素、ハロゲン、ケイ素、イオウを含
んでいてもよく、好ましくはアルキル基、シクロ
アルキル基、アリール基およびアルキルアリール
基である。また、有機カルボン酸金属塩の金属原
子はリチウム、ナトリウム、カリウム、ルビジウ
ム、セシウム、マグネシウム、カルシウム、亜
鉛、ストロンチウム、カドミウム、バリウムから
選ばれ、特にアルカリ金属が好ましい。有機カル
ボン酸金属塩の具体例としては、酢酸リチウム、
酢酸ナトリウム、酢酸カリウム、プロピオン酸リ
チウム、プロピオン酸ナトリウム、2−メチルプ
ロピオン酸リチウム、酪酸ルビジウム、吉草酸リ
チウム、吉草酸ナトリウム、ヘキサン酸セシウ
ム、ヘプタン酸リチウム、2−メチルオクタン酸
リチウム、ドデカン酸カリウム、4−エチルエト
ラデカン酸ルビジウム、オクタデカン酸ナトリウ
ム、ヘンエイコサン酸ナトリウム、シクロヘキサ
ンカルボン酸リチウム、シクロドデカンカルボン
酸セシウム、3−メチルシクロペンタンカルボン
酸ナトリウム、シクロヘキシル酢酸カリウム、安
息香酸カリウム、安息香酸リチウム、安息香酸ナ
トリウム、m−トルイル酸カリウム、フエニル酢
酸リチウム、4−フエニルシクロヘキサンカルボ
ン酸ナトリウム、p−トリル酢酸カリウム、4−
エチルシクロヘキシル酢酸リチウム、コハク酸二
リチウム、コハク酸二ナトリウム、コハク酸二カ
リウム、アジピン酸二リチウム、アジピン酸二ナ
トリウム、アジピン酸二カリウム、セバシン酸二
リチウム、セバシン酸二ナトリウム、セバシン酸
二カリウム、デカンジカルボン酸二リチウム、デ
カンジカルボン酸二ナトリウム、デカンジカルボ
ン酸二カリウム、フタル酸二リチウム、フタル酸
二ナトリウム、フタル酸二カリウム、イソフタル
酸二リチウム、イソフタル酸二ナトリウム、イソ
フタル酸二カリウム、テレフタル酸二リチウム、
テレフタル酸二ナトリウム、テレフタル酸二カリ
ウム、トリメリツト酸三リチウム、トリメリツト
酸三ナトリウム、トリメリツト酸三カリウム、ピ
ロメリツト酸四リチウム、ピロメリツト酸四ナト
リウム、ピロメリツト酸四カリウム、トルエンジ
カルボン酸二リチウム、トルエンジカルボン酸二
ナトリウム、トルエンジカルボン酸二カリウム、
ナフタレンジカルボン酸二リチウム、ナフタレン
ジカルボン酸二ナトリウム、ナフタレンジカルボ
ン酸二カリウム、酢酸マグネシウム、酢酸カルシ
ウム、安息香酸カルシウム、その他の同種類の塩
およびそれらの混合物が挙げられる。 リン酸アルカリ塩は下記一般式〜に示され
る群から選ばれる。 : 式中、R4は水素、C1〜C20のアルキル、C5
C20のシクロアルキル、C6〜C24のアリール、C7
C24のアルカリール、C7〜C24のアラルキル、C2
C24のアルケニル、C2〜C20のアルキニル又はC5
C20のシクロアルケニルであり、Mはアルカリ金
属好ましくはナトリウムである。本発明に適した
リン酸アルカリ塩としてはリン酸三ナトリウムお
よび次の酸の二ナトリウム塩である。メタンフオ
スフオン酸、エタン−1−フオスフオン酸、プロ
パン−1−フオスフオン酸、ブタン−1−フオス
フオン酸、ブタン−2−フオスフオン酸、ペンタ
ン−1−フオスフオン酸、シクロヘキサン−1−
フオスフオン酸、ビニル−1−フオスフオン酸、
プロペン−2−フオスフオン酸、ブテン−2−フ
オスフオン酸、インデン−2−フオスフオン酸、
フエニルメタンフオスフオン酸、(4−メチル−
フエニル)−メタン−フオスフオン酸、β−ナフ
チル−メタンフオスフオン酸、2−フエニル−エ
タン−1−フオスフオン酸、2,2−ジフエニル
−エタン−1−フオスフオン酸、4−フエニル−
ブタン−1−フオスフオン酸、2−フエニル−エ
チレン−1−フオスフオン酸、2,2−ジフエニ
ルエチレン−フオスフオン酸、フエニル−アセチ
レン−フオスフオン酸、4−フエニル−ブタジエ
ン−フオスフオン酸、ベンゼン−フオスフオン
酸、4−メチル−ベンゼン−フオスフオン酸及び
2−フエノキシ−エタン−1−フオスフオン酸。 これらの重合助剤はすくなくとも一種類以上使
用することが必要である。また、その種類として
は有機スルホン酸アルカリ塩および、有機カルボ
ン酸塩が好ましい。特に、有機スルホン酸アルカ
リ塩と有機カルボン酸塩を併用することが最も好
ましい。 上述せる各原料を用いて、比較的高分子量のア
リーレンスルフイドポリマー層と比較的低分子量
のアリーレンスルフイドポリマー層とからなる樹
脂液を製造する際の各原料の使用割合は次の如く
である。 スルフイド化剤の使用量はポリハロ芳香族化合
物1モルに対してイオウ元素が0.8〜1.2モル、好
ましくは0.9〜1.1モルとなるように選択される。
又、アミド系極性溶媒の使用量はジハロ芳香族化
合物に対するモル比で2.5ないし20の範囲で、好
ましくは3ないし10の範囲である。又、重合助剤
の使用量は重合時のアミド系極性溶媒に溶解する
範囲内で使用することが好ましい。溶解限度以上
に使用しても分離を促進せず不必要である。本発
明の方法で使用できる重合助剤の添加量は用いる
化合物の種類により異なるが、通常ポリハロ芳香
族化合物に対して0.01ないし300重量%、好まし
くは0.5ないし200重量%の範囲である。 かかる重合助剤の効果はただ単に重合反応活性
の向上のみでなく重合系におけるポリマーの系へ
の溶解性を変えるため比較的高分子量ポリマーと
比較的低分子量ポリマーの各濃厚層を生ぜせし
め、加えて比較的高分子量ポリマー濃厚層に於け
るポリマーの活性末端が高濃度化することによつ
て反応速度が増大し、両者が相乗してより高分子
量のポリマーを濃厚に含む層を生成せしめるもの
と推察する。 重合反応は不活性雰囲気下、例えば窒素ガス、
二酸化炭素中で行なうのが好ましく、又、各反応
成分の混合の順序には特に制限はなく、重合工程
に際して上記成分を部分的に少量づつあるいは一
時に添加することにより行なわれる。また重合反
応途中あるいは重合終了時に二酸化炭素を吹き込
むのが好ましく、これはアリーレンスルフイドポ
リマーの分解を防止し、生成ポリマーの高分子量
化に寄与するのみならずN−メチルピロリドンの
分解防止にも効果がある。 上記樹脂液に於いて、比較的高分子量のアリー
レンスルフイドポリマー(以下、高分子量ポリマ
ーと称す)の濃厚層と比較的低分子量のアリーレ
ンスルフイドポリマー(以下、低分子量ポリマー
と称す)の濃厚層との層分離を容易に生じせしめ
るためには、以下に示す如き条件を選択するのが
好ましい。勿論、以下に示す条件以外でも層分離
が生じる条件であれば採用することができる。 前記アミド系極性溶媒/生成ポリマーの比が重
量比で20/1乃至1/2の範囲である。この比が
20/1を越えるとき高分子量ポリマーも低分子量
ポリマーも単一層に存在し、2層分離しない。ま
た比が1/2未満のとき高分子量ポリマーが十分
に溶解せず、本発明の目的より外れる。かかる比
は20/1乃至1/1であることが好ましい。 また、重合時の温度範囲は210℃乃至300℃の温
度である。210℃より低い温度では高分子量ポリ
マー成分が溶媒に溶解せず、本発明の目的より外
れ、300℃より高い温度では高分子量ポリマー成
分も低分子量ポリマー成分も単一層に存在して分
離しない。220℃乃至290℃が好ましい温度範囲で
ある。 重合助剤/アミド系極性溶媒比は、溶媒及び重
合助剤の種類により異なるが、一般に重量比で
2/1乃至1/30、好ましくは1/1乃至1/20
である。この比が2/1を越えると、重合助剤が
溶媒に溶解しなかつたり、ポリマー成分、特に高
分子量ポリマー成分が溶解しなかつたりする現象
が生じる。また、比が1/30未満のとき、分離効
果が十分でなく高分子量ポリマー成分と低分子量
成分が単一層に存在し本発明の目的を逸脱する。 重合時の圧力はアミド系極性溶媒および重合助
剤が実質的に液相を形成する圧力であればよい。
具体的には1.5Kg/cm2乃至は100Kg/cm2である。好
ましくは1.5Kg/cm2乃至は30Kg/cm2である。 反応時間は温度および圧力により異なるが、一
般に10分ないし約72時間の範囲であり、望ましく
は1時間ないし48時間である。 上記の如くにして得られた高分子量ポリマー層
と低分子量ポリマー層とからなる樹脂液から低分
子量ポリマー層を分別する方法は特に制限されな
い。たとえば攪拌停止状態または層流攪拌状態下
でストロー方式でサンプル管により高分子量ポリ
マー層を取出して低分子量ポリマー層を釜残とす
るか、または低分子量ポリマー層を選択的に取出
すことも可能であり、あるいは釜下部より両層を
選択的に順次分別して取出すことも可能である。
しかし、一般にアリーレンスルフイドポリマーの
製造では高温で、必要により加圧して行なわれ、
しかも取出しを高温で行なうため、反応状態及び
生成樹脂液の状態が外部から見ることができない
反応容器、例えばオートクレーブ等を用いなけれ
ばならない。そのため、本発明では生成樹脂液か
ら高分子量ポリマー層と低分子量ポリマー層とを
効率的に分離する観点から、一般に釜下部より取
出された樹脂液(主に生成樹脂液の下層に形成さ
れる高分子量ポリマー層を含む)のポリマーの対
数粘度が生成樹脂液の上層を形成する低分子量ポ
リマー層のポリマーの対数粘度に比べ対数粘度の
差が0.1以上、好ましくは0.15以上となるように
分別されるのが好ましい。即ち、低分子量ポリマ
ー層が反応釜内部に残るのが好ましい。実際的に
は高分子量ポリマーを含む樹脂液の取出し重量割
合が30〜70重量%であるのが工業的に有利であ
る。勿論、反応容器の上部から低分子量ポリマー
層を取出しても差しつかえなく、その際取出した
樹脂液のポリマーと反応容器に残存する樹脂液の
ポリマーとの対数粘度の差が0.1以上、好ましく
は0.15以上であり、取出し重量割合が30〜70重量
%となるように行なわれるのが好適である。 本発明に於いて高分子量ポリマー層と低分子量
ポリマー層とを分離する方法として、両層を検出
できるセンサーで用いることもできる。これらの
センサーとしては両層の物理的性質の差すなわ
ち、比重、粘度、誘電率、導電率、屈折率、光透
過率、色差などがある。また両層の重量をあらか
じめ予測し、取出量あるいは残存量の変化を測定
することにより分別取出を行なうことも可能であ
る。本発明での分別方法は分別取出ができる方法
であればよく、上記のような方法にとくに拘わる
ものではない。 本発明では、上記で分別した主として低分子量
ポリマーを含有する樹脂液に前記のポリハロ芳香
族化合物及びスルフイド化剤、必要により前記し
たアミド系極性溶剤及び重合助剤を加えて反応が
行なわれる。 この際、該樹脂液はポリマーの対数粘度が好ま
しくは0.05〜0.20、より好ましくは0.07〜0.19で
あるものが適当である。 添加されるポリハロ芳香族化合物の量は樹脂液
中のポリマー100重量部に対して好ましくは20〜
3000重量部、より好ましくは50〜2000重量部であ
る。また、スルフイド化剤の量は前記樹脂液を製
造する際のポリハロ芳香族化合物に対する使用割
合となる量で差しつかえない。更に、アミド系極
性溶剤の添加量は最終的に得られる生成樹脂液の
樹脂分濃度が2〜50重量%となるように決められ
るのが好ましい。更にまた、重合助剤の添加量は
樹脂液中に残存する重合助剤量との合計重量とア
ミド系極性溶媒全量の重量比が好ましくは2/1
乃至1/30、より好ましくは1/1乃至1/20で
ある。 尚、重合時の反応条件、例えば温度、圧力等は
前記の樹脂液製造時の条件と同様で差しつかえな
い。 本発明では、特にポリマーの対数粘度が0.05〜
0.20の低分子量ポリマーを含む樹脂液を用いて高
分子量ポリマーの製造を行なうことによつて対数
粘度0.24以上の高分子量ポリマーを生成樹脂中50
重量%以上含む樹脂液を得ることができる。この
際の樹脂液は反応釜中で高分子量ポリマー層と低
分子量ポリマー層とが層分離し、通常低分子量ポ
リマー層が上層となつているものであり、前記の
分離手段と同様にして高分子量ポリマー層と低分
子量ポリマー層とを分離することができる。 取り出された高分子量ポリマーを含む樹脂液か
らポリマーを採取する方法は通常の方法で差しつ
かえない。例えば、樹脂液から蒸留もしくはフラ
ツシユにり溶媒を除去し、次いで水あるいはアセ
トン、メタノールなどの貧溶媒で洗浄して精製ポ
リマーを得ることができる。 本発明の製造方法は低分子量ポリマー分をほと
んど含まない高分子量ポリマーを製造することが
できる。勿論低分子量ポリマーの濃厚層を取り出
した場合には高分子量ポリマーをほとんど含まな
い低分子量ポリマーを製造することができる。本
発明によつて得られる高分子量のアリーレンスル
フイドポリマーは、空気中で加熱架橋処理する必
要がないのは勿論、従来特に高分子量ポリマーが
必要であつた繊維、シート、フイルム管、チユー
ブなどの押出成形用、ブロー成形用に用いること
ができる。また、当然のことながら従来品の主要
途である射出成形もしくは圧縮成形用途にも用い
ることができる。 必要ならば本発明によつて得られるアリーレン
スルフイドポリマーに充填剤、顔料、難燃剤、安
定化剤、他のポリマーと配合することも好適であ
る。例えば、機械強度および耐熱性を向上させる
ためにガラス繊維を配合することもできる。 以下、本発明の方法を実施例に従つて説明す
る。アリーレンスルフイドポリマーの対数粘度値
〔η〕は0.4g/100ml溶液なるポリマー濃度にお
いて、α−クロルナフタレン中206℃で測定し、
式 〔η〕=lo(相対粘度)/ポリマー濃度 に従い算出した値である。 〔実施例〕 次いで、本発明を実施例により更に説明する。 尚、例中の部および%は重量基準である。 合成例 1〜4 容器の最下部に取出口を有する15オートクレ
ーブにN−メチルピロリドン43.20Kg(436モル)、
水酸化ナトリウム0.084Kg(2.1モル)、60%硫化
ソーダフレーク8.86Kg(68.2モル)およびp−ト
ルエンスルホン酸ナトリウム16.29Kg(80モル)
を仕込み、窒素雰囲気下で攪拌しながら160℃よ
り205℃まで2時間を要して徐々に昇温して水3.6
Kg、N−メチルピロリドン0.4Kgからなる留分を
系外に除去した。そののち、p−ジクロルベンゼ
ン10.02Kg(68.2モル)、1,2,4−トリクロル
ベンゼン0.018Kg(0.1モル)およびN−メチルピ
ロリドン10.80Kg(109モル)を加えた。次いで
220℃で1時間、更に260℃、圧力10Kg/cm2で3時
間反応せしめた。 反応容器の上部から生成樹脂液の表層部分の一
部を取り、ポリマーの対数粘度を測定したとこ
ろ、0.18であつた。又、反応容器の最下部から樹
脂液をサンプリングして同様にポリマーの対数粘
度を測定したところ0.310であつた。 次いで取出口の下部に取出用容器をセツトし、
攪拌停止30秒後、取出口の開口断面積を5mm2に調
節し、260℃で取出しを開始し、表1に示す生成
樹脂の40.1%(取出し量)なる迄樹脂液(高分子
量ポリマー分)を採取した。低分子量ポリマー分
を釜残とした。 それぞれについてポリマーの量及び対数粘度、
重合助剤の量、溶剤の量を調べた。これを合成例
1とした。 次いで、合成例1と同様にして重合し、表1に
示す如き低分子量ポリマーの分別を行なつた(合
成例2〜4)。 その結果を表1に示す。
The present invention relates to a method for producing high molecular weight arylene sulfide polymers. Arylene sulfide polymers, typified by polyphenylene sulfide, are produced by the method disclosed in Japanese Patent Publication No. 45-3368. That is,
The resin liquid obtained by reacting p-dichlorobenzene and sodium sulfide in an organic solvent such as N-methylpyrrolidone is taken out from the reaction vessel, and then the solvent is removed. The polyphenylene sulfide obtained by this method has an extremely low degree of polymerization and is unsuitable for use as it is.Industrially, this low degree of polymerization is heated in air and oxidatively crosslinked, and three-dimensional crosslinking is performed to increase the molecular weight. It is used for practical purposes such as injection molding. However, even this high-molecular-weight product had poor extrusion moldability and could not be used for applications such as fibers, films, pipes, and sheets. Furthermore, a method for obtaining an arylene sulfide polymer having a relatively high molecular weight through a polymerization reaction is already known. Namely, JP-A-53-136100, JP-A-51
−144495, JP-A-51-144497, JP-A-56-
As shown in No. 28217, relatively high molecular weight polymers can be obtained by carrying out the polymerization reaction in the presence of various polymerization aids. However, many applications require relatively high molecular weight arylene sulfide polymers having a narrower molecular weight distribution than conventional ones, especially arylene sulfide polymers that do not contain low molecular weight components. Patents for this purpose have already been disclosed. In other words, Japanese Patent Publication No. 16078/1986 discloses a method for obtaining higher molecular weight polyphenylene sulfide by extracting and recovering low molecular weight polyphenylene sulfide polymer with an appropriate solvent and using it together with monomers during polymerization. has been done. However, this method has several problems. First, the amount of relatively high molecular weight polymer in the produced resin liquid is small compared to the amount of relatively low molecular weight polymer, resulting in poor yield. Second
Second, a solvent extraction step is required after the polymerization step. That is, the product produced by the polymerization process is a mixture of low molecular weight polymers and high molecular weight polymers, and a separate solvent extraction process is required to separate this. This extraction step uses N-methylpyrrolidone at a temperature range of 135-148.9°C.
Alternatively, benzene in the temperature range of 79.4 to 148.9°C or toluene and its analogs in the temperature range of 110 to 148.9°C may be used, of course, if the extraction solvent is different from the polymerization solvent, but even if the extraction temperature is the same. is different from the polymerization temperature. Second, as is clear from the examples of this patent, only extremely low molecular weight arylene sulfide polymers can be separated, and the remaining resin liquid contains a large amount of relatively low molecular weight polymers, resulting in a change in molecular weight distribution. It is difficult to obtain narrow relatively high molecular weight polymers. As a result of extensive studies, the present inventors have determined that a resin liquid consisting of a relatively high molecular weight arylene sulfide polymer layer and a relatively low molecular weight arylene sulfide polymer layer produced by a polymerization reaction can be used to obtain a polymer with a relatively low molecular weight. It has been found that the above-mentioned drawbacks can be improved by separating the layers, then adding a polymer raw material thereto and carrying out a polymerization reaction, and the present invention has been achieved based on this discovery. That is, the present invention involves reacting a polyhaloaromatic compound with a sulfidizing agent in the presence of a polymerization aid in an amide-based polar solvent, and then forming a thick layer () of a relatively high molecular weight polymer and a thick layer (2) of a relatively low molecular weight polymer. The layer () is separated from the produced resin liquid consisting of the thick layer (), and then a polyhaloaromatic compound and a sulfiding agent, and if necessary, an amide polar solvent and a polymerization aid are added thereto and reacted. A method for producing a high molecular weight arylene sulfide polymer is provided. In the present invention, it is first necessary to produce a resin liquid consisting of a relatively high molecular weight arylene sulfide polymer layer and a relatively low molecular weight arylene sulfide polymer layer. For this purpose, for example, in an organic amide polar solvent in the presence of a polymerization aid,
A polymerization reaction between the polyhaloaromatic compound and the sulfidizing agent is carried out at a high temperature of at least 200°C or higher.
At that time, 200℃ of arylene sulfide polymer
By considering the insolubility at temperatures below, the solubility at temperatures above 200°C, especially its temperature dependence, the influence on the solubility of polymerization solvents and polymerization aids, and the specific gravity of the system, This causes separation of the relatively high molecular weight and relatively low molecular weight arylene sulfide polymer layers. The polyhaloaromatic compound used in the method of the present invention is a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic nucleus, and specifically p-dichlorobenzene, m-dichlorobenzene, o -dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dichloronaphthalene, trichloronaphthalene, dibromobenzene,
Tribromobenzene, dibromnaphthalene, diiodobenzene, triiodobenzene, dichlordiphenyl sulfone, dibromodiphenylsulfone, dichlorobenzophenone, dibrombenzophenone, dichlordiphenyl ether, dibromodiphenyl Examples include ether, dichlorodiphenyl sulfide, dibromodiphenyl sulfide, dichlorbiphenyl, dibrombiphenyl, and mixtures thereof. Usually dihaloaromatic compounds are used, preferably p-dichlorobenzene. Incidentally, in order to increase the viscosity of the polymer due to the branched structure, a polyhaloaromatic compound having three or more halogen substituents in one molecule may be used in combination with a small amount of a dihaloaromatic compound. The sulfidizing agent used in the present invention includes:
Alkali metal sulfide compound; combination use of a sulfur source and an alkali metal hydroxide compound, etc. Alkali metal sulfide compounds include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and mixtures thereof. Such alkali metal sulfide compounds can be used as hydrates and/or aqueous mixtures or in anhydrous form. In addition, alkali metal bisulfide, which exists in trace amounts in alkali metal sulfide,
There is no problem in adding a small amount of alkali metal hydroxide to react with the alkali metal thiosulfate. As the alkali metal sulfide compound, mono- to dihydrate sodium sulfide is preferred. Examples of the sulfur source include alkali metal hydrosulfide compounds, hydrogen sulfide, thioamides, thioureas, thiocarbanates, thiocarboxylic acids, carbon disulfide, thiocarboxylates, sulfur, and phosphorous pentasulfide. Preferred sulfur sources are alkali metal hydrosulfides. In particular, the alkali metal hydrosulfide compounds include lithium hydrosulfide, sodium hydrosulfide,
Includes potassium bisulfide, rubidium bisulfide, cesium bisulfide and mixtures thereof. Such alkali metal hydrosulfide compounds can be used in hydrated and/or aqueous mixtures or in anhydrous form. As such an alkali metal hydrosulfide compound, sodium hydrosulfide is preferable and used in combination with an alkali metal hydroxide compound, but sodium N-methyl-4-aminobutyrate or an alkali metal carbonate compound may be used in place of the compound. Also good. Examples of the alkali metal hydroxide compound include potassium hydroxide, sodium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, and mixtures thereof, with sodium hydroxide being preferred. When using each hydrate of the alkali metal sulfide compound or alkali metal hydrosulfide compound, it is necessary to dehydrate it in advance in a solvent before using it in the reaction. When dehydrating an alkali metal hydrosulfide compound, it is preferable to coexist an alkali metal hydroxide compound or sodium N-methyl-4-aminobutyrate. The appropriate ratio of the sulfur source to the alkali metal hydroxide compound is 0.8 to 3.0 moles of the alkali metal hydroxide compound per mole of sulfur element. In particular, when an alkali metal hydroxide compound is used in combination, the amount used is 0.9 per 1.00 mol of an alkali metal hydrosulfide compound.
A range of 1.2 moles is suitable. In addition, when sodium N-methyl-4-aminobutyrate is used in combination, the amount used is per 1.00 mol of alkali metal hydrosulfide.
A range of 0.9 to 1.2 moles is suitable. The organic amide polar solvent used in the method of the present invention includes N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl- It is selected from ε-caprolactam, hexamethylphosphoramide, etc., or a mixture thereof. Among these solvents, N-methyl-2-pyrrolidone (NMP) is particularly preferred. Examples of polymerization aids include organic sulfonic acid metal salts, lithium halides, carboxylic acid metal salts, and alkali phosphate salts. The organic sulfonic acid metal salt is selected from the group represented by the following general formulas. : : : : (In the formula, R 3 is hydrogen or has 1 to 30 carbon atoms.
an alkyl group, n represents an integer of 0, 1 or 2, M represents an alkali metal selected from sodium, potassium, rubidium and cesium, X is a direct bond, -CH 2 -, -C(CH 3 ) 2 −, −
O-, -S-, Indicates that it is selected from the group consisting of. ) Specific examples of acid group components constituting these metal sulfonates include benzenesulfonic acid, p-toluenesulfonic acid, 2,4-dimethylsulfonic acid, 2,5-dimethylbenzenesulfonic acid, and p-ethylbenzenesulfonic acid. , dodecylbenzenesulfonic acid, α-
naphthalenesulfonic acid, biphenylsulfonic acid,
Examples include alkylnaphthalene sulfonic acid, laurylbenzenesulfonic acid, and alkyl diphenyl ether disulfonic acid. The salts of these sulfonic acids may be either anhydrous salts or hydrated salts, or may be an aqueous solution, but it goes without saying that anhydrous salts are preferred from the purpose of the present invention. The lithium halide is selected from lithium chloride, lithium bromide, lithium iodide, and mixtures thereof. The organic group other than the carboxyl group of the organic carboxylic acid metal salt usually has 1 to 50 carbon atoms,
It may also contain nitrogen, oxygen, halogen, silicon, and sulfur, and is preferably an alkyl group, a cycloalkyl group, an aryl group, or an alkylaryl group. Further, the metal atom of the organic carboxylic acid metal salt is selected from lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, zinc, strontium, cadmium, and barium, and alkali metals are particularly preferred. Specific examples of organic carboxylic acid metal salts include lithium acetate,
Sodium acetate, potassium acetate, lithium propionate, sodium propionate, lithium 2-methylpropionate, rubidium butyrate, lithium valerate, sodium valerate, cesium hexanoate, lithium heptanoate, lithium 2-methyloctoate, potassium dodecanoate , rubidium 4-ethyl ettradecanoate, sodium octadecanoate, sodium heneicosanoate, lithium cyclohexanecarboxylate, cesium cyclododecanecarboxylate, sodium 3-methylcyclopentanecarboxylate, potassium cyclohexylacetate, potassium benzoate, lithium benzoate, benzoic acid. sodium acid, potassium m-tolylate, lithium phenyl acetate, sodium 4-phenylcyclohexanecarboxylate, potassium p-tolyl acetate, 4-
Lithium ethylcyclohexyl acetate, dilithium succinate, disodium succinate, dipotassium succinate, dilithium adipate, disodium adipate, dipotassium adipate, dilithium sebacate, disodium sebacate, dipotassium sebacate, Dilithium decanedicarboxylate, disodium decanedicarboxylate, dipotassium decanedicarboxylate, dilithium phthalate, disodium phthalate, dipotassium phthalate, dilithium isophthalate, disodium isophthalate, dipotassium isophthalate, terephthalic acid dilithium,
Disodium terephthalate, dipotassium terephthalate, trilithium trimellitate, trisodium trimellitate, tripotassium trimellitate, tetralithium pyromellitate, tetrasodium pyromellitate, tetrapotassium pyromellitate, dilithium toluenedicarboxylate, ditoluenedicarboxylate Sodium, dipotassium toluene dicarboxylate,
Mention may be made of dilithium naphthalene dicarboxylate, disodium naphthalene dicarboxylate, dipotassium naphthalene dicarboxylate, magnesium acetate, calcium acetate, calcium benzoate, and other similar salts and mixtures thereof. The alkali phosphate salt is selected from the group represented by the following general formulas. : : In the formula, R 4 is hydrogen, C 1 to C 20 alkyl, C 5 to
C20 cycloalkyl, C6 ~ C24 aryl, C7 ~
C24 alkaryl, C7 ~ C24 aralkyl, C2 ~
C24 alkenyl, C2 - C20 alkynyl or C5-
C 20 cycloalkenyl, M is an alkali metal, preferably sodium. Alkaline phosphate salts suitable for the present invention include trisodium phosphate and the disodium salts of the following acids. Methane-1-phosphonic acid, ethane-1-phosphonic acid, propane-1-phosphonic acid, butane-1-phosphonic acid, butane-2-phosphonic acid, pentane-1-phosphonic acid, cyclohexane-1-phosphonic acid
Phosphonic acid, vinyl-1-phosphonic acid,
propene-2-phosphonic acid, butene-2-phosphonic acid, indene-2-phosphonic acid,
Phenylmethanephosphonic acid, (4-methyl-
phenyl)-methane-phosphonic acid, β-naphthyl-methane-phosphonic acid, 2-phenyl-ethane-1-phosphonic acid, 2,2-diphenyl-ethane-1-phosphonic acid, 4-phenyl-
Butane-1-phosphonic acid, 2-phenyl-ethylene-1-phosphonic acid, 2,2-diphenylethylene-phosphonic acid, phenyl-acetylene-phosphonic acid, 4-phenyl-butadiene-phosphonic acid, benzene-phosphonic acid, 4-Methyl-benzene-phosphonic acid and 2-phenoxy-ethane-1-phosphonic acid. It is necessary to use at least one kind of these polymerization aids. As for the types thereof, organic sulfonic acid alkali salts and organic carboxylic acid salts are preferable. In particular, it is most preferable to use an organic sulfonic acid alkali salt and an organic carboxylic acid salt together. The ratio of each raw material used when producing a resin liquid consisting of a relatively high molecular weight arylene sulfide polymer layer and a relatively low molecular weight arylene sulfide polymer layer using each of the raw materials described above is as follows. It is. The amount of the sulfidizing agent used is selected such that the amount of sulfur element is 0.8 to 1.2 mol, preferably 0.9 to 1.1 mol, per mol of the polyhaloaromatic compound.
The amount of the amide polar solvent to be used is in a molar ratio of 2.5 to 20, preferably 3 to 10, relative to the dihaloaromatic compound. Further, the amount of the polymerization aid to be used is preferably within a range that allows it to be dissolved in the amide polar solvent during polymerization. Even if it is used above the solubility limit, it will not promote separation and is unnecessary. The amount of the polymerization aid that can be used in the method of the present invention varies depending on the type of compound used, but is usually in the range of 0.01 to 300% by weight, preferably 0.5 to 200% by weight, based on the polyhaloaromatic compound. The effect of such a polymerization auxiliary agent is not only to simply improve the polymerization reaction activity, but also to change the solubility of the polymer in the polymerization system, creating dense layers of relatively high molecular weight polymer and relatively low molecular weight polymer. By increasing the concentration of the active end of the polymer in a relatively high-molecular-weight polymer-rich layer, the reaction rate increases, and the two synergistically produce a layer rich in high-molecular-weight polymer. Infer. The polymerization reaction is carried out under an inert atmosphere, such as nitrogen gas,
The reaction is preferably carried out in carbon dioxide, and there is no particular restriction on the order in which the reaction components are mixed, and the above-mentioned components may be added in small portions or all at once during the polymerization step. It is also preferable to blow carbon dioxide during or at the end of the polymerization reaction, which not only prevents the decomposition of the arylene sulfide polymer and contributes to increasing the molecular weight of the resulting polymer, but also prevents the decomposition of N-methylpyrrolidone. effective. In the above resin liquid, there is a thick layer of relatively high molecular weight arylene sulfide polymer (hereinafter referred to as high molecular weight polymer) and a relatively low molecular weight arylene sulfide polymer (hereinafter referred to as low molecular weight polymer). In order to easily cause layer separation from the dense layer, it is preferable to select the conditions as shown below. Of course, conditions other than those shown below can be used as long as they cause layer separation. The ratio of the amide polar solvent/produced polymer is in the range of 20/1 to 1/2 by weight. This ratio
When the ratio exceeds 20/1, both the high molecular weight polymer and the low molecular weight polymer exist in a single layer, and the two layers are not separated. Further, when the ratio is less than 1/2, the high molecular weight polymer is not sufficiently dissolved, which is beyond the purpose of the present invention. Preferably, such a ratio is between 20/1 and 1/1. Further, the temperature range during polymerization is from 210°C to 300°C. At a temperature lower than 210°C, the high molecular weight polymer component does not dissolve in the solvent, which is beyond the purpose of the present invention, and at a temperature higher than 300°C, both the high molecular weight polymer component and the low molecular weight polymer component exist in a single layer and are not separated. A preferred temperature range is 220°C to 290°C. The polymerization aid/amide polar solvent ratio varies depending on the type of solvent and polymerization aid, but is generally 2/1 to 1/30 by weight, preferably 1/1 to 1/20.
It is. If this ratio exceeds 2/1, a phenomenon occurs in which the polymerization aid is not dissolved in the solvent or the polymer component, particularly the high molecular weight polymer component, is not dissolved. Further, when the ratio is less than 1/30, the separation effect is insufficient and the high molecular weight polymer component and the low molecular weight component exist in a single layer, which deviates from the object of the present invention. The pressure during polymerization may be any pressure at which the amide polar solvent and the polymerization aid substantially form a liquid phase.
Specifically, it is 1.5Kg/cm 2 to 100Kg/cm 2 . Preferably it is 1.5Kg/cm 2 to 30Kg/cm 2 . The reaction time varies depending on temperature and pressure, but generally ranges from 10 minutes to about 72 hours, preferably from 1 hour to 48 hours. There is no particular restriction on the method for separating the low molecular weight polymer layer from the resin liquid consisting of the high molecular weight polymer layer and the low molecular weight polymer layer obtained as described above. For example, it is possible to take out the high molecular weight polymer layer using a sample tube using a straw method while stirring is stopped or under laminar flow stirring, leaving the low molecular weight polymer layer as a residue, or it is also possible to selectively take out the low molecular weight polymer layer. Alternatively, it is also possible to selectively separate and take out both layers from the bottom of the pot.
However, the production of arylene sulfide polymers is generally carried out at high temperatures and under pressure if necessary.
Moreover, since the extraction is carried out at a high temperature, a reaction vessel such as an autoclave must be used in which the reaction state and the state of the produced resin liquid cannot be seen from the outside. Therefore, in the present invention, from the viewpoint of efficiently separating a high molecular weight polymer layer and a low molecular weight polymer layer from the produced resin liquid, generally the resin liquid taken out from the bottom of the pot (mainly the high molecular weight polymer layer formed in the lower layer of the produced resin liquid) The difference in logarithmic viscosity of the polymer (including the molecular weight polymer layer) is 0.1 or more, preferably 0.15 or more, compared to the logarithmic viscosity of the polymer of the low molecular weight polymer layer forming the upper layer of the produced resin liquid. is preferable. That is, it is preferable that the low molecular weight polymer layer remains inside the reaction vessel. In practice, it is industrially advantageous for the weight percentage of the resin liquid containing the high molecular weight polymer to be taken out from 30 to 70% by weight. Of course, it is also possible to take out the low molecular weight polymer layer from the upper part of the reaction vessel, and in this case, the difference in logarithmic viscosity between the polymer in the resin liquid taken out and the polymer in the resin liquid remaining in the reaction vessel is 0.1 or more, preferably 0.15. This is the above, and it is preferable to carry out the extraction so that the weight ratio taken out is 30 to 70% by weight. In the present invention, as a method for separating a high molecular weight polymer layer and a low molecular weight polymer layer, it can also be used in a sensor capable of detecting both layers. These sensors include differences in the physical properties of both layers, such as specific gravity, viscosity, dielectric constant, electrical conductivity, refractive index, light transmittance, and color difference. It is also possible to perform separate extraction by predicting the weights of both layers in advance and measuring changes in the amount taken out or the amount remaining. The separation method used in the present invention is not particularly limited to the methods described above, as long as it is a method that allows for separate collection. In the present invention, the reaction is carried out by adding the above-mentioned polyhaloaromatic compound and sulfidizing agent, and optionally the above-mentioned amide polar solvent and polymerization aid to the resin liquid mainly containing the low molecular weight polymer separated above. At this time, it is appropriate that the resin liquid has a polymer logarithmic viscosity of preferably 0.05 to 0.20, more preferably 0.07 to 0.19. The amount of the polyhaloaromatic compound added is preferably 20 to 100 parts by weight of the polymer in the resin liquid.
The amount is 3000 parts by weight, more preferably 50 to 2000 parts by weight. Further, the amount of the sulfidizing agent may be an amount corresponding to the proportion of the polyhaloaromatic compound used in producing the resin liquid. Further, the amount of the amide polar solvent added is preferably determined so that the resin concentration of the finally obtained resin liquid is 2 to 50% by weight. Furthermore, the amount of the polymerization aid added is preferably such that the weight ratio of the total weight of the amount of the polymerization aid remaining in the resin liquid to the total amount of the amide polar solvent is preferably 2/1.
It is from 1/30 to 1/30, more preferably from 1/1 to 1/20. Incidentally, the reaction conditions during polymerization, such as temperature and pressure, may be the same as those for producing the resin liquid described above. In the present invention, in particular, the logarithmic viscosity of the polymer is from 0.05 to
By manufacturing a high molecular weight polymer using a resin solution containing a low molecular weight polymer of 0.20, a high molecular weight polymer with a logarithmic viscosity of 0.24 or more is produced.
A resin liquid containing at least % by weight can be obtained. The resin liquid at this time is separated into a high molecular weight polymer layer and a low molecular weight polymer layer in the reaction vessel, and the low molecular weight polymer layer is usually the upper layer. The polymer layer and the low molecular weight polymer layer can be separated. Any conventional method may be used to collect the polymer from the resin liquid containing the high molecular weight polymer taken out. For example, a purified polymer can be obtained by removing the solvent from the resin liquid by distillation or flashing, and then washing with water or a poor solvent such as acetone or methanol. The production method of the present invention can produce a high molecular weight polymer containing almost no low molecular weight polymer. Of course, if a dense layer of low molecular weight polymer is removed, a low molecular weight polymer containing almost no high molecular weight polymer can be produced. The high molecular weight arylene sulfide polymer obtained by the present invention does not need to be heat-crosslinked in air, and can be used for fibers, sheets, film tubes, tubes, etc., which conventionally required particularly high molecular weight polymers. It can be used for extrusion molding and blow molding. Naturally, it can also be used for injection molding or compression molding, which are the main applications for conventional products. If necessary, it is also suitable to blend the arylene sulfide polymer obtained by the present invention with fillers, pigments, flame retardants, stabilizers and other polymers. For example, glass fibers can be added to improve mechanical strength and heat resistance. Hereinafter, the method of the present invention will be explained according to examples. The logarithmic viscosity value [η] of the arylene sulfide polymer was measured at 206°C in α-chlornaphthalene at a polymer concentration of 0.4 g/100 ml solution.
This is a value calculated according to the formula [η]= lo (relative viscosity)/polymer concentration. [Example] Next, the present invention will be further explained with reference to Examples. Note that parts and percentages in the examples are based on weight. Synthesis Examples 1 to 4 43.20 kg (436 mol) of N-methylpyrrolidone was placed in a 15 autoclave having an outlet at the bottom of the container.
Sodium hydroxide 0.084Kg (2.1mol), 60% sodium sulfide flakes 8.86Kg (68.2mol) and sodium p-toluenesulfonate 16.29Kg (80mol)
The temperature was gradually raised from 160℃ to 205℃ over 2 hours while stirring under a nitrogen atmosphere, and the water was heated to 3.6℃.
kg, and a fraction consisting of 0.4 kg of N-methylpyrrolidone was removed from the system. Thereafter, 10.02 kg (68.2 mol) of p-dichlorobenzene, 0.018 kg (0.1 mol) of 1,2,4-trichlorobenzene, and 10.80 kg (109 mol) of N-methylpyrrolidone were added. then
The reaction was carried out at 220°C for 1 hour and then at 260°C and a pressure of 10 kg/cm 2 for 3 hours. A portion of the surface layer of the produced resin liquid was taken from the upper part of the reaction vessel and the logarithmic viscosity of the polymer was measured and found to be 0.18. Further, when the resin liquid was sampled from the bottom of the reaction vessel and the logarithmic viscosity of the polymer was similarly measured, it was found to be 0.310. Next, set the extraction container at the bottom of the extraction port,
30 seconds after stopping stirring, adjust the opening cross-sectional area of the outlet to 5 mm 2 and start taking out at 260°C, until the resin liquid (high molecular weight polymer content) reaches 40.1% (taken out amount) of the produced resin shown in Table 1. was collected. The low-molecular-weight polymer was used as the residue. amount of polymer and logarithmic viscosity for each,
The amount of polymerization aid and solvent was investigated. This was designated as Synthesis Example 1. Next, polymerization was carried out in the same manner as in Synthesis Example 1, and low molecular weight polymers were fractionated as shown in Table 1 (Synthesis Examples 2 to 4). The results are shown in Table 1.

【表】【table】

【表】 実施例 1〜4 合成例1〜4で得た各釜残分の低分子量ポリマ
ーにそれぞれ表2に示す如く原料を添加し、以
下、合成例1と同様にして反応せしめ、それぞれ
表2に示す取出割合で高分子量ポリマーを取り出
した。結果を表2に示す。
[Table] Examples 1 to 4 Raw materials as shown in Table 2 were added to the low molecular weight polymers obtained in each pot residue obtained in Synthesis Examples 1 to 4, and then reacted in the same manner as in Synthesis Example 1. A high molecular weight polymer was taken out at the extraction rate shown in 2. The results are shown in Table 2.

【表】【table】

【表】 表2からわかるように、高分子量ポリマーの分
別取出が可能で、しかも各合成例に比べてその分
子量は高く、またその生成割合も高い。 合成例 5〜12 合成例1における取出温度及び取出割合を表3
に示す条件に代えて実施した。その結果を表3に
示す。
[Table] As can be seen from Table 2, it is possible to separate and extract high molecular weight polymers, and moreover, the molecular weight is higher than in each synthesis example, and the production rate is also high. Synthesis Examples 5 to 12 Table 3 shows the extraction temperature and extraction ratio in Synthesis Example 1.
The experiment was carried out under the conditions shown in . The results are shown in Table 3.

【表】【table】

【表】 実施例 5〜12 合成例5〜12で得た各釜残分の低分子量ポリマ
ーにそれぞれ表4に示す如く原料を添加し、以下
それぞれ合成例5〜12と同様にして反応せしめ、
表4に示す取出割合で高分子量ポリマーを取り出
した。結果を表4に示す。
[Table] Examples 5 to 12 Raw materials as shown in Table 4 were added to the low molecular weight polymers obtained in each pot residue obtained in Synthesis Examples 5 to 12, and reacted in the same manner as in Synthesis Examples 5 to 12, respectively.
A high molecular weight polymer was extracted at the extraction ratio shown in Table 4. The results are shown in Table 4.

【表】【table】

【表】 合成例 13〜15 合成例1において、原料を表5に示す如くに代
えて実施した。その結果を表5に示す。
[Table] Synthesis Examples 13 to 15 Synthesis Example 1 was carried out by changing the raw materials as shown in Table 5. The results are shown in Table 5.

【表】【table】

【表】 実施例 13〜15 合成例13〜15で得た各釜残分の低分子量ポリマ
ーにそれぞれ表6に示す如く原料を添加し、以下
それぞれ合成例13〜15と同様にして反応せしめ、
表6に示す取出割合で高分子量ポリマーを取り出
した。結果を表6に示す。
[Table] Examples 13 to 15 Raw materials as shown in Table 6 were added to the low molecular weight polymers obtained in each pot residue obtained in Synthesis Examples 13 to 15, and reacted in the same manner as in Synthesis Examples 13 to 15, respectively.
A high molecular weight polymer was extracted at the extraction ratio shown in Table 6. The results are shown in Table 6.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アミド系極性溶媒中で、重合助剤の存在下ポ
リハロ芳香族化合物とスルフイド化剤とを反応せ
しめた後、比較的高分子量ポリマーの濃厚層
()と比較的低分子量ポリマーの濃厚層()
とからなる生成樹脂液から主に比較的低分子量ポ
リマーを含む樹脂液を分別し、次いでこれにポリ
ハロ芳香族化合物及びスルフイド化剤、必要によ
りアミド系極性溶媒及び重合助剤を加えて反応せ
しめることを特徴とする高分子量アリーレンスル
フイドポリマーの製造方法。
1 After reacting a polyhaloaromatic compound and a sulfiding agent in the presence of a polymerization aid in an amide polar solvent, a thick layer of relatively high molecular weight polymer () and a thick layer of relatively low molecular weight polymer () are formed.
A resin liquid containing mainly a relatively low molecular weight polymer is separated from the resin liquid produced, and then a polyhaloaromatic compound and a sulfiding agent, and if necessary, an amide polar solvent and a polymerization aid are added and reacted. A method for producing a high molecular weight arylene sulfide polymer characterized by:
JP59198566A 1984-07-31 1984-09-25 Production of arylene sulfide polymer having high molecular weight Granted JPS6176528A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59198566A JPS6176528A (en) 1984-09-25 1984-09-25 Production of arylene sulfide polymer having high molecular weight
DE3527492A DE3527492C2 (en) 1984-07-31 1985-07-31 Process for the preparation of a polyarylene sulfide polymer
US07/213,436 US4960861A (en) 1984-07-31 1988-06-27 Multi layer process for producing arylene sulfide polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59198566A JPS6176528A (en) 1984-09-25 1984-09-25 Production of arylene sulfide polymer having high molecular weight

Publications (2)

Publication Number Publication Date
JPS6176528A JPS6176528A (en) 1986-04-19
JPH0542461B2 true JPH0542461B2 (en) 1993-06-28

Family

ID=16393307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59198566A Granted JPS6176528A (en) 1984-07-31 1984-09-25 Production of arylene sulfide polymer having high molecular weight

Country Status (1)

Country Link
JP (1) JPS6176528A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107637A (en) * 1988-10-17 1990-04-19 Idemitsu Petrochem Co Ltd Production of polyarylene sulfide
US5334701A (en) * 1992-10-23 1994-08-02 Phillips Petroleum Company Process for the removal of lower molecular weight fractions of poly(arylene sulfide) polymers
DE19513479A1 (en) * 1995-04-13 1996-10-17 Hoechst Ag Process for the preparation of polyarylene sulfide
DE19614126A1 (en) * 1996-04-11 1997-10-16 Hoechst Ag Polyarylene sulfides with a narrow molecular weight distribution and process for their preparation
US6201097B1 (en) * 1998-12-31 2001-03-13 Phillips Petroleum Company Process for producing poly (arylene sulfide)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212240A (en) * 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JPS591536A (en) * 1982-06-04 1984-01-06 フイリツプス・ペトロリユ−ム・コンパニ− Recovery of granular poly(arylene sulfide)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212240A (en) * 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JPS591536A (en) * 1982-06-04 1984-01-06 フイリツプス・ペトロリユ−ム・コンパニ− Recovery of granular poly(arylene sulfide)

Also Published As

Publication number Publication date
JPS6176528A (en) 1986-04-19

Similar Documents

Publication Publication Date Title
JPH0160047B2 (en)
JPS63243134A (en) Production of polyarylene sulfide
JPH0477015B2 (en)
US4595748A (en) Process for the preparation of high molecular weight, optionally branched polyarylene sulphides
US4960861A (en) Multi layer process for producing arylene sulfide polymers
JPH0231735B2 (en)
JPS6324531B2 (en)
JPH0645688B2 (en) Process for the production of high molecular weight optionally branched polyarylene sulfides
US4900808A (en) Process for the production of high molecular weight, optionally branched polyarylene sulphides in polar solvent and lactam
JPH0542461B2 (en)
JPH0645689B2 (en) Method for producing polyarylene sulfide
JPS6147732A (en) Manufacture of high molecular, optionally branched polyarylene sulfide
JPS59197430A (en) Manufacture of polyarylene sulfides
JPH0645690B2 (en) Process for producing polyarylens sulfides, which may be branched with high molecular weight
JPS62195022A (en) Production of high-molecular-weight arylene sulfide polymer
JPH0542458B2 (en)
JPS62190228A (en) Production of polyarylene sulfide
US4451644A (en) Process for the production of polyarylene (sulphides) having an increased thermal and chemical resistance and an improved color quality
US4794162A (en) Preparation of high molecular weight polyarylene sulfide with mixing of polyarylene sulfide with sulfur
JPH01153727A (en) Production of polyarylene sulfide adjustable to specific melt viscosity
JP2022126431A (en) Method for producing purified polyarylene sulfide
JPS61111329A (en) Production of arylene sulfide polymer
JPH0613609B2 (en) A method of making Allen Sulfide polymer
JPH072846B2 (en) Method for producing polyphenylene sulfide
JP2555997B2 (en) Polymer manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees