JPH0542377B2 - - Google Patents

Info

Publication number
JPH0542377B2
JPH0542377B2 JP2512087A JP2512087A JPH0542377B2 JP H0542377 B2 JPH0542377 B2 JP H0542377B2 JP 2512087 A JP2512087 A JP 2512087A JP 2512087 A JP2512087 A JP 2512087A JP H0542377 B2 JPH0542377 B2 JP H0542377B2
Authority
JP
Japan
Prior art keywords
glass
rod
forming
polygonal
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2512087A
Other languages
Japanese (ja)
Other versions
JPS63195142A (en
Inventor
Yasuo Mizuno
Atsushi Nishino
Masaki Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2512087A priority Critical patent/JPS63195142A/en
Priority to US07/152,202 priority patent/US4885020A/en
Publication of JPS63195142A publication Critical patent/JPS63195142A/en
Publication of JPH0542377B2 publication Critical patent/JPH0542377B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はガラスロ成形方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a glass molding method.

従来の技術 近年エレクトロニクスの発達により、ガラス部
品の需要が増大してきている。そしてガラスの組
成や特性だけでなく形状にも多種類のガラスが開
発されつつある。ガラスの代表的な形状として
板、パウダー、管、キヤピラリー、ロツド、デイ
スク、フアイバー等があるが、本発明はガラスロ
ツドの成形方法に関している。
BACKGROUND ART In recent years, with the development of electronics, the demand for glass parts has increased. Many types of glasses are being developed, not only in terms of their composition and properties, but also in their shapes. Typical shapes of glass include plates, powders, tubes, capillaries, rods, disks, fibers, etc., and the present invention relates to a method for forming glass rods.

以下では従来技術を説明する例として、磁気ヘ
ツドギヤツプ用封着ガラスをとり挙げて説明す
る。番2図はVTRに用いられる磁気ヘツドの代
表的な製造工程を示している。
Below, as an example to explain the prior art, a sealing glass for a magnetic headgap will be taken up and explained. Figure 2 shows a typical manufacturing process for magnetic heads used in VTRs.

フエライトインゴツトから材料取り(a)を行な
い、これを外形研削(b)によつて適当な大きさの棒
とする。次にトラツク加工(c)によつて補強ガラス
用の溝入れを行ない、この溝にガラスをモールド
(d)する。次に余分のガラスを研削し、巻線加工後
ギヤツプ面を研摩(e)する。次にギヤツプガラスを
スパツタした後、接着、ギヤツプ形成(f)を行な
う。次にこれをチツプ切断(g)し、さらに側面研摩
(h)によつて適当な大きさとする。次にチツプをベ
ース接着(i)し、テープ走行面を研摩(j)し、巻線(k)
してヘツドを完成する。
Material is extracted from a ferrite ingot (a), and the material is shaped into a rod of an appropriate size by external grinding (b). Next, grooves for the reinforced glass are made using track processing (c), and the glass is molded into these grooves.
(d) to do. Next, the excess glass is ground, and the gap surface is polished (e) after winding. Next, after sputtering gap glass, adhesion and gap formation (f) are performed. Next, chip it (g) and polish the sides.
(h) to an appropriate size. Next, glue the chip to the base (i), polish the tape running surface (j), and wind the wire (k).
to complete the head.

上記工程(d)において、モールドガラスは一般的
にロツドの形が用いられ、特に最近はその断面が
円形よりも角形が用いられるようになつてきた。
その理由として、円形では第3図のように、ロツ
ド7が転がらないようにフエライト棒8の、トラ
ツク加工溝の反対側に背面加工溝9を設けたり、
傾斜治具10を用いなければならないが、角形で
は第4図のように、上記2点の配慮が不要となる
からである。なお第4図では四角形のロツドを例
示しているが、三角形でもかまない。
In step (d) above, the molded glass generally has a rod shape, and recently, rectangular cross sections have been used rather than circular ones.
The reason for this is that in the case of a circular rod, as shown in Fig. 3, a back groove 9 is provided on the opposite side of the track groove of the ferrite rod 8 to prevent the rod 7 from rolling.
Although the tilting jig 10 must be used, in the case of a rectangular shape, as shown in FIG. 4, the above two points do not need to be considered. Although FIG. 4 shows a rectangular rod as an example, a triangular rod may also be used.

従来こうした用途に使用される三角形または四
角形等の多角形ロツドを成形する方法は代表的に
二つある。その一つはガラスのブロツク(第5図
a)をダイヤモンドカツター等で、目的とする太
さに切断する方法である(第5図b、c)。しか
しながら、この方法では第一に切断する際に水を
用いるので、切断面付近のガラスが変質しやすい
という問題がある。第二に切断面に切り跡が残り
ガラス表面から荒れて不透明である。これら二つ
の理由から、このようなロツドを用いてモールド
を行なうと、ガラス中に気泡が残る。これは完成
したヘツドにおいて記録信号の減磁やテープキズ
発生あるいはチツプが割れ易い原因となつた。
There are typically two methods for forming polygonal rods, such as triangles or squares, which are conventionally used for such purposes. One method is to cut a glass block (Fig. 5a) to the desired thickness using a diamond cutter or the like (Fig. 5b, c). However, since this method first uses water for cutting, there is a problem in that the glass near the cut surface is likely to change in quality. Second, cut marks remain on the cut surface and the glass surface becomes rough and opaque. For these two reasons, molding with such rods leaves air bubbles in the glass. This caused demagnetization of the recording signal, scratches on the tape, and the tendency for the chip to break in the completed head.

もう一つの方法は、ガラスのブロツク図(第6
図a)を目的とする太さより約10倍太い目に切断
(第6図b)しておき、さらに加熱して延伸(第
6図c)する方法である。しかしこの方法でも切
断面付近のガラスの変質は避けられず、このため
延伸後のロツドを用いてガラスモールドを行なう
と、同上の問題が生じた。
Another method is to use the glass block diagram (6th
In this method, the material shown in Figure a) is cut into pieces approximately 10 times thicker than the desired thickness (Figure 6B), and then heated and stretched (Figure 6C). However, even with this method, deterioration of the quality of the glass near the cut surface cannot be avoided, and therefore, when glass molding is performed using the rod after stretching, the same problem occurs.

以上の従来例を考慮に入れると、角形ロツドの
成形時には、水を全く用いないことが必要であ
り、かつ得られたロツドの表面は透明で円滑なる
ことが必要である。
Taking the above conventional examples into consideration, it is necessary to use no water at all when molding square rods, and it is necessary that the surfaces of the obtained rods be transparent and smooth.

発明が解決しようとする問題点 従来のガラスロツドの形成法においては切断面
に傷が形成されたり、モールド時に気泡が残つて
透明度が劣化する。またガラスブロツクが機械的
にもろい。
Problems to be Solved by the Invention In the conventional method of forming glass rods, scratches are formed on the cut surface and bubbles remain during molding, resulting in deterioration of transparency. Also, the glass block is mechanically fragile.

本発明は上記問題点を解消するため成形時に水
を用いることなく透明で円滑な多角形のガラスロ
ツドを得る成形法を提供するものである。
In order to solve the above-mentioned problems, the present invention provides a molding method for obtaining transparent and smooth polygonal glass rods without using water during molding.

問題点を解決するための手段 本発明は、溶融したガラスを二分割しうる金型
の分割面に設けた多角形のスリツトに流し込み、
最終的に目的とする太さの5〜20倍の太さの、断
面が多角形の種棒を形成する段階と、上記種棒を
ガラスの軟化温度より100〜150℃高温に加熱し、
延伸して成形する段階よりなることを特徴とす
る。
Means for Solving the Problems The present invention involves pouring molten glass into a polygonal slit provided on the dividing surface of a mold that can be divided into two parts.
forming a seed rod with a polygonal cross section that is 5 to 20 times thicker than the final desired thickness; heating the seed rod to a temperature 100 to 150 degrees Celsius higher than the softening temperature of the glass;
It is characterized by a step of stretching and shaping.

作 用 本発明の方法によれば、ガラス表面の変質のな
い、透明で円滑なる、断面が多角形のガラスロツ
ドを容易に得ることができる。
Effects According to the method of the present invention, it is possible to easily obtain a glass rod that is transparent, smooth, and has a polygonal cross section without deterioration of the glass surface.

実施例 本発明のガラスの成形方法につき第1図を用い
て説明する。図においてガラス1はルツボ2中に
おいて溶融され、ルツボ2は外部より電気炉等に
より加熱されている。溶融されたガラス1を金型
3の分割面に設けた多角形のスリツト4に流し込
み、放冷して種棒を得る。ここでは四角形のスリ
ツトを例示しているが、金型の片方をV溝加工の
ないものを用いれば、三角形の種棒が得られる。
金型を分割して種棒5をはずし、これを加熱段伸
して目的とする太さの多角形ロツド6を得る。
EXAMPLE The glass forming method of the present invention will be explained with reference to FIG. In the figure, glass 1 is melted in a crucible 2, and the crucible 2 is heated from the outside using an electric furnace or the like. The molten glass 1 is poured into a polygonal slit 4 provided on the dividing surface of the mold 3 and left to cool to obtain a seed rod. Although a rectangular slit is illustrated here, a triangular seed rod can be obtained by using one side of the mold without V-grooving.
The mold is divided, the seed rod 5 is removed, and it is heated and expanded to obtain a polygonal rod 6 of the desired thickness.

実施例 1 重量%でSiO2=4%、B2O3=13%、PbO=80
%、ZnO=1%、Al2O3=2%のガラス(軟化温
度400℃)をルツボに入れ、900℃に加熱後、一辺
10mm、長さ100mmの四角形のスリツトを有するス
テンレス製金型に流し込み、放冷した。形成した
種棒を金型からはずし、500〜520℃に加熱し延伸
して、1mm角のロツドを得た。得られたロツドの
表面は円滑であり、透明なロツドが得られた。
Example 1 SiO 2 = 4%, B 2 O 3 = 13%, PbO = 80 in weight%
%, ZnO = 1%, Al 2 O 3 = 2% glass (softening temperature 400℃) was placed in a crucible, and after heating to 900℃, one side
The mixture was poured into a stainless steel mold with a rectangular slit of 10 mm and 100 mm in length, and allowed to cool. The formed seed rod was removed from the mold, heated to 500-520°C and stretched to obtain a 1 mm square rod. The surface of the obtained rod was smooth and transparent.

このロツドを用いて工程(第3図d)を行なつ
た。条件は温度480℃、時間30分であつた。終了
後のガラス中には全く気泡が見られなかつた。そ
の結果チツプ切断工程(第3図g)における歩留
りは85%以上であつた。なお種棒の太さを5mm角
あるいは20mm角にしてもロツドの成型が可能であ
つた。
The process (Fig. 3d) was carried out using this rod. The conditions were a temperature of 480°C and a time of 30 minutes. No bubbles were observed in the glass after completion of the process. As a result, the yield in the chip cutting process (Fig. 3g) was over 85%. It was also possible to mold the rod even if the thickness of the seed rod was 5 mm square or 20 mm square.

ここで金型として、2分割式のものでなく、単
に角形の穴を開けただけのものに、溶融したガラ
スを流し込んだ場合、ガラスを穴から抜くことが
できずに種棒を得られなかつた。
If you pour molten glass into a mold that is not a two-part mold, but simply has a rectangular hole, you will not be able to pull out the glass from the hole, and you will not be able to obtain a seed rod. Ta.

また種棒の太さを5mmより細くすると、溶融し
たガラスをスリツトに流し込みにくかつたり、う
まく流し込めてもスリツトの途中で固化したり、
金型からはずす時に折れたりして、種棒を得られ
ないことがあつた。また20mmより太くすると、加
熱延伸の際に種棒の内部まで加熱するために、
520℃以上に温度を上げねばならず、この結果ガ
ラスが軟化しすぎるために断面が円形のロツドと
なつてしまつた。
Also, if the seed rod is thinner than 5 mm, it may be difficult to pour the molten glass into the slit, or even if it is poured successfully, it may solidify in the middle of the slit.
There were cases where the seed rods could not be obtained because they broke when removed from the mold. Also, if it is thicker than 20mm, the inside of the seed rod will be heated during heating and stretching.
The temperature had to be raised to over 520°C, which softened the glass so much that it became a rod with a circular cross section.

さらにまた種棒の加熱温度が500℃より低いと、
ガラスの軟化が不充分なため、ロツドを延伸する
ことが困難であつた。520℃より高いと、前述し
たように断面が円形のロツドとなつてしまつた。
Furthermore, if the heating temperature of the seed rod is lower than 500℃,
It was difficult to draw the rod because the glass was not sufficiently softened. When the temperature was higher than 520°C, the cross section became a circular rod as mentioned above.

比較例 1 実施例1のガラスを用い、第5図に示した従来
法で角形のロツドを得た。まずガラスをルツボ中
で900℃で溶融後、ステンレス金型に流し込み、
20×20×25mmのブロツク図(第5図a)を作つ
た。これをアルミナ板上に接着固定した後、内周
式ダイヤモンド切断機にて1×20×25mmの板(第
5図b)に切断し、板を別のアルミナ板上に接着
固定し、さらに1mm角、長さ25mmのロツド(第5
図c)を得た。なお、ダイヤモンドソーの送り速
度は15mm/分;冷却用に水を用いた。
Comparative Example 1 Using the glass of Example 1, a square rod was obtained by the conventional method shown in FIG. First, glass is melted in a crucible at 900℃, then poured into a stainless steel mold.
A block diagram (Figure 5a) of 20 x 20 x 25 mm was made. After gluing and fixing this on an alumina plate, it was cut into 1 x 20 x 25 mm plates (Fig. 5b) using an internal diamond cutting machine, and the plate was glued and fixed on another alumina plate, and further cut into 1 mm Corner, length 25mm rod (5th
Figure c) was obtained. The feeding speed of the diamond saw was 15 mm/min; water was used for cooling.

ロツド表面のガラスの変質を調べるため、本例
によるロツドと、実施例1によるロツドの表面を
ESCA分析し、Pbの4f7/2のピークとSiの2pの
ピークの強度よりPb/Si比を調べると、本例に
よるロツドの比は2であり、実施例1にロツドの
比は10であつた。以上の結果より、切断時に水を
使つた本例のロツドの表面では、ガラス中のPb
が溶出し、実施例1に比べ1/5になつていること
が判明した。
In order to investigate the deterioration of the glass on the rod surface, the surfaces of the rod according to this example and the rod according to Example 1 were examined.
When the Pb/Si ratio was examined by ESCA analysis and the intensity of the 4f7/2 peak of Pb and the 2p peak of Si, the rod ratio in this example was 2, and the rod ratio in Example 1 was 10. Ta. From the above results, it is clear that on the surface of the rod of this example using water during cutting, the Pb in the glass
was eluted, and it was found that the amount was 1/5 compared to Example 1.

さらに本例のロツドを用いて工程(第3図d)
を行なうと、ガラス中に多数の気泡が生じた。そ
の結果チツプ切断工程(第3図g)において約7
割が割れた。
Further, the process using the rod of this example (Fig. 3 d)
When this was done, many bubbles were created in the glass. As a result, in the chip cutting process (Fig. 3g), approximately 7
It was split.

比較例 2 実施例1のガラスを用い、第6図に示した従来
法で角形のロツドを得た。ブロツク(第6図a)
は比較例1のものを用い、これを内周式ダイヤモ
ンド切断機にて10×10×100mmのブロツク(第6
図b)に切断した。切断条件は比較例1と同じ
で、冷却用に水を用いた。ブロツクbを電気炉中
で約500℃に加熱し、延伸して1mm角のロツド
(第6図c)を得た。
Comparative Example 2 Using the glass of Example 1, a square rod was obtained by the conventional method shown in FIG. Block (Figure 6a)
used Comparative Example 1, and cut it into a 10 x 10 x 100 mm block (No. 6) using an internal diamond cutting machine.
Figure b). The cutting conditions were the same as in Comparative Example 1, and water was used for cooling. Block b was heated to about 500°C in an electric furnace and stretched to obtain a 1 mm square rod (Fig. 6c).

ガラスロツド表面を比較例1と同様にESCA分
析したところ、Pb/Si比は2であり、表面の変
質は明白であつた。また工程(第3図d)終了後
のガラス中には多数の気泡が見られた。その結果
チツプ切断工程(第3図g)において約7割が割
れた。
When the surface of the glass rod was analyzed by ESCA in the same manner as in Comparative Example 1, the Pb/Si ratio was 2, and the alteration of the surface was obvious. In addition, many air bubbles were observed in the glass after the completion of the step (FIG. 3d). As a result, approximately 70% of the chips were broken during the chip cutting process (Fig. 3g).

実施例 2 重量%でSiO2=35.4%、PbO=50.7%、ZnO=
4.8%、Na2O=4.8%、K2O=3.8%、As2O3=0.5
%のガラス(軟化温度570℃)を用い、ルツボの
加熱温度を1400℃、種棒の加熱温度を700〜720℃
とした以外は実施例1と同様にして成形した。
Example 2 SiO 2 = 35.4%, PbO = 50.7%, ZnO =
4.8%, Na 2 O = 4.8%, K 2 O = 3.8%, As 2 O 3 = 0.5
% glass (softening temperature 570℃), the heating temperature of the crucible was 1400℃, and the heating temperature of the seed rod was 700-720℃.
It was molded in the same manner as in Example 1 except that.

このロツドを用いて工程(第3図d)を行なつ
た。条件は温度750℃、時間30分であつた。終了
後のガラス中には全く気泡が見られなかつた。そ
の結果チツプ切断工程(第3図g)における歩留
りは90%以上であつた。
The process (Fig. 3d) was carried out using this rod. The conditions were a temperature of 750°C and a time of 30 minutes. No bubbles were observed in the glass after completion of the process. As a result, the yield in the chip cutting process (Fig. 3g) was over 90%.

なお種棒の加熱温度を上記範囲外に設定する
と、実施例1と同様に成形が出来なかつたり、円
形のロツドになつたりした。
Note that when the heating temperature of the seed rod was set outside the above range, molding could not be performed or the rod became circular as in Example 1.

実施例 3 実施例2のガラスを用い、比較例1の方法でロ
ツドを得た。このロツドを用いて工程(第3図
d)を行なうと、ガラス中に多数の気泡が生じ、
その結果チツプ切断工程(第3図g)において約
3割が割れた。
Example 3 Using the glass of Example 2, a rod was obtained by the method of Comparative Example 1. When the process (Fig. 3 d) is carried out using this rod, many bubbles are generated in the glass.
As a result, approximately 30% of the chips were broken during the chip cutting process (Fig. 3g).

なお以上の実施例では、磁気ヘツドの製造に用
いるロツドを得る例について詳述したが、本発明
の成形方法は様々な電子部品の封着やシール等に
用いるガラスロツドの製造、さらに光フアイバー
の製造にも適用可能であることは言うまでもな
い。
In addition, in the above embodiment, an example of obtaining a rod used in the manufacture of a magnetic head was described in detail, but the molding method of the present invention is also applicable to the manufacture of glass rods used for sealing and sealing various electronic parts, and furthermore to the manufacture of optical fibers. Needless to say, it is also applicable to

また本発明は三角形および四角形のロツドの成
形に限つたものでなく、例えば台形や六角形のロ
ツド等も金型のスリツトを変えるだけで可能であ
ることは明白である。
Furthermore, it is clear that the present invention is not limited to the molding of triangular and square rods; for example, trapezoidal or hexagonal rods can also be formed by simply changing the slits in the mold.

本発明に適したガラスの組成は少なくとも重量
%で、SiO2=2〜7%、B2O3=4〜13%、PbO
=70〜85%、ZnO=1〜7%、Al2O3=0〜5
%、CdO=0〜15%が望ましい。さらに望ましく
は少なくとも重量%で、SiO2=3.5〜5.5%、B2O3
=8〜9%、PbO=73〜75%、ZnO=2〜6.5%、
Al2O3=1〜2.5%、CdO=3〜9%である。また
他の本発明に適したガラスの組成は少なくとも重
量%、SiO2=30〜36%、B2O3=0〜5%、PbO
=29〜51%、MO(MはZn、Cdの少なくとも一
つ)=4〜20%、Al2O3=0〜5%、RO(Rはア
ルカリ土類金属)=0〜5%、Na2O=0〜5%、
K2O=3〜16%、As2O3またはSb2O=0〜0.5%
であり、さらに望ましくはMOが重量比でCdO/
(CdO+ZnO)≧0.5である。
The composition of glasses suitable for the present invention is at least in weight percent: SiO2 = 2-7%, B2O3 = 4-13 %, PbO
=70 ~ 85%, ZnO=1~7%, Al2O3 =0~5
%, CdO=0 to 15% is desirable. More preferably at least in weight percent, SiO2 = 3.5-5.5 %, B2O3
=8~9%, PbO=73~75%, ZnO=2~6.5%,
Al 2 O 3 = 1 to 2.5%, and CdO = 3 to 9%. Other glass compositions suitable for the present invention include at least % by weight, SiO 2 =30-36%, B 2 O 3 =0-5%, PbO
= 29 to 51%, MO (M is at least one of Zn and Cd) = 4 to 20%, Al 2 O 3 = 0 to 5%, RO (R is an alkaline earth metal) = 0 to 5%, Na 2 O=0~5%,
K2O =3-16%, As2O3 or Sb2O =0-0.5%
, and more preferably MO has a weight ratio of CdO/
(CdO+ZnO)≧0.5.

発明の効果 以上のように本発明に成形方法によれば、ガラ
ス表面の変質のない透明で円滑なロツドが得ら
れ、また磁気ヘツド等に適用した場合、ガラス中
に気泡が生じることがなく、製造歩留りが向上す
る。
Effects of the Invention As described above, according to the molding method of the present invention, a transparent and smooth rod with no deterioration of the glass surface can be obtained, and when applied to a magnetic head etc., no air bubbles are generated in the glass. Manufacturing yield is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のガラスロツド成形
方法の概略図、第2図は同方法によるロツドを用
いるVTR用磁気ヘツドの代表的な製造工程図、
第3図および第4図はガラスモールド工程図、第
5図および第6図は従来例のガラスロツドの成形
方法の概略図である。 1……ガラス、2……ルツボ、3……金型、4
……スリツト、5……種棒、6……角形ロツド。
FIG. 1 is a schematic diagram of a glass rod molding method according to an embodiment of the present invention, and FIG. 2 is a typical manufacturing process diagram of a magnetic head for a VTR using the rod according to the same method.
3 and 4 are glass mold process diagrams, and FIGS. 5 and 6 are schematic diagrams of a conventional glass rod molding method. 1... Glass, 2... Crucible, 3... Mold, 4
...slit, 5...seed rod, 6...square rod.

Claims (1)

【特許請求の範囲】 1 溶融したガラスを二分割しうる金型の分解面
に設けた多角形のスリツトに流し込み、最終的に
目的とする太さの5〜20倍の太さの断面が多角形
の種棒を形成する段階と、上記断面が多角形の種
棒をガラスの軟化温度より100〜150℃高温に加熱
し、断面の形状を維持しつつ延伸して成形する段
階よりなることを特徴とする断面多角形のガラス
ロツドの成形方法。 2 ガラスが少なくとも重量%で、SiO2=4%、
B2O3=13%、PbO=80%、ZnO=1%、Al2O3
2%からなることを特徴とする請求の範囲第1項
記載の断面多角形のガラスロツドの成形方法。 3 ガラスが900℃で溶融され、前記多角形のス
リツトに流し込んで形成された種棒が500〜520℃
に加熱されることを特徴とする請求の範囲第2項
記載の断面多角形のガラスロツドの成形方法。 4 ガラスが少なくとも重量%で、SiO2=35.4
%、PbO=50.7%、ZnO=4.8%、Na2O=4.8%、
K2O=3.8%、As2O3=0.5%からなることを特徴
とする請求の範囲第1項記載の断面多角形のガラ
スロツドの成形方法。 5 ガラスが1400℃で溶融され、前記多角形のス
リツトに流し込んで形成された種棒が700〜720℃
に加熱されることを特徴とする請求の範囲第4項
記載の断面多角形のガラスロツドの成形方法。
[Scope of Claims] 1. Molten glass is poured into a polygonal slit provided on the decomposition surface of a mold that can be divided into two parts, and the final cross-section is 5 to 20 times the desired thickness. The method consists of the steps of forming a square seed rod, and heating the seed rod having a polygonal cross section to a temperature 100 to 150 degrees Celsius higher than the softening temperature of glass, and stretching and forming the seed rod while maintaining the cross-sectional shape. A method for forming glass rods with a characteristic polygonal cross section. 2 at least % by weight of glass, SiO 2 =4%,
B 2 O 3 = 13%, PbO = 80%, ZnO = 1%, Al 2 O 3 =
2%. A method for forming a glass rod having a polygonal cross section according to claim 1. 3 The glass is melted at 900℃, and the seed rod formed by pouring it into the polygonal slit is heated to 500-520℃.
3. A method for forming a glass rod having a polygonal cross section according to claim 2, wherein the glass rod is heated to a temperature of 100.degree. 4 At least % by weight of glass, SiO 2 =35.4
%, PbO=50.7%, ZnO=4.8%, Na2O =4.8%,
2. A method for forming a glass rod having a polygonal cross section according to claim 1, characterized in that K 2 O = 3.8% and As 2 O 3 = 0.5%. 5 The glass is melted at 1400°C, and the seed rod formed by pouring it into the polygonal slit is heated to 700-720°C.
5. A method of forming a glass rod having a polygonal cross section according to claim 4, wherein the glass rod is heated to a temperature of 100.degree.
JP2512087A 1987-02-05 1987-02-05 Forming of glass fiber Granted JPS63195142A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2512087A JPS63195142A (en) 1987-02-05 1987-02-05 Forming of glass fiber
US07/152,202 US4885020A (en) 1987-02-05 1988-02-04 Method of manufacturing glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2512087A JPS63195142A (en) 1987-02-05 1987-02-05 Forming of glass fiber

Publications (2)

Publication Number Publication Date
JPS63195142A JPS63195142A (en) 1988-08-12
JPH0542377B2 true JPH0542377B2 (en) 1993-06-28

Family

ID=12157072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2512087A Granted JPS63195142A (en) 1987-02-05 1987-02-05 Forming of glass fiber

Country Status (1)

Country Link
JP (1) JPS63195142A (en)

Also Published As

Publication number Publication date
JPS63195142A (en) 1988-08-12

Similar Documents

Publication Publication Date Title
JP2003519884A (en) Glass substrate for magnetic medium and magnetic medium based on such glass substrate
US4885020A (en) Method of manufacturing glass fiber
JPH0462408B2 (en)
EP0254198B1 (en) Sealing glass
US5245492A (en) Magnetic head
US3954434A (en) Method of manufacturing a ferrite magnetic transducer head
JPH0542377B2 (en)
US5224001A (en) Magnetic head
JPH0152808B2 (en)
US5181947A (en) Method for manufacturing a glass fiber
JPH0647478B2 (en) Molding method for glass fiber
JPH0428660B2 (en)
JPH0327965B2 (en)
JPH04130028A (en) Glass fiber, its production and magnetic head using glass fiber
JP2722733B2 (en) Sealing glass and magnetic head using the glass
JPH02279534A (en) Formation of glass fiber
JPH0383837A (en) Sealing glass and magnetic head
JPS6029654B2 (en) Magnetic head manufacturing method
JPH07129909A (en) Glass for magnetic head and magnetic head
JPS63808A (en) Manufacture of composite magnetic head
JP3129023B2 (en) Magnetic head
JPS6325247A (en) Glass for sealing
JPH0636253A (en) Manufacture of floating magnetic head
JPH0761836A (en) Glass for adhering ferrite
EP1126440A1 (en) Sealing glass for magnetic head and magnetic head using the same