JPH0542458B2 - - Google Patents

Info

Publication number
JPH0542458B2
JPH0542458B2 JP59160936A JP16093684A JPH0542458B2 JP H0542458 B2 JPH0542458 B2 JP H0542458B2 JP 59160936 A JP59160936 A JP 59160936A JP 16093684 A JP16093684 A JP 16093684A JP H0542458 B2 JPH0542458 B2 JP H0542458B2
Authority
JP
Japan
Prior art keywords
molecular weight
polymer
polymerization
sulfide
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59160936A
Other languages
Japanese (ja)
Other versions
JPS6140323A (en
Inventor
Koichi Kodera
Toheiji Kawabata
Sugio Hasegawa
Toshinori Sugie
Fumihiro Furuhata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP16093684A priority Critical patent/JPS6140323A/en
Priority to DE3527492A priority patent/DE3527492C2/en
Publication of JPS6140323A publication Critical patent/JPS6140323A/en
Priority to US07/213,436 priority patent/US4960861A/en
Publication of JPH0542458B2 publication Critical patent/JPH0542458B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアリーレンスルフイドポリマーの製造
方法に関する。 ポリフエニレンスルフイドを代表とするアリー
レンスルフイドポリマーは特公昭45−3368号に開
示されている如き方法で製造されている。即ち、
N−メチルピロリドン等の有機溶媒中でp−ジク
ロルベンゼンと硫化ナトリウムを反応して得た樹
脂液を反応容器から取り出し、次いで溶媒を除い
て製造されている。この方法で得られるポリフエ
ニレンスルフイドは極めて低重合度でありこのま
までは使用に適さず、工業的にはこの低重合度ポ
リマーを空気中で加熱し、酸化架橋させ、三次元
架橋により高分子量化して射出成形用などの実用
用途に使用されている。しかしこの高分子量化さ
れたものでも押出成形性に劣り、繊維、フイル
ム、パイプ、シートなどの用途には使うことがで
きなかつた。 又、重合反応により比較的高分子量のアリーレ
ンスルフイドポリマーを得る方法も既に公知であ
る。すなわち、特開昭53−136100、特開昭51−
144495、特開昭51−144497、特開昭56−28217号
に示される如く、各種の重合助剤の存在下で重合
反応を行なうことにより比較的高分子量のポリマ
ーが得られる。 しかしながら、多くの用途においては従来より
も更に狭い範囲の分子量分布を有する比較的高分
子量アリーレンスルフイドポリマー、特に低分子
量成分を含まないアリーレンスルフイドポリマー
が要求されている。これを目的とする特許も既に
開示されている。すなわち特公昭48−16078には
低分子量ポリフエニレンスルフイドポリマーを適
当な溶剤で溶剤抽出し回収し重合時モノマーとと
もに使用することにより、より高い分子量のポリ
フエニレンスルフイドを得る方法が示されてい
る。しかしながらこの方法はいくつかの問題点が
ある。第1に、重合工程の後で溶媒抽出工程が必
要なことである。すなわち、重合工程により製造
される生成物は低分子量ポリマーと高分子量ポリ
マーとの混合物であり、これを分別するためには
別に溶媒抽出工程が必要となる。この抽出工程は
N−メチルピロリドンを用いて135〜148.9℃の温
度範囲で、あるいは79.4〜148.9℃の温度範囲に
おけるベンゼンを用いて、また110〜148.9℃の温
度範囲におけるトルエンおよびその類似物で行な
い、抽出溶媒が重合溶媒と異なる場合は勿論であ
るが、同じ場合でも抽出温度が重合温度と異な
る。第2にはこの特許の実施例から明らかな如
く、きわめて低分子量のアリーレンスルフイドポ
リマーしか分別できず、残分の樹脂液中のポリマ
ーが比較的低分子量のポリマーを多く含むため分
子量分布の狭い比較的高分子量のポリマーを得る
ことが難しいことである。 本発明者らは鋭意検討の結果、重合反応により
比較的高分子量アリーレンスルフイドポリマーを
得る際、特定の溶媒を用い、ある特定のポリマ
ー/溶媒の比、温度、圧力の組合せの場合によつ
て比較的高分子量ポリマーを含む液層と低分子量
ポリマーを含む液相とが別個に存在し、分別しう
ることを見出し、本発明に到達した。 すなわち、本発明はアミド系極性溶媒中で、重
合助剤の存在下ポリハロ芳香族化合物とスルフイ
ド化剤とを反応せしめた後、比較的高分子量ポリ
マーの濃厚層()と比較的低分子量ポリマーの
濃厚層()とからなる生成樹脂液から該層
()又は該層()を分別することを特徴とす
るポリアリーレンスルフイドポリマーの製造方法
を提供する。 本発明を実施するためには、比較的高分子量ポ
リマーを重合反応にて生成せしめるのが前提条件
となる。そのためには、例えば有機アミド系の極
性溶媒中で、重合助剤の存在下、ポリハロ芳香族
化合物とスルフイド化剤とを少なくとも200℃以
上の高温で重合反応せしめる必要がある。本発明
ではアリーレンスルフイドポリマーの200℃以下
での溶解不溶性、200℃以上での溶解性、特にそ
の温度依存性、及び重合溶媒及び重合助剤の溶解
性に及ぼす影響、系の比重等を考慮し、生成樹脂
液を比較的高分子量と比較的低分子量のアリーレ
ンスルフイドポリマーとを2層に分離せしめる。 本発明の方法で用いるポリハロ芳香族化合物は
芳香核に直接結合した2個以上のハロゲン原子を
有するハロゲン化芳香族化合物であり、具体的に
はp−ジクロルベンゼン、m−ジクロルベンゼ
ン、o−ジクロルベンゼン、トリクロルベンゼ
ン、テトラクロルベンゼン、ジクロルナフタレ
ン、トリクロルナフタレン、ジブロムベンゼン、
トリブロムベンゼン、ジブロムナフタレン、ジヨ
ードベンゼン、トリヨードベンゼン、ジクロルジ
フエニルスルホン、ジブロムジフエニルスルホ
ン、ジクロルベンゾフエノン、ジブロムベンゾフ
エノン、ジクロルジフエニルエーテル、ジブロム
ジフエニルエーテル、ジクロルジフエニルスルフ
イド、ジブロムジフエニルスルフイド、ジクロル
ビフエニル、ジブロムビフエニル等およびこれら
の混合物が挙げられる。通常はジハロ芳香族化合
物が使用され、好適にはp−ジクロルベンゼンが
使用される。尚、分岐構造によるポリマーの粘度
増大を図るために、1分子中に3個以上のハロゲ
ン置換基をもつポリハロ芳香族化合物を少量ジハ
ロ芳香族化合物と併用させてもよい。 本発明で用いられるスルフイド化剤としては、
硫化アルカリ金属化合物;イオウ源と水酸化アル
カリ金属化合物の併用等が挙げられる。 硫化アルカリ金属化合物としては硫化リチウ
ム、硫化ナトリウム、硫化カリウム、硫化ルビジ
ウム、硫化セシウム、およびこれらの混合物が含
まれる。かかる硫化アルカリ金属化合物は水和物
および/または水性混合物として、あるいは無水
の形として用いることができる。なお、硫化アル
カリ金属中に微量存在する重硫化アルカリ金属、
チオ硫酸アルカリ金属と反応させるために少量の
水酸化アルカリ金属を加えても問題ない。尚、硫
化アルカリ金属化合物としては1〜2水塩の硫化
ナトリウムが好ましい。 イオウ源としては、例えば水硫化アルカリ金属
化合物、硫化水素、チオアミド、チオ尿素、チオ
カルバネート、チオカルボン酸、二酸化炭素、チ
オカルボキシレート、イオウ、五硫化燐等であ
る。好ましいイオウ源としては水硫化アルカリ金
属化合物である。特に水硫化アルカリ金属化合物
としては、水硫化リチウム、水硫化ナトリウム、
水硫化カリウム、水硫化ルビジウム、水硫化セシ
ウムおよびこれらの混合物が含まれる。かかる水
硫化アルカリ金属化合物は水和物および/または
水性混合物あるいは無水の形で用いることができ
る。かかる水硫化アルカリ金属化合物としては水
硫化ナトリウムが好ましく、水酸化アルカリ金属
化合物と併用して用いられるが、該化合物の代わ
りにN−メチル−4−アミノ酪酸ナトリウム又は
炭酸アルカリ金属化合物を併用しても良い。 又、水酸化アルカリ金属化合物としては、水酸
化カリウム、水酸化ナトリウム、水酸化リチウ
ム、水酸化ルビジウム、水酸化セシウムおよびこ
れらの混合物が挙げられ、水酸化ナトリウムが好
ましい。 尚、イオウ源と水酸化アルカリ金属化合物との
割合はイオウ元素1モルに対して水酸化アルカリ
金属化合物0.8〜3.0モルが適当である。特に水酸
化アルカリ金属化合物を併用する場合その使用量
は水硫化アルカリ金属化合物1.00モルに対し0.9
〜1.2モルの範囲が適当である。又、N−メチル
−4−アミノ酪酸ナトリウムを併用する場合のそ
の使用量はアルカリ金属水硫化物1.00モルに対し
0.9〜1.2モルの範囲が適当である。 上記硫化アルカリ金属化合物又は水硫化アルカ
リ金属化合物の各水和物を使用する場合には予め
溶媒中で脱水せしめた後に反応に用いる必要があ
る。尚、水硫化アルカリ金属化合物の脱水の際に
は水酸化アルカリ金属化合物又はN−メチル−4
−アミノ酪酸ナトリウムを共存せしめた方がよ
い。 本発明の方法において使用される有機アミド系
極性溶媒としてはN,N−ジメチルホルムアミ
ド、N,N−ジメチルアセトアミド、N−メチル
−2−ピロリドン、N−エチル−2−ピロリド
ン、N−メチル−ε−カプロラクタム、ヘキサメ
チルホスホルアミド等あるいはこれらの混合物よ
り選択される。これらの溶媒のうちではN−メチ
ル−2−ピロリドン(NMP)が特に好ましい。 本発明で用いられるスルフイド化剤の使用量は
ジハロ芳香族化合物1モルに対してイオウ元素が
0.8〜1.2モル、好ましくは0.9〜1.1モルとなるよ
うに選択される。又、有機極性溶媒の使用量はジ
ハロ芳香族化合物に対するモル比で2.5ないし20
の範囲で、好ましくは3ないし10の範囲である。 重合助剤としては有機スルホン酸金属塩、ハロ
ゲン化リチウム、カルボン酸金属塩、リン酸アル
カリ塩がある。 有機スルホン酸金属塩は下記一般式〜に示
される群から選ばれる。 : (式中、R3は水素もしくは炭素数1ないし30
のアルキル基、nは0,1あるいは2の整数をあ
らわし、Mはナトリウム、カリウム、ルビジウム
およびセシウムから選ばれたアルカリ金属をあら
わし、Xは直接結合、−CH2−、−C(CH32−、−
O−、−S−、 からなる群から選ばれることを示す。)これらの
スルホン酸金属を構成する酸基成分の具体例とし
ては、ベンゼンスルホン酸、p−トルエンスルホ
ン酸、2,4−ジメチルスルホン酸、2,5−ジ
メチルベンゼンスルホン酸、p−エチルベンゼン
スルホン酸、ドデシルベンゼンスルホン酸、α−
ナフタレンスルホン酸、ビフエニルスルホン酸、
アルキルナフタレンスルホン酸、ラウリルベンゼ
ンスルホン酸およびアルキルジフエニルエーテル
ジスルホン酸などが挙げられる。これらのスルホ
ン酸の塩は無水塩あるいは水和塩のいずれでもよ
いし、また水溶液でもかまわないが、本発明の目
的から無水塩のものが好ましいことは言うまでも
ない。 ハロゲン化リチウムは塩化リチウム、臭化リチ
ウム、沃化リチウム、及びその混合物より選ばれ
る。 有機カルホン酸金属塩のカルボキシル基を除く
有機基は通常、その炭素数が1ないし50であり、
また窒素、酸素、ハロゲン、ケイ素、イオウを含
んでいてもよく、好ましくはアルキル基、シクロ
アルキル基、アリール基およびアルキルアリール
基である。また、有機カルボン酸金属塩の金属原
子はリチウム、ナトリウム、カリウム、ルビジウ
ム、セシウム、マグネシウム、カルシウム、亜
鉛、ストロンチウム、カドミウム、バリウムから
選ばれ、特にアルカリ金属が好ましい。有機カル
ボン酸金属塩の具体例としては、酢酸リチウム、
酢酸ナトリウム、酢酸カリウム、プロピオン酸リ
チウム、プロピオン酸ナトリウム、2−メチルプ
ロピオン酸リチウム、酪酸ルビジウム、吉草酸リ
チウム、吉草酸ナトリウム、ヘキサン酸セシウ
ム、ヘプタン酸リチウム、2−メチルオクタン酸
リチウム、ドデカン酸カリウム、4−エチルエト
ラデカン酸ルビジウム、オクタデカン酸ナトリウ
ム、ヘンエイコサン酸ナトリウム、シクロヘキサ
ンカルボン酸リチウム、シクロドデカンカルボン
酸セシウム、3−メチルシクロペンタンカルボン
酸ナトリウム、シクロヘキシル酢酸カリウム、安
息香酸カリウム、安息香酸リチウム、安息香酸ナ
トリウム、m−トルイル酸カリウム、フエニル酢
酸リチウム、4−フエニルシクロヘキサンカルボ
ン酸ナトリウム、p−トリル酢酸カリウム、4−
エチルシクロヘキシル酢酸リチウム、コハク酸二
リチウム、コハク酸二ナトリウム、コハク酸二カ
リウム、アジピン酸二リチウム、アジピン酸二ナ
トリウム、アジピン酸二カリウム、セバシン酸二
リチウム、セバシン酸二ナトリウム、セバシン酸
二カリウム、デカンジカルボン酸二リチウム、デ
カンジカルボン酸二ナトリウム、デカンジカルボ
ン酸二ナトリウム、デカンジカルボン酸二カリウ
ム、フタル酸二リチウム、フタル酸二ナトリウ
ム、フタル酸二カリウム、イソフタル酸二リチウ
ム、イソフタル酸二ナトリウム、イソフタル酸二
カリウム、テレフタル酸二リチウム、テレフタル
酸二ナトリウム、テレフタル酸二カリウム、トリ
メリツト酸三リチウム、トリメリツト酸三ナトリ
ウム、トリメリツト酸三カリウム、ピロメリツト
酸四リチウム、ピロメリツト酸四ナトリウム、ピ
ロメリツト酸四カリウム、トルエンジカルボン酸
二リチウム、トルエンジカルボン酸二ナトリウ
ム、トルエンジカルボン酸二カリウム、ナフタレ
ンジカルボン酸二リチウム、ナフタレンジカルボ
ン酸二ナトリウム、ナフタレンジカルボン酸二カ
リウム、酢酸マグネシウム、酢酸カルシウム、安
息香酸カルシウム、その他の同種類の塩およびそ
れらの混合物が挙げられる。 リン酸アルカリ塩は下記一般式−に示され
る群から選ばれる。 : 式中R4は水素、C1〜C20のアルキル、C5〜C20
のシクロアルキル、C6〜C24のアリール、C7〜C24
のアルカリール、C7〜C24のアラルキル、C2〜C24
のアルケニル、C2〜C20のアルキニル又はC5〜C20
のシクロアルケニルであり、Mはアルカリ金属好
ましくはナトリウムである。本発明に適したリン
酸アルカリ塩としてはリン酸三ナトリウムおよび
次の酸の二ナトリウム塩である。メタンフオスフ
オン酸、エタン−1−フオスフオン酸、プロパン
−1−フオスフオン酸、ブタン−1−フオスフオ
ン酸、ブタン−2−フオスフオン酸、ペンタン−
1−フオスフオン酸、シクロヘキサン−1−フオ
スフオン酸、ビニル−1−フオスフオン酸、プロ
ペン−2−フオスフオン酸、ブテン−2−フオス
フオン酸、インデン−2−フオスフオン酸、フエ
ニルメタンフオスフオン酸、(4−メチル−フエ
ニル)−メタン−フオスフオン酸、β−ナフチル
−メタンフオスフオン酸、2−フエニル−エタン
−1−フオスフオン酸、2,2−ジフエニル−エ
タン−1−フオスフオン酸、4−フエニル−ブタ
ン−1−フオスフオン酸、2−フエニル−エチレ
ン−1−フオスフオン酸、2,2−ジフエニルエ
チレン−フオスフオン酸、フエニル−アセチレン
−フオスフオン酸、4−フエニル−ブタジエン−
フオスフオン酸、ベンゼン−フオスフオン酸、4
−メチル−ベンゼン−フオスフオン酸及び2−フ
エノキシ−エタン−1−フオスフオン酸。 これらの重合助剤はすくなくとも一種類以上使
用することが必要である。また、その種類として
は有機スルホン酸アルカリ塩および、有機カルボ
ン酸塩が好ましい。特に、有機スルホン酸アルカ
リ塩と有機カルボン酸塩を併用することが最も好
ましい。 かかる重合助剤の使用量は重合時のアミド系極
性溶媒に溶解する範囲内で使用することが好まし
い。溶解限度以上に使用しても分離を促進せず不
必要である。本発明の方法で使用できる重合助剤
の添加量は用いる化合物の種類により異なるが、
通常、ポリハロ芳香族化合物に対して0.01ないし
300重量%、好ましくは0.5ないし200重量%の範
囲である。 かかる重合助剤の効果はただ単に重合反応活性
の向上のみでなく重合系におけるポリマーの系へ
の溶解性を変えるため比較的高分子量ポリマーと
比較的低分子量ポリマーの各濃厚層を生ぜしめ、
加えて比較的高分子量ポリマー濃厚層に於けるポ
リマーの活性末端が高濃度化することによつて反
応速度が増大し、両者が相乗してより高分子量の
ポリマーを濃厚に含む層を生成せしめるものと推
察する。 本発明で重合が行なわれる反応温度は一般に
200℃〜330℃、好ましくは210℃〜300℃である。
圧力は重合溶媒および重合モノマーであるハロ芳
香族化合物を実質的に液相に保持するような範囲
であるべきであり、一般に1.1Kg/cm2〜200Kg/
cm2、好ましくは1.1Kg/cm2〜20Kg/cm2の範囲より
選択される。反応時間は温度および圧力により異
なるが、一般に10分ないし約72時間の範囲であ
り、望ましくは1時間ないし48時間である。 重合反応は不活性雰囲気下、例えば窒素ガス、
二酸化炭素中で行なうのが好ましく、又、各反応
成分の混合の順序には特に制限はなく、重合工程
に際して上記成分を部分的に少量づつあるいは一
時に添加することにより行なわれる。また重合反
応途中あるいは重合終了時に二酸化炭素を吹き込
むのが好ましく、これはポリアリ−レンスルフイ
ドの分解を防止し、生成ポリマーの高分子量化に
寄与するのみならずN−メチルピロリドンの分解
防止にも効果がある。 本発明に於いて、比較的高分子量のポリマー
(以下、高分子量ポリマーと称す)の濃厚層と比
較的低分子量のポリマー(以下、低分子量ポリマ
ーと称す)の濃厚層との層分離を容易に生じせし
めるためには、以下に示す如き条件を選択するの
が好ましい。勿論、以下に示す条件以外でも層分
離が生じる条件であれば採用することができる。 前記アミド系極性溶媒生成ポリマー比が重量比
で20/1乃至1/2の範囲である。この比が20/
1を越えるとき高分子量ポリマーも低分子量ポリ
マーも単一層に存在し、2層分離しない。また比
が1/2未満のとき高分子量ポリマーが十分に溶
解せず、本発明の目的より外れる。かかる比は
20/1乃至1/1であることが好ましい。 また、重合時の温度範囲は210℃乃至300℃の温
度である。210℃より低い温度では高分子量ポリ
マー成分が溶媒に溶解せず、本発明の目的より外
れ、300℃より高い温度では高分子量ポリマー成
分も低分子量ポリマー成分も単一層に存在して分
離しない。220℃乃至290℃が好ましい温度範囲で
ある。 重合助剤/アミド系極性溶媒比は、溶媒及び重
合助剤の種類により異なるが、一般に重量比で
2/1乃至1/30である。この比が2/1を越え
ると、重合助剤が溶媒に溶解しなかつたり、ポリ
マー成分、特に高分子量ポリマー成分が溶解しな
かつたりする現象が生じる。また、比が1/30未
満のとき、分離効果が十分でなく高分子量ポリマ
ー成分と低分子量成分が単一層に存在し本発明の
目的を逸脱する。 重合時の圧力はアミド系極性溶媒および重合助
剤が実質的に液相を形成する圧力であればよい。
具体的には1.5Kg/cm2乃至は100Kg/cm2である。好
ましくは1.5Kg/cm2乃至は30Kg/cm2である。 これらの分別取出時の溶媒/ポリマー比、重合
助剤/溶媒比、温度、圧力などの諸条件は好適な
重合条件の範囲内にあり、重合反応がある一定の
度合以上に進んだ時点でそのまま分別し、取出す
ことが行なわれる。しかしながら重合時と分別取
出時の条件が異なつていても前述の条件に合致す
れば差し支えない。たとえば、溶媒/ポリマー比
については分別取出前に系内への追加仕込あるい
は蒸留による系外への除去などの操作によりその
比を変動せしめることも好適に行なうことができ
る。 分別取出の方法には特に制限はない。たとえば
攪拌停止状態または層流攪拌状態下でストロー方
式でサンプル管により高分子量ポリマー層または
低分子量ポリマー層を選択的に取出すことも可能
であり、あるいは釜下部より両層を選択的に順次
分別して取出すことも可能である。しかし、一般
にアリーレンスルフイドポリマーの製造では高温
で、必要により加圧して行なわれ、しかも取出し
を高温で行なうため、反応状態及び生成樹脂液の
状態が外部から見ることができない反応容器、例
えばオートクレーブ等を用いなければならない。
そのため、本発明では生成樹脂液から高分子量ポ
リマー層及び低分子量ポリマー層を効率的に分離
する観点から、一般に下層に形成される高分子量
ポリマー層が主成分である取出し樹脂液のポリマ
ーの対数粘度が生成樹脂液の上層を形成する低分
子量ポリマー層のポリマーの対数粘度に比べ対数
粘度の差が0.1以上、好ましくは0.15以上となる
ように分別されるのが好ましい。実際的には取出
し重量割合が30〜70重量%であるのが工業的に有
利である。勿論、反応容器の上部から低分子量ポ
リマー層を取出しても差しつかえなく、その際取
出した樹脂液のポリマーと反応容器に残存する樹
脂液のポリマーとの対数粘度の差が0.1以上、好
ましくは0.15以上であり、取出し重量割合が30〜
70重量%となるように行なわれるのが好適であ
る。 本発明に於いて高分子量ポリマー層と低分子量
ポリマー層とを分離する方法として、両層を検出
できるセンサーで用いることもできる。これらの
センサーとしては両層の物理的性質の差すなわ
ち、比重、粘度、誘電率、導電率、屈折率、光透
過率、色差などがある。また両層の重量をあらか
じめ予測し、取出量あるいは残存量の変化を測定
することにより分別取出を行なうことも可能であ
る。分別取出ができる方法であればよく、このよ
うな方法にとくに拘わるものではない。 本発明によつて取り出された樹脂液からポリマ
ーを採取する方法は通常の方法で差しつかえな
い。例えば、樹脂液から蒸留もしくはフラツシユ
により溶媒を除去し、次いで水あるいはアセト
ン、メタノールなどの貧溶媒で洗浄して精製ポリ
マーを得ることができる。 本発明の製造方法は低分子量ポリマー分をほと
んど含まない高分子量ポリマーを製造することが
できる。勿論低分子量ポリマーの濃厚層を取り出
した場合には高分子量ポリマーをほとんど含まな
い低分子量ポリマーを製造することができる。本
発明によつて得られる高分子量のアリーレンスル
フイドポリマーは、空気中で加熱架橋処理する必
要がないのは勿論、従来特に高分子量ポリマーが
必要であつた繊維、シート、フイルム管、チユー
ブなどの押出成形用、ブロー成形用に用いること
ができる。また、当然のことながら従来品の主要
途である射出成形もしくは圧縮成形用途にも用い
ることができる。 必要ならば本発明によつて得られるアリーレン
スルフイドポリマーに充填剤、顔料、難燃剤、安
定化剤、他のポリマーと配合することも好適であ
る。例えば、機械強度および耐熱性を向上させる
ためにガラス繊維を配合することもできる。 以下、本発明の方法を実施例に従つて説明す
る。アリーレンスルフイドポリマーの対数粘度値
〔η〕は0.4g/100ml溶液なるポリマー濃度にお
いて、α−クロルナフタレン中206℃で測定し、
式 〔η〕=lo(相対粘度)/ポリマー濃度 に従い算出した値である。 尚、例中の部および%は重量基準である。 実施例 1 容器の最下部に取出口を有する150lオートクレ
ーブにN−メチルピロリドン43.20Kg(436モル)、
水酸化ナトリウム0.084Kg(2.1モル)、60%硫化
ソーダフレーク8.86Kg(68.2モル)およびp−ト
ルエンスルホン酸ナトリウム16.29Kg(80モル)
を仕込み、窒素雰囲気下で攪拌しながら160℃よ
り205℃まで2時間を要して徐々に昇温して水3.6
Kg、N−メチルピロリドン0.4Kgからなる留分を
系外に除去した。そののち、p−ジクロルベンゼ
ン10.02Kg(68.2モル)、1,2,4−トリクロル
ベンゼン0.018Kg(0.1モル)およびN−メチルピ
ロリドン10.80Kg(109モル)を加えた。次いで
220℃で1時間、更に260℃、圧力10Kg/cm2で3時
間反応せしめた。 反応容器の上部から生成樹脂液の表層部分の一
部を取り、ポリマーの対数粘度を測定したとこ
ろ、0.14であつた。又、反応容器の最下部から樹
脂液をサンプリングして同様にポリマーの対数粘
度を測定したところ0.310であつた。 次いで取出口の下部に取出用容器K1をセツト
し、攪拌停止30秒後、取出口の開口断面積を5mm2
に調節し、260℃で取出しを開始し、表1に示す
生成樹脂液の10.2%(取出し量)なる迄樹脂液を
採取し、次いで取出用容器K2をセツトし、樹脂
液の残量を全量K2に取り出した。K1及びK2のそ
れぞれについてポリマーの量及び対数粘度、重合
助剤の量、溶剤の量を調べた。これを実験No.1と
した。 次いで、実験No.1と同様にして重合し、表1に
示す如き各取出し量で取出した実験を行なつた
(実験No.2〜10)。 各実験の結果を表1に示す。 表1からわかるように、高分子量ポリマーと低
分子量ポリマーの分別取出が可能であつた。
The present invention relates to a method for producing arylene sulfide polymers. Arylene sulfide polymers, typified by polyphenylene sulfide, are produced by the method disclosed in Japanese Patent Publication No. 45-3368. That is,
The resin liquid obtained by reacting p-dichlorobenzene and sodium sulfide in an organic solvent such as N-methylpyrrolidone is taken out from the reaction vessel, and then the solvent is removed. The polyphenylene sulfide obtained by this method has an extremely low degree of polymerization and is unsuitable for use as it is.Industrially, this low degree of polymerization is heated in air and oxidatively crosslinked, and three-dimensional crosslinking is performed to increase the molecular weight. It is used for practical purposes such as injection molding. However, even this high-molecular-weight product had poor extrusion moldability and could not be used for applications such as fibers, films, pipes, and sheets. Furthermore, a method for obtaining an arylene sulfide polymer having a relatively high molecular weight through a polymerization reaction is already known. That is, JP-A-53-136100, JP-A-51-
As shown in JP-A No. 144495, JP-A-51-144497, and JP-A-56-28217, relatively high molecular weight polymers can be obtained by carrying out the polymerization reaction in the presence of various polymerization aids. However, many applications require relatively high molecular weight arylene sulfide polymers having a narrower molecular weight distribution than conventional ones, especially arylene sulfide polymers that do not contain low molecular weight components. Patents for this purpose have already been disclosed. In other words, Japanese Patent Publication No. 16078/1989 discloses a method for obtaining higher molecular weight polyphenylene sulfide by extracting and recovering low molecular weight polyphenylene sulfide polymer with an appropriate solvent and using it together with monomers during polymerization. ing. However, this method has several problems. First, a solvent extraction step is required after the polymerization step. That is, the product produced by the polymerization process is a mixture of low molecular weight polymers and high molecular weight polymers, and a separate solvent extraction process is required to separate this. This extraction step is carried out with N-methylpyrrolidone at a temperature range of 135-148.9°C or with benzene at a temperature range of 79.4-148.9°C and with toluene and its analogs at a temperature range of 110-148.9°C. Of course, if the extraction solvent is different from the polymerization solvent, but even if they are the same, the extraction temperature is different from the polymerization temperature. Second, as is clear from the examples of this patent, only extremely low molecular weight arylene sulfide polymers can be separated, and the remaining resin liquid contains a large amount of relatively low molecular weight polymers, resulting in a change in molecular weight distribution. It is difficult to obtain narrow relatively high molecular weight polymers. As a result of extensive studies, the present inventors have found that when obtaining a relatively high molecular weight arylene sulfide polymer through a polymerization reaction, a specific solvent is used and a specific combination of polymer/solvent ratio, temperature, and pressure is used. It was discovered that a liquid phase containing a relatively high molecular weight polymer and a liquid phase containing a low molecular weight polymer exist separately and can be separated, and the present invention has been achieved. That is, the present invention involves reacting a polyhaloaromatic compound with a sulfidizing agent in the presence of a polymerization aid in an amide-based polar solvent, and then forming a thick layer () of a relatively high molecular weight polymer and a thick layer (2) of a relatively low molecular weight polymer. Provided is a method for producing a polyarylene sulfide polymer, which comprises separating the thick layer () or the layer () from a produced resin liquid consisting of the thick layer (). In order to carry out the present invention, it is a prerequisite that a relatively high molecular weight polymer be produced by a polymerization reaction. For this purpose, it is necessary to carry out a polymerization reaction between the polyhaloaromatic compound and the sulfiding agent at a high temperature of at least 200° C. in the presence of a polymerization aid in, for example, an organic amide polar solvent. In the present invention, we investigate the dissolution and insolubility of arylene sulfide polymers at temperatures below 200°C, their solubility at temperatures above 200°C, especially their temperature dependence, the influence of polymerization solvents and polymerization aids on solubility, and the specific gravity of the system. Taking this into account, the produced resin liquid is separated into two layers, one containing an arylene sulfide polymer having a relatively high molecular weight and a relatively low molecular weight arylene sulfide polymer. The polyhaloaromatic compound used in the method of the present invention is a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic nucleus, and specifically p-dichlorobenzene, m-dichlorobenzene, o -dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dichloronaphthalene, trichloronaphthalene, dibromobenzene,
Tribromobenzene, dibromnaphthalene, diiodobenzene, triiodobenzene, dichlordiphenyl sulfone, dibromodiphenylsulfone, dichlorobenzophenone, dibrombenzophenone, dichlordiphenyl ether, dibromodiphenyl Examples include ether, dichlorodiphenyl sulfide, dibromodiphenyl sulfide, dichlorbiphenyl, dibrombiphenyl, and mixtures thereof. Usually dihaloaromatic compounds are used, preferably p-dichlorobenzene. Incidentally, in order to increase the viscosity of the polymer due to the branched structure, a polyhaloaromatic compound having three or more halogen substituents in one molecule may be used in combination with a small amount of a dihaloaromatic compound. The sulfidizing agent used in the present invention includes:
Alkali metal sulfide compound; combination use of a sulfur source and an alkali metal hydroxide compound, etc. Alkali metal sulfide compounds include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide, and mixtures thereof. Such alkali metal sulfide compounds can be used as hydrates and/or aqueous mixtures or in anhydrous form. In addition, alkali metal bisulfide, which exists in trace amounts in alkali metal sulfide,
There is no problem in adding a small amount of alkali metal hydroxide to react with the alkali metal thiosulfate. As the alkali metal sulfide compound, mono- to dihydrate sodium sulfide is preferred. Examples of the sulfur source include alkali metal hydrosulfide compounds, hydrogen sulfide, thioamides, thioureas, thiocarbanates, thiocarboxylic acids, carbon dioxide, thiocarboxylates, sulfur, and phosphorous pentasulfide. Preferred sulfur sources are alkali metal hydrosulfides. In particular, the alkali metal hydrosulfide compounds include lithium hydrosulfide, sodium hydrosulfide,
Includes potassium bisulfide, rubidium bisulfide, cesium bisulfide and mixtures thereof. Such alkali metal hydrosulfide compounds can be used in hydrated and/or aqueous mixtures or in anhydrous form. As such an alkali metal hydrosulfide compound, sodium hydrosulfide is preferable and used in combination with an alkali metal hydroxide compound, but sodium N-methyl-4-aminobutyrate or an alkali metal carbonate compound may be used in place of the compound. Also good. Examples of the alkali metal hydroxide compound include potassium hydroxide, sodium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, and mixtures thereof, with sodium hydroxide being preferred. The appropriate ratio of the sulfur source to the alkali metal hydroxide compound is 0.8 to 3.0 moles of the alkali metal hydroxide compound per mole of sulfur element. In particular, when an alkali metal hydroxide compound is used in combination, the amount used is 0.9 per 1.00 mol of an alkali metal hydrosulfide compound.
A range of 1.2 moles is suitable. In addition, when sodium N-methyl-4-aminobutyrate is used in combination, the amount used is per 1.00 mol of alkali metal hydrosulfide.
A range of 0.9 to 1.2 moles is suitable. When using each hydrate of the alkali metal sulfide compound or alkali metal hydrosulfide compound, it is necessary to dehydrate it in advance in a solvent before using it in the reaction. In addition, when dehydrating the alkali metal hydrosulfide compound, an alkali metal hydroxide compound or N-methyl-4
- It is better to coexist with sodium aminobutyrate. The organic amide polar solvents used in the method of the present invention include N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl-ε - selected from caprolactam, hexamethylphosphoramide, etc. or mixtures thereof. Among these solvents, N-methyl-2-pyrrolidone (NMP) is particularly preferred. The amount of the sulfidizing agent used in the present invention is sulfur element per mole of dihaloaromatic compound.
The amount is selected to be 0.8 to 1.2 mol, preferably 0.9 to 1.1 mol. In addition, the amount of organic polar solvent used is 2.5 to 20 molar ratio to the dihalo aromatic compound.
, preferably from 3 to 10. Examples of polymerization aids include organic sulfonic acid metal salts, lithium halides, carboxylic acid metal salts, and alkali phosphate salts. The organic sulfonic acid metal salt is selected from the group represented by the following general formulas. : : : : (In the formula, R 3 is hydrogen or has 1 to 30 carbon atoms.
an alkyl group, n represents an integer of 0, 1 or 2, M represents an alkali metal selected from sodium, potassium, rubidium and cesium, X is a direct bond, -CH 2 -, -C(CH 3 ) 2 −, −
O-, -S-, Indicates that it is selected from the group consisting of. ) Specific examples of acid group components constituting these metal sulfonates include benzenesulfonic acid, p-toluenesulfonic acid, 2,4-dimethylsulfonic acid, 2,5-dimethylbenzenesulfonic acid, and p-ethylbenzenesulfonic acid. , dodecylbenzenesulfonic acid, α-
naphthalenesulfonic acid, biphenylsulfonic acid,
Examples include alkylnaphthalene sulfonic acid, laurylbenzenesulfonic acid, and alkyl diphenyl ether disulfonic acid. The salts of these sulfonic acids may be either anhydrous salts or hydrated salts, or may be an aqueous solution, but it goes without saying that anhydrous salts are preferred from the purpose of the present invention. The lithium halide is selected from lithium chloride, lithium bromide, lithium iodide, and mixtures thereof. The organic group other than the carboxyl group of the organic carbonic acid metal salt usually has 1 to 50 carbon atoms,
It may also contain nitrogen, oxygen, halogen, silicon, and sulfur, and is preferably an alkyl group, a cycloalkyl group, an aryl group, or an alkylaryl group. Further, the metal atom of the organic carboxylic acid metal salt is selected from lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, zinc, strontium, cadmium, and barium, and alkali metals are particularly preferred. Specific examples of organic carboxylic acid metal salts include lithium acetate,
Sodium acetate, potassium acetate, lithium propionate, sodium propionate, lithium 2-methylpropionate, rubidium butyrate, lithium valerate, sodium valerate, cesium hexanoate, lithium heptanoate, lithium 2-methyloctoate, potassium dodecanoate , rubidium 4-ethyl ettradecanoate, sodium octadecanoate, sodium heneicosanoate, lithium cyclohexanecarboxylate, cesium cyclododecanecarboxylate, sodium 3-methylcyclopentanecarboxylate, potassium cyclohexylacetate, potassium benzoate, lithium benzoate, benzoic acid. sodium acid, potassium m-tolyl acetate, lithium phenyl acetate, sodium 4-phenylcyclohexanecarboxylate, potassium p-tolyl acetate, 4-
Lithium ethylcyclohexyl acetate, dilithium succinate, disodium succinate, dipotassium succinate, dilithium adipate, disodium adipate, dipotassium adipate, dilithium sebacate, disodium sebacate, dipotassium sebacate, Dilithium decanedicarboxylate, disodium decanedicarboxylate, disodium decanedicarboxylate, dipotassium decanedicarboxylate, dilithium phthalate, disodium phthalate, dipotassium phthalate, dilithium isophthalate, disodium isophthalate, isophthalate dipotassium terephthalate, dilithium terephthalate, disodium terephthalate, dipotassium terephthalate, trilithium trimellitate, trisodium trimellitate, tripotassium trimellitate, tetralithium pyromellitate, tetrasodium pyromellitate, tetrapotassium pyromellitate, toluene Dilithium dicarboxylate, disodium toluene dicarboxylate, dipotassium toluene dicarboxylate, dilithium naphthalene dicarboxylate, disodium naphthalene dicarboxylate, dipotassium naphthalene dicarboxylate, magnesium acetate, calcium acetate, calcium benzoate, and other similar types Mention may be made of salts and mixtures thereof. The alkali phosphate salt is selected from the group represented by the following general formula. : : In the formula, R4 is hydrogen, C1 to C20 alkyl, C5 to C20
cycloalkyl, C6 - C24 aryl, C7 - C24
alkaryl, C7 ~ C24 aralkyl, C2 ~ C24
alkenyl, C2 - C20 alkynyl or C5 - C20
cycloalkenyl, M is an alkali metal, preferably sodium. Alkaline phosphate salts suitable for the present invention include trisodium phosphate and the disodium salts of the following acids. Methanephosphonic acid, ethane-1-phosphonic acid, propane-1-phosphonic acid, butane-1-phosphonic acid, butane-2-phosphonic acid, pentane-
1-phosphonic acid, cyclohexane-1-phosphonic acid, vinyl-1-phosphonic acid, propene-2-phosphonic acid, butene-2-phosphonic acid, indene-2-phosphonic acid, phenylmethane-phosphonic acid, (4- Methyl-phenyl)-methane-phosphonic acid, β-naphthyl-methane-phosphonic acid, 2-phenyl-ethane-1-phosphonic acid, 2,2-diphenyl-ethane-1-phosphonic acid, 4-phenyl-butane-1 -Phosphonic acid, 2-phenyl-ethylene-1-phosphonic acid, 2,2-diphenylethylene-phosphonic acid, phenyl-acetylene-phosphonic acid, 4-phenyl-butadiene-
Phosphonic acid, benzene-phosphonic acid, 4
-Methyl-benzene-phosphonic acid and 2-phenoxy-ethane-1-phosphonic acid. It is necessary to use at least one kind of these polymerization aids. As for the types thereof, organic sulfonic acid alkali salts and organic carboxylic acid salts are preferable. In particular, it is most preferable to use an organic sulfonic acid alkali salt and an organic carboxylic acid salt together. The amount of the polymerization aid to be used is preferably within a range that allows it to be dissolved in the amide polar solvent during polymerization. Even if it is used above the solubility limit, it will not promote separation and is unnecessary. The amount of polymerization aid that can be used in the method of the present invention varies depending on the type of compound used, but
Usually from 0.01 to polyhaloaromatic compounds
300% by weight, preferably in the range from 0.5 to 200%. The effect of such a polymerization auxiliary agent is not only to simply improve the polymerization reaction activity, but also to change the solubility of the polymer in the polymerization system, thereby creating dense layers of a relatively high molecular weight polymer and a relatively low molecular weight polymer.
In addition, the reaction rate increases due to the high concentration of the active end of the polymer in the relatively high-molecular-weight polymer-rich layer, and the two synergistically produce a layer rich in high-molecular-weight polymer. I guess. The reaction temperature at which polymerization is carried out in the present invention is generally
The temperature is 200°C to 330°C, preferably 210°C to 300°C.
The pressure should be in a range that maintains the polymerization solvent and the polymerization monomer, the haloaromatic compound, substantially in the liquid phase, generally between 1.1 Kg/cm 2 and 200 Kg/cm 2 .
cm2 , preferably selected from the range of 1.1Kg/ cm2 to 20Kg/ cm2 . The reaction time varies depending on temperature and pressure, but generally ranges from 10 minutes to about 72 hours, preferably from 1 hour to 48 hours. The polymerization reaction is carried out under an inert atmosphere, such as nitrogen gas,
The reaction is preferably carried out in carbon dioxide, and there is no particular restriction on the order in which the reaction components are mixed, and the above-mentioned components may be added in small portions or all at once during the polymerization step. In addition, it is preferable to blow carbon dioxide during or at the end of the polymerization reaction, which not only prevents the decomposition of polyarylene sulfide and contributes to increasing the molecular weight of the resulting polymer, but also has the effect of preventing the decomposition of N-methylpyrrolidone. be. In the present invention, layer separation between a dense layer of relatively high molecular weight polymer (hereinafter referred to as high molecular weight polymer) and a concentrated layer of relatively low molecular weight polymer (hereinafter referred to as low molecular weight polymer) is facilitated. In order to cause this to occur, it is preferable to select the conditions as shown below. Of course, conditions other than those shown below can be used as long as they cause layer separation. The weight ratio of the amide polar solvent-generated polymer is in the range of 20/1 to 1/2. This ratio is 20/
When it exceeds 1, both the high molecular weight polymer and the low molecular weight polymer exist in a single layer, and the two layers are not separated. Further, when the ratio is less than 1/2, the high molecular weight polymer is not sufficiently dissolved, which is beyond the purpose of the present invention. This ratio is
The ratio is preferably 20/1 to 1/1. Further, the temperature range during polymerization is from 210°C to 300°C. At a temperature lower than 210°C, the high molecular weight polymer component does not dissolve in the solvent, which is beyond the purpose of the present invention, and at a temperature higher than 300°C, both the high molecular weight polymer component and the low molecular weight polymer component exist in a single layer and are not separated. A preferred temperature range is 220°C to 290°C. The polymerization aid/amide polar solvent ratio varies depending on the type of solvent and polymerization aid, but is generally from 2/1 to 1/30 by weight. If this ratio exceeds 2/1, a phenomenon occurs in which the polymerization aid is not dissolved in the solvent or the polymer component, particularly the high molecular weight polymer component, is not dissolved. Further, when the ratio is less than 1/30, the separation effect is insufficient and the high molecular weight polymer component and the low molecular weight component exist in a single layer, which deviates from the object of the present invention. The pressure during polymerization may be any pressure at which the amide polar solvent and the polymerization aid substantially form a liquid phase.
Specifically, it is 1.5Kg/cm 2 to 100Kg/cm 2 . Preferably it is 1.5Kg/cm 2 to 30Kg/cm 2 . The various conditions such as the solvent/polymer ratio, polymerization aid/solvent ratio, temperature, and pressure at the time of fractional extraction are within the range of suitable polymerization conditions, and once the polymerization reaction has progressed to a certain degree or more, the conditions are as follows. They are separated and taken out. However, there is no problem even if the conditions at the time of polymerization and at the time of fractional extraction are different as long as the conditions described above are met. For example, the solvent/polymer ratio can be suitably varied by adding additional material into the system or removing it from the system by distillation before fractional extraction. There are no particular restrictions on the method of separate collection. For example, it is possible to selectively take out the high molecular weight polymer layer or the low molecular weight polymer layer using a sample tube using a straw method while stirring is stopped or under laminar flow stirring, or alternatively, both layers can be selectively separated one after another from the bottom of the pot. It is also possible to take it out. However, in general, the production of arylene sulfide polymers is carried out at high temperatures and under pressure if necessary, and the removal is carried out at high temperatures, so the reaction state and the state of the produced resin liquid cannot be seen from the outside in a reaction vessel, such as an autoclave. etc. must be used.
Therefore, in the present invention, from the viewpoint of efficiently separating a high molecular weight polymer layer and a low molecular weight polymer layer from the produced resin liquid, it is generally necessary to It is preferable that the fractionation be performed such that the difference in logarithmic viscosity is 0.1 or more, preferably 0.15 or more, compared to the logarithmic viscosity of the polymer in the low molecular weight polymer layer forming the upper layer of the produced resin liquid. In practice, it is industrially advantageous for the weight ratio taken out to be 30 to 70% by weight. Of course, it is also possible to take out the low molecular weight polymer layer from the upper part of the reaction vessel, in which case the difference in logarithmic viscosity between the polymer in the resin liquid taken out and the polymer in the resin liquid remaining in the reaction vessel is 0.1 or more, preferably 0.15. or more, and the extraction weight ratio is 30~
Preferably, the amount is 70% by weight. In the present invention, as a method for separating a high molecular weight polymer layer and a low molecular weight polymer layer, it can also be used in a sensor capable of detecting both layers. These sensors include differences in the physical properties of both layers, such as specific gravity, viscosity, dielectric constant, electrical conductivity, refractive index, light transmittance, and color difference. It is also possible to perform separate extraction by predicting the weights of both layers in advance and measuring changes in the amount taken out or the amount remaining. There is no particular limitation to such a method as long as it allows for separate collection. Any conventional method may be used to collect the polymer from the resin liquid taken out according to the present invention. For example, a purified polymer can be obtained by removing the solvent from the resin liquid by distillation or flashing, and then washing with water or a poor solvent such as acetone or methanol. The production method of the present invention can produce a high molecular weight polymer containing almost no low molecular weight polymer. Of course, if a dense layer of low molecular weight polymer is removed, a low molecular weight polymer containing almost no high molecular weight polymer can be produced. The high molecular weight arylene sulfide polymer obtained by the present invention does not need to be heat-crosslinked in air, and can be used for fibers, sheets, film tubes, tubes, etc., which conventionally required particularly high molecular weight polymers. It can be used for extrusion molding and blow molding. Naturally, it can also be used for injection molding or compression molding, which are the main applications for conventional products. If necessary, it is also suitable to blend the arylene sulfide polymer obtained by the present invention with fillers, pigments, flame retardants, stabilizers and other polymers. For example, glass fibers can be added to improve mechanical strength and heat resistance. Hereinafter, the method of the present invention will be explained according to examples. The logarithmic viscosity value [η] of the arylene sulfide polymer was measured at 206°C in α-chlornaphthalene at a polymer concentration of 0.4 g/100 ml solution.
This is a value calculated according to the formula [η]= lo (relative viscosity)/polymer concentration. Note that parts and percentages in the examples are based on weight. Example 1 43.20 kg (436 mol) of N-methylpyrrolidone was placed in a 150 liter autoclave having an outlet at the bottom of the container.
Sodium hydroxide 0.084Kg (2.1mol), 60% sodium sulfide flakes 8.86Kg (68.2mol) and sodium p-toluenesulfonate 16.29Kg (80mol)
The temperature was gradually raised from 160℃ to 205℃ over 2 hours while stirring under a nitrogen atmosphere, and the water was heated to 3.6℃.
kg, and a fraction consisting of 0.4 kg of N-methylpyrrolidone was removed from the system. Thereafter, 10.02 kg (68.2 mol) of p-dichlorobenzene, 0.018 kg (0.1 mol) of 1,2,4-trichlorobenzene, and 10.80 kg (109 mol) of N-methylpyrrolidone were added. then
The reaction was carried out at 220°C for 1 hour and then at 260°C and a pressure of 10 kg/cm 2 for 3 hours. A portion of the surface layer of the produced resin liquid was taken from the upper part of the reaction vessel and the logarithmic viscosity of the polymer was measured and found to be 0.14. Further, when the resin liquid was sampled from the bottom of the reaction vessel and the logarithmic viscosity of the polymer was similarly measured, it was 0.310. Next, set the container K1 for taking out at the bottom of the taking out port, and after stopping stirring for 30 seconds, reduce the opening cross-sectional area of the taking out port to 5mm2.
Adjust the temperature to 260°C and start taking out the resin liquid until it reaches 10.2% (takeout amount) of the resin liquid shown in Table 1. Next, set the taking out container K2 and collect the remaining amount of resin liquid. I took it out on K2. The amount of polymer, logarithmic viscosity, amount of polymerization aid, and amount of solvent were investigated for each of K1 and K2. This was designated as Experiment No. 1. Next, polymerization was carried out in the same manner as in Experiment No. 1, and experiments were conducted in which the polymers were taken out at various amounts as shown in Table 1 (Experiments No. 2 to 10). The results of each experiment are shown in Table 1. As can be seen from Table 1, it was possible to separate and extract high molecular weight polymers and low molecular weight polymers.

【表】【table】

【表】 実施例 2 実施例1の実験No.4を5回繰り返した。その結
果を表2に示す。 表2からわかるように再現性は良好であつた。
[Table] Example 2 Experiment No. 4 of Example 1 was repeated 5 times. The results are shown in Table 2. As can be seen from Table 2, the reproducibility was good.

【表】【table】

【表】 実施例 3及び4 実施例1に於ける取出温度及び取出割合を表3
に示す条件に代えて実施した。その結果を表3に
示す。
[Table] Examples 3 and 4 Table 3 shows the extraction temperature and extraction ratio in Example 1.
The experiment was carried out under the conditions shown in . The results are shown in Table 3.

【表】【table】

【表】 実施例 5〜7 容器の最下部に取出口を有する15lオートクレ
ーブに、N−メチルピロリドン1728g(17.5モ
ル)、水酸化ナトリウム3.4g(0.08モル)、60%
硫化ソーダフレーク520g(4.0モル)および安息
香酸ナトリウム576g(4.0モル)を仕込み、窒素
雰囲気下で攪拌しながら160℃より205℃まで2時
間を要して徐々に昇温して水130g、N−メチル
ピロリドン18gからなる留分を系外に除去した。
p−ジクロルベンゼン588g(4.0モル)、1,2,
4−トリクロルベンゼン0.72g(0.004モル)お
よびN−メチルピロリドン432g(4.4モル)を加
えた。次いで220℃で1時間、更に260℃で圧力
8.0Kg/cm2で3時間反応せしめた。 反応終了後溶媒を追加したり、溶媒を蒸留によ
り一部除去したりして溶媒/ポリマー重量比を表
4に示す如く変化させ、次いで表4に示す取出割
合で取出しを行なつた。その結果を表4に示す。 実施例 8 安息香酸ナトリウムの代わりに無水酢酸ナトリ
ウム410g(5モル)を使用し、溶剤/ポリマー
比を8/1として行なう他は実施例6と同様な条
件で、反応および分別取出しを行なつた。なお取
出割合はあらかじめ分離効率が最良になるように
検討したものである。その結果を表4に併記す
る。
[Table] Examples 5 to 7 1728 g (17.5 mol) of N-methylpyrrolidone, 3.4 g (0.08 mol) of sodium hydroxide, 60%
520 g (4.0 mol) of sodium sulfide flakes and 576 g (4.0 mol) of sodium benzoate were charged, and the temperature was gradually raised from 160°C to 205°C over 2 hours while stirring under a nitrogen atmosphere, and 130 g of water and N- A fraction consisting of 18 g of methylpyrrolidone was removed from the system.
p-dichlorobenzene 588g (4.0mol), 1,2,
0.72 g (0.004 mol) of 4-trichlorobenzene and 432 g (4.4 mol) of N-methylpyrrolidone were added. Then at 220℃ for 1 hour and then at 260℃ under pressure.
The reaction was carried out at 8.0 Kg/cm 2 for 3 hours. After the reaction was completed, the solvent/polymer weight ratio was changed as shown in Table 4 by adding a solvent or removing a portion of the solvent by distillation, and then the polymer was taken out at the takeout ratio shown in Table 4. The results are shown in Table 4. Example 8 The reaction and fractional extraction were carried out under the same conditions as in Example 6, except that 410 g (5 mol) of anhydrous sodium acetate was used instead of sodium benzoate and the solvent/polymer ratio was 8/1. . Note that the extraction ratio was determined in advance so as to maximize the separation efficiency. The results are also listed in Table 4.

【表】【table】

【表】 実施例 9 容器の最下部に取出口を有する25オートクレ
ーブにN−メチルピロリドン3456g(25モル)、
水酸化ナトリウム6.8g(0.16モル)、60%硫化ソ
ーダフレーク1040g(8モル)および表5に示す
重合助剤を仕込み、窒素雰囲気下で攪拌しながら
160℃より205℃まで2時間を要して徐々に昇温し
て水およびN−メチルピロリドンからなる留分を
系外に留去した。留分の組成は表4に併記した。
p−ジクロルベンゼン1176g(8モル)、1,2,
4−トリクロルベンゼン1.44g(0.008モル)お
よびN−メチルピロリドン864g(8.8モル)加え
た。次いで220℃で1時間、更に260℃で圧力8.2
Kg/cm2で3時間反応せしめた。 反応終了後、溶媒N−メチルピロリドン2592g
を加え、表5に示す取出割合で分別取出を行なつ
た。その結果を表5に併記する。
[Table] Example 9 3456 g (25 moles) of N-methylpyrrolidone was placed in a 25 autoclave having an outlet at the bottom of the container.
6.8 g (0.16 mol) of sodium hydroxide, 1040 g (8 mol) of 60% sodium sulfide flakes, and the polymerization aid shown in Table 5 were added, and while stirring under a nitrogen atmosphere,
The temperature was gradually raised from 160°C to 205°C over a period of 2 hours, and a fraction consisting of water and N-methylpyrrolidone was distilled out of the system. The composition of the fraction is also listed in Table 4.
p-dichlorobenzene 1176g (8 mol), 1,2,
1.44 g (0.008 mol) of 4-trichlorobenzene and 864 g (8.8 mol) of N-methylpyrrolidone were added. Next, at 220℃ for 1 hour, and then at 260℃ with a pressure of 8.2
The reaction was carried out at Kg/cm 2 for 3 hours. After completion of the reaction, 2592g of solvent N-methylpyrrolidone
was added, and fractional extraction was performed at the extraction ratio shown in Table 5. The results are also listed in Table 5.

【表】【table】

【表】 実施例 10 実施例9の実験No.33に於いて重合助剤の量を表
6に示すように代えて実施した。その結果を表6
に示す。
[Table] Example 10 Experiment No. 33 of Example 9 was carried out by changing the amount of polymerization aid as shown in Table 6. Table 6 shows the results.
Shown below.

【表】【table】

【表】 実施例 11 実施例10の実験No.36に於いて、重合助剤の種類
と使用量及び取出量を表7に示す如くに代えて実
施した。その結果を表7に示す。
[Table] Example 11 Experiment No. 36 of Example 10 was carried out by changing the type, amount used, and amount taken out of the polymerization aid as shown in Table 7. The results are shown in Table 7.

【表】【table】

【表】 比較例 実施例1の実験No.1に於いて、重合助剤を使用
せずに実施した。得られた樹脂液を表8に示す取
出割合で取出したところ、取出したポリマーと反
応容器中の残存ポリマーの対数粘度はほぼ同じで
あつた。この例では生成樹脂液は二層に分離され
ていなかつた。尚、取出温度は260℃で行なつた。
[Table] Comparative Example Experiment No. 1 of Example 1 was conducted without using a polymerization aid. When the obtained resin liquid was taken out at the takeout ratio shown in Table 8, the logarithmic viscosity of the taken out polymer and the residual polymer in the reaction vessel were almost the same. In this example, the resin liquid produced was not separated into two layers. Note that the extraction temperature was 260°C.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アミド系極性溶剤中で、重合助剤の存在下ポ
リハロ芳香族化合物とスルフイド化剤とを反応せ
しめた後、比較的高分子量ポリマーの濃厚層
()と比較的低分子量ポリマーの濃厚層()
とからなる生成樹脂液から該層()又は該層
()を分別することを特徴とするポリアリーレ
ンスルフイドポリマーの製造方法。
1 After reacting a polyhaloaromatic compound and a sulfiding agent in the presence of a polymerization aid in an amide polar solvent, a thick layer of a relatively high molecular weight polymer () and a thick layer of a relatively low molecular weight polymer () are formed.
A method for producing a polyarylene sulfide polymer, which comprises separating the layer () or the layer () from a produced resin liquid consisting of.
JP16093684A 1984-07-31 1984-07-31 Production of arylene sulfide polymer Granted JPS6140323A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP16093684A JPS6140323A (en) 1984-07-31 1984-07-31 Production of arylene sulfide polymer
DE3527492A DE3527492C2 (en) 1984-07-31 1985-07-31 Process for the preparation of a polyarylene sulfide polymer
US07/213,436 US4960861A (en) 1984-07-31 1988-06-27 Multi layer process for producing arylene sulfide polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16093684A JPS6140323A (en) 1984-07-31 1984-07-31 Production of arylene sulfide polymer

Publications (2)

Publication Number Publication Date
JPS6140323A JPS6140323A (en) 1986-02-26
JPH0542458B2 true JPH0542458B2 (en) 1993-06-28

Family

ID=15725437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16093684A Granted JPS6140323A (en) 1984-07-31 1984-07-31 Production of arylene sulfide polymer

Country Status (1)

Country Link
JP (1) JPS6140323A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107637A (en) * 1988-10-17 1990-04-19 Idemitsu Petrochem Co Ltd Production of polyarylene sulfide
US5334701A (en) * 1992-10-23 1994-08-02 Phillips Petroleum Company Process for the removal of lower molecular weight fractions of poly(arylene sulfide) polymers
US6201097B1 (en) * 1998-12-31 2001-03-13 Phillips Petroleum Company Process for producing poly (arylene sulfide)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212240A (en) * 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JPS591536A (en) * 1982-06-04 1984-01-06 フイリツプス・ペトロリユ−ム・コンパニ− Recovery of granular poly(arylene sulfide)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212240A (en) * 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JPS591536A (en) * 1982-06-04 1984-01-06 フイリツプス・ペトロリユ−ム・コンパニ− Recovery of granular poly(arylene sulfide)

Also Published As

Publication number Publication date
JPS6140323A (en) 1986-02-26

Similar Documents

Publication Publication Date Title
JPS63243134A (en) Production of polyarylene sulfide
US6201098B1 (en) Process for preparing sulphurous polymers
JPH0160047B2 (en)
US4960861A (en) Multi layer process for producing arylene sulfide polymers
US5262137A (en) Method for recovering lithium chloride
JPH0231735B2 (en)
US4595748A (en) Process for the preparation of high molecular weight, optionally branched polyarylene sulphides
US4760128A (en) Process for the preparation of high molecular weight, optionally branched polyarylene sulphide with monomercaptan compound
JPS6324531B2 (en)
US4732967A (en) Polyarylene sulphide having high melt viscosity
US4760127A (en) Process for the preparation of polyarylene sulphide with monohalogeno aromatic compound and mono mercapto compound
CA1223690A (en) Process for the production of optionally branched polyarylene sulfides
JPH0542461B2 (en)
JPS6147732A (en) Manufacture of high molecular, optionally branched polyarylene sulfide
JPH0542458B2 (en)
JPS6241227A (en) Production of high molecular weight polyarylene sulfide which may be branched chain form
JPS62195022A (en) Production of high-molecular-weight arylene sulfide polymer
JPS62190228A (en) Production of polyarylene sulfide
JP2022126431A (en) Method for producing purified polyarylene sulfide
JPH01153727A (en) Production of polyarylene sulfide adjustable to specific melt viscosity
JPH0574611B2 (en)
JPH032178B2 (en)
JPH0613609B2 (en) A method of making Allen Sulfide polymer
JPH0367094B2 (en)
JP2560273B2 (en) Polymer manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees