JPH0542350A - Method and device for supplying heated mold powder for continuous casting - Google Patents

Method and device for supplying heated mold powder for continuous casting

Info

Publication number
JPH0542350A
JPH0542350A JP3197998A JP19799891A JPH0542350A JP H0542350 A JPH0542350 A JP H0542350A JP 3197998 A JP3197998 A JP 3197998A JP 19799891 A JP19799891 A JP 19799891A JP H0542350 A JPH0542350 A JP H0542350A
Authority
JP
Japan
Prior art keywords
powder
heating
heated
mold
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3197998A
Other languages
Japanese (ja)
Inventor
Shigetomi Noshita
滋富 野下
Nobufumi Kasai
宣文 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3197998A priority Critical patent/JPH0542350A/en
Publication of JPH0542350A publication Critical patent/JPH0542350A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide method and device for supplying heated mold powder for continuous casting, by which the whole powder for supplying into a mold is uniformly and precisely heated to the prescribed temp. in case of necessity at any time and a continuously cast slab can be produced without developing any harmful surface defect and bad working environment due to scattering of the powder and temp. rising at the time of heating is not developed. CONSTITUTION:At the time of charging the powder into the mold 3 for continuous casting, the powder is heated in a pipe 7 on the way of supplying the powder with irradiation of microwave from an irradiating part 11 and also, the heating temp. is made to the temp., by which constituting component and material property of the powder is not changed, and adjusted to the temp. corresponding to stationary and unstationary casting condition in the continuous casting and the heated powder is charged into the mold 3. Then, self-exothermic reaction is executed to the powder particles under carrying with gas stream, and the temp. of powder particles is risen and this powder is supplied, and at the time of unstationary condition, such as start of casting, this is heated at high temp. and at the time of stationary condition, this is heated at low temp., and the development of surface defect on the cast slab due to shortage of melting to the powder, is prevented and this can be immediately adjusted to the optional temp. according to the condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、連続鋳造において、
モ−ルド内に投入するモ−ルドパウダ−の加熱供給方法
およびその装置に関するものである。
BACKGROUND OF THE INVENTION This invention relates to continuous casting,
The present invention relates to a method and apparatus for heating and supplying a mold powder to be charged into a mold.

【0002】[0002]

【従来の技術】一般に、鋳片の連続鋳造におけるパウダ
−およびその溶融層は、溶鋼の酸化抑制や介在物の吸着
除去ならびにモ−ルドと凝固シェル間へのパウダ−溶融
流入による急冷防止や潤滑性付与のために不可欠なもの
である。しかし一方では、このパウダ−によって鋳片表
面に有害な欠陥が発生することがある。特に、鋳込みス
タ−ト時, タンディッシュ交換時, 鋳込み中の幅替え
時, 異鋼種連鋳時等の、いわゆる非定常鋳込み時は、定
常鋳込み時と相違して鋳込み速度が変動し、溶鋼温度が
低下する。そのためパウダ−の溶融性が劣化するなどに
より、鋳片表面に、縦割れやスラグ噛み込みあるいはピ
ンホ−ル等の有害な欠陥が発生しやすい。
2. Description of the Related Art Generally, powder and its molten layer in continuous casting of cast slabs are used to prevent oxidation of molten steel, to remove adsorbed inclusions, and to prevent quenching and lubrication by inflow of powder between the mold and the solidified shell. It is essential for imparting sex. On the other hand, however, this powder may cause harmful defects on the surface of the slab. In particular, during so-called unsteady casting, such as during casting start, when changing the tundish, when changing the width during casting, when continuously casting different steel types, etc. Is reduced. As a result, the meltability of the powder deteriorates, and harmful defects such as vertical cracks, slag entrapment, or pinholes are likely to occur on the surface of the slab.

【0003】前述のような鋳片の表面欠陥の発生を防止
するために、従来では、次のような技術が開示されてい
る。即ち、パウダ−の粘度を適正化し、パウダ−の均
等流入を図る方法。モ−ルド銅板の内面に低熱伝導率
の金属を接合したり、あるいは溝を形成することによっ
て、溶鋼からの抜熱量を低減する方法。浸漬ノズルと
モ−ルド長辺との間の溶鋼を流動化させる方法(特開昭
61−172663号公報参照)。発熱パウダ−(モ
−ルド内の溶鋼上で溶融する際にテルミット反応で発熱
するパウダ−)によって、メニスカス部の温度を上昇さ
せる方法などである。
In order to prevent the occurrence of the above-mentioned surface defects of the cast slab, the following techniques have been conventionally disclosed. That is, the viscosity of the powder is optimized so that the powder can be uniformly introduced. A method of reducing the amount of heat removed from molten steel by joining a metal having a low thermal conductivity or forming a groove on the inner surface of a molded copper plate. A method of fluidizing molten steel between the immersion nozzle and the long side of the mold (see Japanese Patent Laid-Open No. 61-172663). For example, a method of raising the temperature of the meniscus portion by an exothermic powder (a powder that generates heat by a thermite reaction when melted on the molten steel in the mold) is used.

【0004】さらに従来技術として、予熱したパウダ−
をモ−ルド内に供給する方法ないしは装置も既知であ
り、例えば特開昭57−19142号公報では実施例
として加熱炉で予熱してから供給する方法が示され、ま
た特開昭57−52556号公報ではパウダ−に高温
ガスを接触させて予熱する装置が示され、さらに実開
昭58−47356号公報では実施例としてスプリング
内蔵型フィ−ダ−を電気加熱して間接的にパウダ−を加
熱する装置が示されている。
Further, as a conventional technique, a preheated powder is used.
There is also known a method or an apparatus for supplying the heat to the mold. For example, Japanese Patent Application Laid-Open No. 57-19142 discloses a method of preheating in a heating furnace as an example, and Japanese Patent Application Laid-Open No. 57-52556. Japanese Unexamined Patent Publication (Kokai) No. 58-48242 discloses a device for preheating by contacting a high temperature gas with the powder. Further, Japanese Utility Model Laid-Open No. 58-47356 discloses an embodiment in which a spring built-in type feeder is electrically heated to indirectly heat the powder. A heating device is shown.

【0005】[0005]

【発明が解決しようとする課題】しかし前述のような従
来技術には、次に述べるような問題がある。即ち、前記
およびの方法は、鋳造速度が比較的小さい場合とく
に 1.0m/min 以下ではかなりの改善効果が認められる
ものの、1.1 m/min 以上の高速鋳造になると鋳片の表
面欠陥を完全には防止できなかった。また前記の方法
は、縦割れ防止と鋳造速度の高速化とを狙ったものであ
るが、この方法でも溶鋼を局部的に流動させるにとどま
り、十分な流動化は困難で鋳片の表面欠陥を完全に防止
することは難しかった。
However, the above-mentioned prior art has the following problems. That is, although the above methods and (3) show a considerable improvement effect when the casting speed is relatively low, especially at 1.0 m / min or less, when the casting speed is 1.1 m / min or more, the surface defects of the slab are completely eliminated. I couldn't prevent it. Further, the above method is aimed at preventing vertical cracking and increasing the casting speed, but even this method only locally melts the molten steel, sufficient fluidization is difficult to cause surface defects of the slab. It was difficult to prevent it completely.

【0006】前記の方法においても、鋳造初期ではメ
ニスカス部の温度は上昇するが、発熱パウダ−は発熱効
果の持続生がないため、連続的な保温効果が得られず、
鋳片の表面欠陥に対する改善効果は小さいものであっ
た。そして前記の方法では、加熱手段が加熱炉となっ
ているのみであるため、同業者が具体的に実施できるよ
うな適切なパウダ−加熱手段の発明がなされたとは考え
難い。
Also in the above method, the temperature of the meniscus portion rises in the early stage of casting, but since the heat generating powder does not sustain the heat generating effect, a continuous heat retaining effect cannot be obtained.
The effect of improving the surface defects of the slab was small. Further, in the above method, since the heating means is only the heating furnace, it is unlikely that an appropriate powder heating means has been invented by a person skilled in the art.

【0007】さらに前記の装置では、予熱用高温ガス
とパウダ−を混合状態で輸送する間にパウダ−が加熱さ
れ、次の過程ではこれらを再度分離することが必要であ
る。
Further, in the above apparatus, the powder is heated while the preheating high-temperature gas and the powder are transported in a mixed state, and it is necessary to separate them again in the next process.

【0008】例えば開示されているように、分離装置と
してサイクロン等を用いたとしても、径がミクロン単位
のパウダ−粒子の周辺への逸出を完璧に防止することは
困難であり、パウダ−飛散による作業環境の悪化や、高
温ガスを使用するために作業環境の温度上昇や、装置が
複雑なための故障も懸念される。
For example, as disclosed, even if a cyclone or the like is used as a separation device, it is difficult to completely prevent powder particles having a diameter of a micron from escaping to the periphery, and the powder is scattered. There is concern that the work environment may deteriorate due to the above, the temperature of the work environment may rise due to the use of high-temperature gas, and that the device may be complicated and malfunction.

【0009】また前記の装置では、外部からの間接的
な加熱方式が採用されているが、パウダ−が本来的に粉
体と気体の混合体であることなどから、パウダ−層の熱
伝導率が極めて小さいために、外部加熱によりパウダ−
層全体を十分な温度まで均一に昇熱することは困難であ
った。
Further, in the above-mentioned apparatus, an indirect heating method from the outside is adopted, but since the powder is originally a mixture of powder and gas, the thermal conductivity of the powder layer is small. Is extremely small, the powder is heated by external heating.
It was difficult to uniformly heat the entire layer to a sufficient temperature.

【0010】しかも前記, の装置では、パウダ−の
高温ガスによる輸送経路あるいはスプリング付フィ−ダ
−等の装置の熱容量が大きいので、モ−ルドパウダ−の
加熱開始前に装置自体の予熱が必要である。そのため、
加熱時の立ち上げ時間が長くかかるので、随時に所定温
度までの加熱を実施することは困難であり、予熱温度の
正確な調節も容易ではなかった。
Further, in the above-mentioned apparatus, since the heat capacity of the apparatus such as the transportation route of the hot gas of the powder or the feeder with the spring is large, it is necessary to preheat the apparatus itself before starting the heating of the mold powder. is there. for that reason,
Since it takes a long time to start up during heating, it is difficult to perform heating up to a predetermined temperature at any time, and it is not easy to accurately adjust the preheating temperature.

【0011】この発明は前述した事情に鑑みて創案した
ものであり、その目的はモ−ルドに供給するパウダ−全
体を必要に応じ、随時に所定の温度まで均等に、かつ精
度良く加熱して供給し、もって有害な表面欠陥を発生さ
せることなく連鋳鋳片を製造でき、かつ加熱に伴うパウ
ダ−の飛散や温度上昇による作業環境の悪化を伴うこと
なく、簡易な装置とすることのできる連鋳用モールドパ
ウダ−の加熱供給方法およびその装置を提供することに
ある。
The present invention was made in view of the above-mentioned circumstances, and an object thereof is to heat the entire powder to be supplied to a mold evenly and accurately to a predetermined temperature as needed, as needed. A continuous casting slab can be manufactured without supplying harmful surface defects, and a simple apparatus can be provided without scattering of powder due to heating and deterioration of working environment due to temperature rise. It is an object of the present invention to provide a method and apparatus for heating and supplying a mold powder for continuous casting.

【0012】[0012]

【課題を解決するための手段】前述した目的を達成する
ため、本発明に係るパウダ−加熱供給方法は、連続鋳造
用モ−ルド内へパウダ−を投入するに際し、パウダ−を
パウダ−供給過程の管内でマイクロ波を照射して加熱す
ると共に、加熱温度をパウダ−の構成成分および物性値
が変化しない温度とし、かつ、連続鋳造の定常あるいは
非定常の鋳込み状況に対応させた温度に調節し、加熱さ
れたパウダ−をモ−ルド内に投入することを特徴とす
る。
In order to achieve the above-mentioned object, the powder heating and feeding method according to the present invention is a powder feeding step of feeding the powder into the continuous casting mold. While heating by irradiating microwaves in the tube of, the heating temperature is adjusted to a temperature at which the constituent components and physical properties of the powder do not change, and adjusted to a temperature corresponding to the steady or unsteady casting condition of continuous casting. It is characterized in that a heated powder is put into the mold.

【0013】また別の面からは、本発明に係るパウダ−
加熱供給方法は、請求項1に記載のパウダ−の加熱に際
し、マイクロ波が照射される複数の加熱部の加熱実施数
ないしはマイクロ波発振装置の出力を変化させることに
より、所定の加熱温度に調節することを特徴とするもの
である。
From another aspect, the powder according to the present invention.
The heating and supplying method, when heating the powder according to claim 1, adjusts the heating temperature to a predetermined value by changing the number of heating operations of a plurality of heating units to which microwaves are applied or the output of the microwave oscillating device. It is characterized by doing.

【0014】また本発明に係るパウダ−供給装置は、連
続鋳造用モ−ルドへパウダ−を供給する過程の途中に挿
設した非金属管からなりマイクロ波を照射される加熱部
と、該加熱部を包囲するように周設した照射部と、該照
射部の近傍に配設したマイクロ波発振装置と、該マイク
ロ波発振装置と前記照射部とを連結してマイクロ波を照
射部に導く伝播管と、該伝播管の途中に挿設したアイソ
レ−タ−と、を設けてなることを特徴とする。
The powder supply apparatus according to the present invention comprises a heating section which is made up of a non-metal tube inserted in the middle of the process of supplying powder to the continuous casting mold and which is irradiated with microwaves. An irradiation unit surrounding the irradiation unit, a microwave oscillating device disposed in the vicinity of the irradiation unit, and a propagation for guiding the microwave to the irradiation unit by connecting the microwave oscillating device and the irradiation unit. It is characterized in that a tube and an isolator inserted in the middle of the propagation tube are provided.

【0015】また別の面からは、前記照射部および加熱
部を、複数配設することを特徴とする。あるいはまた、
前記加熱部を構成する非金属管の構造を、二重管とする
ことを特徴とする。
From another aspect, a plurality of the irradiation units and the heating units are arranged. Alternatively,
The structure of the non-metal pipe that constitutes the heating unit is a double pipe.

【0016】さらに別の面からは、前記加熱部を構成す
る非金属管の材質を、石英ガラスまたは窒化ケイ素ある
いはアルミナを主体としたセラミックとすること特徴と
するものである。
From another aspect, the material of the non-metal tube forming the heating section is quartz glass, silicon nitride, or a ceramic mainly composed of alumina.

【0017】[0017]

【作用】以下、本発明方法の作用について述べる。The operation of the method of the present invention will be described below.

【0018】溶鋼の連続鋳造時において、例えば、その
鋳込みのスタ−ト時,タンディッシュ交換時,鋳込み中
の幅替え時,異種鋼種連鋳時等には、一般に鋳込み速度
が低下すると共に溶鋼温度が降下し、鋳込み作業が非定
常状態となり、この非定常状態を経て定常状態に至る。
このような連続鋳造中のモ−ルドに供給するパウダ−
を、その化学組成に悪影響が発生しない温度範囲で加熱
して供給する。加熱温度は適正な温度に一定としてもよ
いし、あるいは定常状態時よりも非定常状態時により高
い温度まで加熱して供給してもよいし、あるいは非定常
状態時のみ加熱して供給してもよい。
During continuous casting of molten steel, for example, when the casting is started, when changing the tundish, when changing the width during casting, when continuously casting different steel types, etc., the casting speed generally decreases and the molten steel temperature decreases. Falls, the casting operation becomes an unsteady state, and the steady state is reached through this unsteady state.
Powder to be supplied to the mold during such continuous casting
Is heated and supplied in a temperature range in which its chemical composition is not adversely affected. The heating temperature may be constant at a proper temperature, or may be heated to a higher temperature in the unsteady state than in the steady state and supplied, or may be heated and supplied only in the unsteady state. Good.

【0019】このように所定温度に随時に昇温されたパ
ウダ−を供給して鋳造すると、非定常状態時のように鋳
込み速度が低下し溶鋼温度が降下しても、パウダ−の溶
融性が損なわれることがなく、流動性の高いパウダ−が
凝固シェルとモ−ルドの隙間に入り込みその隙間の各部
での潤滑を均一に行う。このため凝固シェルのモ−ルド
による抜熱も均一となり、鋳片は均一な凝固シェルを形
成することができるので、表面欠陥が少ない優れた鋼片
を製造することができる。
When the powder which is heated to the predetermined temperature at any time is supplied and cast, the meltability of the powder is reduced even if the casting speed is lowered and the molten steel temperature is lowered as in the unsteady state. A powder having high fluidity without being impaired enters the gap between the solidified shell and the mold and uniformly lubricates each portion of the gap. For this reason, the heat removal by the mold of the solidified shell becomes uniform, and the cast piece can form a uniform solidified shell, so that an excellent steel slab with few surface defects can be manufactured.

【0020】この場合、パウダ−としては、何れの化学
組成のものも用いることができ、加熱時にはこのパウダ
−の構成成分および物性値が変化しない温度範囲、即ち
パウダ−中のカ−ボンが脱炭消失せず、あるいは焼結反
応が起こらない上限温度の範囲内に設定して加熱するこ
とが望ましく、通常は100〜600℃程度に加熱す
る。その理由は、100℃未満では加熱効果が小さく、
600℃を超えるとパウダ−の種類にもよるがパウダ−
の成分に変質をきたしたりあるいはパウダ−の各粒子が
相互に溶融し塊状になったりして、モ−ルド内でのパウ
ダ−の機能に支障をきたす恐れがあるためである。
In this case, as the powder, any chemical composition can be used, and the temperature range in which the constituents and physical properties of the powder do not change during heating, that is, carbon in the powder is removed. It is desirable to set the heating temperature within the range of the upper limit temperature at which charcoal does not disappear or the sintering reaction does not occur, and heating is usually performed at about 100 to 600 ° C. The reason is that if the temperature is less than 100 ° C, the heating effect is small,
Above 600 ° C, depending on the type of powder, powder
This is because the components of the powder may deteriorate or the particles of the powder may melt with each other to form a lump, which may impair the function of the powder in the mold.

【0021】前述したような作用の確実な実現に適した
加熱を実施するために、本発明のモ−ルドパウダ−の加
熱供給方法は、パウダ−供給過程の管内でマイクロ波を
照射して加熱すると共に、加熱温度をパウダ−の構成成
分および物性値が変化しない温度とし、かつ連続鋳造の
定常あるいは非定常の鋳込み状況に対応させた所定温度
に調節し、加熱されたパウダ−をモ−ルド内に投入す
る。
In order to carry out the heating suitable for surely realizing the above-mentioned operation, the heating and supplying method of the mold powder according to the present invention heats by irradiating with microwaves in the tube during the powder supplying process. At the same time, the heating temperature is set to a temperature at which the constituents and physical properties of the powder do not change, and the heating temperature is adjusted to a predetermined temperature corresponding to the steady or unsteady casting condition of continuous casting, and the heated powder is in the mold. Throw in.

【0022】ところで、被加熱物に吸収されて熱に変わ
る電力Pは、被加熱物の物性、加えた電界の強さおよび
周波数に関係し、例えば次の式で表されることが知られ
ている。P=a・f・E2 ・ε・tan δ(ここで、aは
定数,fは周波数,Eは加えられた電界の強さ,εは誘
電体の比誘電率,tan δは誘電体損失角である。)即
ち、誘電加熱は原理的に誘電損失による加熱であるか
ら、電気の不良導体であるパウダ−層はその内部から誘
電損失により自己発熱する。マイクロ波はパウダ−層の
表層から入って、誘電損失によって吸収されながら次第
にパウダ−層の中心部に伝わっていく。そのため従来技
術における通常のバッチ式加熱炉のように、容器類に収
容したパウダ−層の場合は、その断面積が大きいので、
内部にいくほど電界の強さは弱くなり、内部の加熱がし
にくくなる。しかし本発明方法のように、加熱部を管状
体に形成する場合は、パウダ−層の断面積が小さくでき
るので、パウダ−各部にほぼ均一な電界を与えて、均一
に発熱させ昇温することができる。
By the way, it is known that the electric power P that is absorbed by the object to be heated and converted into heat is related to the physical properties of the object to be heated, the strength and frequency of the applied electric field, and is represented by the following equation, for example. There is. P = a · f · E 2 · ε · tan δ (where a is a constant, f is the frequency, E is the strength of the applied electric field, ε is the relative permittivity of the dielectric, and tan δ is the dielectric loss. That is, since the dielectric heating is heating by dielectric loss in principle, the powder layer, which is a poor conductor of electricity, self-heats from inside due to dielectric loss. Microwaves enter from the surface layer of the powder layer and are gradually propagated to the center of the powder layer while being absorbed by the dielectric loss. Therefore, in the case of a powder layer housed in a container, like a normal batch type heating furnace in the prior art, its cross-sectional area is large,
The strength of the electric field becomes weaker toward the inside, and it becomes difficult to heat the inside. However, when the heating part is formed in the tubular body as in the method of the present invention, the cross-sectional area of the powder layer can be made small, so that a substantially uniform electric field is applied to each part of the powder to uniformly generate heat and raise the temperature. You can

【0023】また別の面からの、本発明のパウダ−加熱
供給方法は、パウダ−の加熱に際し、マイクロ波が照射
される複数の加熱部の加熱実施数ないしはマイクロ波発
振装置の出力を変化させることにより、加熱温度を調節
する。即ちパウダ−の種類、例えば成分や粒度分布等に
応じ、あるいはパウダ−の単位時間当りの供給量に応
じ、ないしは連続鋳造作業の状況、例えば定常状態もし
くは非定常状態に応じてパウダ−の加熱温度を所定温度
に調節できることが望ましい。そしてこの観点から、加
熱部を複数設け、その複数の加熱部の加熱実施数を随時
変化させ、ないしはマイクロ波発振装置に加える電力を
随時変化させて、その出力を調節することで、パウダ−
の昇熱温度の調節可能範囲を広くできるようにしたもの
である。
According to another aspect of the powder heating / supplying method of the present invention, when heating the powder, the number of heating operations of a plurality of heating units irradiated with microwaves or the output of the microwave oscillating device is changed. By adjusting the heating temperature. That is, depending on the type of powder, for example, the composition and particle size distribution, or the supply amount of the powder per unit time, or the condition of continuous casting operation, for example, the heating temperature of the powder according to the steady state or the unsteady state. It is desirable that the temperature can be adjusted to a predetermined temperature. From this point of view, a plurality of heating units are provided, and the number of heating operations of the plurality of heating units is changed at any time, or the electric power applied to the microwave oscillating device is changed at any time, and the output is adjusted, whereby the powder
This allows the adjustable range of the heating temperature of B to be widened.

【0024】このようにして確保されたパウダ−の広い
温度調節範囲内での温度微調節は、昇温後のパウダ−温
度を測定し、かつマイクロ波発振装置の出力を制御すれ
ば容易に達成することができる。なお複数の加熱部は、
通常、直列に配設するが、並列に配設することもでき
る。
Fine adjustment of the temperature of the powder thus secured within a wide temperature control range can be easily achieved by measuring the powder temperature after the temperature rise and controlling the output of the microwave oscillating device. can do. In addition, the plurality of heating units,
Usually, they are arranged in series, but they can also be arranged in parallel.

【0025】本発明は、前述した方法によって、モ−ル
ドパウダ−を予め所定温度まで加熱して連続的にモ−ル
ド内に供給するものである。そのため、パウダ−上部の
粉末層の大気と接する部分の温度は、通常のパウダ−を
室温のまま投入する従来法より大幅に高くなり、溶鋼か
ら大気に向かう抜熱量が小さくなり、溶鋼の温度降下が
抑制できる。これにより縦割れ、ピンホ−ルあるいはス
ラグ噛み込み等の鋳片表面欠陥が大幅に減少する。
According to the present invention, the mold powder is heated to a predetermined temperature in advance by the above-mentioned method and continuously supplied into the mold. Therefore, the temperature of the portion of the powder layer in contact with the atmosphere in the upper portion of the powder is significantly higher than that of the conventional method in which a normal powder is charged at room temperature, the amount of heat removed from the molten steel to the atmosphere is reduced, and the temperature drop of the molten steel Can be suppressed. As a result, slab surface defects such as vertical cracks, pinholes, or slag entrapment are greatly reduced.

【0026】またパウダ−の加熱温度は、パウダ−の構
成成分や物性値を変化させるような脱炭反応,焼結反応
等を起こさないような温度範囲に制御されるため、パウ
ダ−の滓化速度を一定に制御し、パウダ−上部の粉末層
が変質することなく、充分な保温効果を得ることができ
る。
Further, since the heating temperature of the powder is controlled within a temperature range which does not cause decarburization reaction, sintering reaction, etc. which change the constituent components and physical properties of the powder, the powder is slagged. By controlling the speed constant, a sufficient heat retaining effect can be obtained without changing the quality of the powder layer above the powder.

【0027】[0027]

【実施例】次に、本発明方法を実施するために用いるパ
ウダ−供給装置について、実施例を示す図面を参照しな
がら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a powder supply device used for carrying out the method of the present invention will be described with reference to the drawings showing the embodiments.

【0028】図1,図2および図3は本発明の実施例を
示す模式図であり、図1は単一のマイクロ波発振装置と
単一のパウダ−加熱部(照射部により包囲されている)
を設けた実施例を示し、これに対し図2は単一のマイク
ロ波発振装置と複数の加熱部とを設けた実施例を示し、
また図3は複数のマイクロ波発振装置と複数のパウダ−
加熱部とを設けた実施例を示す。
FIGS. 1, 2 and 3 are schematic views showing an embodiment of the present invention, and FIG. 1 shows a single microwave oscillating device and a single powder heating section (surrounded by an irradiation section). )
2 shows an embodiment in which a single microwave oscillation device and a plurality of heating units are provided,
FIG. 3 shows a plurality of microwave oscillators and a plurality of powders.
The example which provided the heating part is shown.

【0029】また図4は図1,図2および図3に示した
実施例を、部分的に詳しく説明するための模式図で、図
5は図4における断面Aを説明するための模式図であ
る。
FIG. 4 is a schematic diagram for partially explaining in detail the embodiment shown in FIGS. 1, 2 and 3, and FIG. 5 is a schematic diagram for explaining a cross section A in FIG. is there.

【0030】図1,図2および図3において、11は加
熱部に対して包囲するように周設した照射部、12はマ
イクロ波発振装置、13は伝播管、13aは分配装置、
14はアイソレ−タ−である。
In FIGS. 1, 2 and 3, 11 is an irradiating section which is provided so as to surround the heating section, 12 is a microwave oscillating device, 13 is a propagation tube, and 13a is a distributing device.
14 is an isolator.

【0031】タンディシュ1からノズル2を介してモ−
ルド3に溶鋼4を供給しながら鋳込んで鋳片を製造する
際に、パウダ−はホッパ−6からロ−タリ−バルブ8に
よって移送管7に所定量切り出され、同時に弁10およ
び気体供給管9を経てキャリヤ−ガスとしてアルゴンま
たは窒素あるいは空気等の気体が移送管7の端部から導
入され、パウダ−を移送管7およびパウダ−供給管7′
を介してモ−ルド3へ連続的に供給する。
From the tundish 1 through the nozzle 2
When producing molten slab by pouring molten steel 4 into the container 3, the powder is cut out from the hopper 6 by the rotary valve 8 into the transfer pipe 7 by a predetermined amount, and at the same time, the valve 10 and the gas supply pipe are supplied. A gas such as argon or nitrogen or air is introduced from the end of the transfer pipe 7 as a carrier gas via 9 to transfer the powder to the transfer pipe 7 and the powder supply pipe 7 '.
Is continuously supplied to the mold 3 via.

【0032】本発明の装置は、モ−ルド3へパウダ−を
移送するための移送管7からなる密閉流路の一端に連設
しまたは密閉流路の途中に挿設した非金属管18からな
る加熱部と、該加熱部を包囲するように周設した照射部
11と、該照射部11の近傍に配設したマイクロ波発振
装置12と、マイクロ波発振装置12と照射部11とを
連結してマイクロ波を照射部11に導く伝播管13と、
該伝播管13の途中に挿設したアイソレ−タ−14とか
らなることを特徴とする。
The apparatus according to the present invention comprises a non-metal pipe 18 which is connected to one end of a closed flow passage which is a transfer pipe 7 for transferring powder to the mold 3 or which is inserted in the closed flow passage. The heating unit, the irradiation unit 11 that surrounds the heating unit, the microwave oscillating device 12 disposed near the irradiation unit 11, and the microwave oscillating device 12 and the irradiation unit 11 are connected to each other. A propagation tube 13 for guiding the microwave to the irradiation unit 11,
It is characterized by comprising an isolator 14 inserted in the middle of the propagation tube 13.

【0033】パウダ−の加熱を行う場合は、マイクロ波
発振装置12から発振されたマイクロ波を伝播管13を
介して照射部11に導き、該照射部11に包囲された非
金属管18からなる加熱部に照射し、非金属管18の内
部を連続的に移送されるパウダ−を前述のように誘電加
熱の原理に基づく自己発熱により昇温せしめる。
When heating the powder, the microwave oscillated from the microwave oscillating device 12 is guided to the irradiation section 11 through the propagation tube 13 and is composed of the non-metal tube 18 surrounded by the irradiation section 11. The powder is continuously irradiated inside the non-metal tube 18 by irradiating the heating portion, and the powder is heated by self-heating based on the principle of dielectric heating as described above.

【0034】前記非金属管18の両端は移送管7(通常
は金属製管)の途中の結合部7b,7cでそれぞれ結合
され、またパウダ−供給管7′は水平方向に自在に揺動
することができるようにフレキシブルな結合部7aで結
合されており、加熱部で昇温されたパウダ−はパウダ−
供給管7′の先端からモ−ルド3内へ高温状態で散布さ
れ、図1,図2および図3に示すパウダ−層5を形成す
る。伝播管13および照射部11は、断面が例えば円形
または矩形の金属管等からなり、伝播管13の途中に挿
設したアイソレ−タ−14は、マイクロ波発振装置12
から発振されたマイクロ波の一部が加熱部から反射して
マイクロ波発振装置12側へ戻ってくることがあるの
で、これを遮断してマイクロ波発振装置12を保護する
ためのものである。図2に示した分配装置13aは、伝
播管13の途中に挿設され単一のマイクロ波発振装置か
ら発振したマイクロ波を、複数の照射部に分配するため
のものである。
Both ends of the non-metal pipe 18 are connected to each other by connecting portions 7b and 7c in the middle of the transfer pipe 7 (usually a metal pipe), and the powder supply pipe 7'is freely swingable in the horizontal direction. So that the powder heated by the heating part is connected by the flexible connecting part 7a.
The powder is sprayed from the tip of the supply pipe 7'into the mold 3 at a high temperature to form the powder layer 5 shown in FIGS. 1, 2 and 3. The propagation tube 13 and the irradiation section 11 are made of, for example, a metal tube having a circular or rectangular cross section, and an isolator 14 inserted in the middle of the propagation tube 13 is a microwave oscillating device 12.
Since a part of the microwave oscillated from the microwave may be reflected from the heating part and return to the microwave oscillating device 12 side, this is for protecting the microwave oscillating device 12 by blocking this. The distribution device 13a shown in FIG. 2 is for inserting microwaves oscillated from a single microwave oscillating device inserted in the propagation tube 13 into a plurality of irradiation units.

【0035】本発明装置は前述したように構成したの
で、マイクロ波発振装置12に通電してマイクロ波を発
生すると、該マイクロ波は伝播管13を介して照射部1
1に導かれ、該照射部11に包囲された非金属管18か
らなる加熱部の内部を連続的に通過中のパウダ−20に
吸収され、前述のように誘電加熱の原理に基づく自己発
熱により該パウダ−20を昇温することができる。この
場合、パウダ−供給管7′の先端部に熱電対15を配設
して供給中のパウダ−の温度を測定し、その近辺に配設
した温度設定装置16および制御装置17の作動に従っ
て、マイクロ波発振装置12の通電により加熱する加熱
部の数を随時に制御しあるいはマイクロ波発振装置12
の出力を随時に制御することにより昇温後のパウダ−温
度を調節する。
Since the device of the present invention is constructed as described above, when the microwave oscillating device 12 is energized to generate a microwave, the microwave is radiated through the propagation tube 13 to the irradiation unit 1.
1 and is absorbed by the powder 20 which is continuously passing through the inside of the heating part composed of the non-metallic tube 18 surrounded by the irradiation part 11, and by the self-heating based on the principle of dielectric heating as described above. The powder-20 can be heated. In this case, a thermocouple 15 is arranged at the tip of the powder supply pipe 7'to measure the temperature of the powder being supplied, and according to the operation of the temperature setting device 16 and the control device 17 arranged in the vicinity thereof, The number of heating units heated by energizing the microwave oscillating device 12 is controlled at any time, or the microwave oscillating device 12
The temperature of the powder after heating is adjusted by controlling the output of the device at any time.

【0036】また本発明装置は別の面からは、図2およ
び図3に示すように、前記加熱部および照射部11を複
数配設することを特徴とする。複数配設することによ
り、同一出力のマイクロ波発振装置を使用する場合であ
っても、パウダ−の加熱面積をより大きくとることがで
きるので、図1に示す単一設置の場合よりも単位時間当
りの加熱能力が増大し、加熱温度調節可能範囲をより拡
大することができる。加熱部を複数配設した場合でも、
常にすべての加熱部にマイクロ波を照射して加熱するこ
とは必ずしも必要ではなく、例えば鋳込みの非定常時は
加熱部設置数2台中の2台でパウダ−を比較的高い温度
に加熱し、鋳込みの定常時は1台のみで比較的低い温度
に加熱するなどしてもよい。
From another aspect, the apparatus of the present invention is characterized in that a plurality of heating units and irradiation units 11 are provided as shown in FIGS. 2 and 3. By arranging a plurality of units, the heating area of the powder can be made larger even when the microwave oscillator having the same output is used. Therefore, the unit time is longer than that of the single installation shown in FIG. The heating capacity per hit is increased, and the adjustable range of the heating temperature can be further expanded. Even when multiple heating units are installed,
It is not always necessary to irradiate microwaves to all the heating parts at all times, and for example, when the casting is unsteady, the powder is heated to a relatively high temperature by two of the two heating parts installed and the casting is performed. In the steady state, only one unit may be heated to a relatively low temperature.

【0037】また別の面からは、前記加熱部を構成する
非金属管の構造を、図6および図7に示すように二重管
とすることもできる。図6は図4と同一部分について、
これとは別態様の実施例を説明するための模式図であ
り、図7は図6における断面Bを説明するための模式図
である。二重管にする場合の理由は、パウダ−の温度を
比較的高温にまで加熱する場合や、加熱と非加熱の繰り
返し頻度が相当に多い場合に、加熱部を構成する管18
の破損の可能性が無いとは言いきれないので、照射部1
1と管7とに密接に着設したシ−ルカバ−19によりマ
イクロ波の外部への漏出を防止するようにしているもの
の、さらに安全性を高めるためになされたものである。
From another aspect, the structure of the non-metal tube forming the heating section may be a double tube as shown in FIGS. 6 and 7. FIG. 6 shows the same parts as FIG.
FIG. 7 is a schematic diagram for explaining an embodiment of a mode different from this, and FIG. 7 is a schematic diagram for explaining a cross section B in FIG. The reason why the double tube is used is that the tube that constitutes the heating section is used when the temperature of the powder is heated to a relatively high temperature or when the heating and non-heating are repeated frequently.
Since it cannot be said that there is no possibility of damage to the
Although a seal cover 19 closely attached to the pipe 1 and the pipe 7 prevents the microwave from leaking to the outside, it is designed to further enhance the safety.

【0038】本発明の装置は、さらに別の面からは、前
記加熱部を構成する非金属管の材質を、石英ガラスまた
は窒化ケイ素あるいはアルミナを主体としたセラミック
とすることを特徴とする。また図6および図7に示すよ
うな二重管をなす非金属管(内管)18および非金属管
(外管)18′は、同一材質でなくてもよく、例えばフ
ッ化物等のパウダ−成分による非金属管の侵食の有無
や、適切なパウダ−の加熱温度範囲等に鑑みて選定すれ
ばよい。
From another aspect, the apparatus of the present invention is characterized in that the material of the non-metal tube forming the heating section is quartz glass, silicon nitride, or ceramics mainly composed of alumina. Further, the non-metal pipe (inner pipe) 18 and the non-metal pipe (outer pipe) 18 'forming a double pipe as shown in FIGS. 6 and 7 do not have to be made of the same material, and for example, a powder of fluoride or the like can be used. It may be selected in consideration of the presence or absence of corrosion of the non-metallic pipe due to the components, the appropriate heating temperature range of the powder, and the like.

【0039】石英ガラスや窒化ケイ素あるいはアルミナ
を主体としたセラミックは、誘電体損失角が極めて小さ
く、かつ、比誘電率も大きくないのでマイクロ波の吸収
が少なく、従ってその内部を通過中のパウダ−へのマイ
クロ波の到達が容易なためパウダ−を効率よく加熱する
ことができる。一方、石英ガラス製または窒化ケイ素製
あるいはアルミナを主体としたセラミック製の管自体は
マイクロ波の吸収が少ないから、パウダ−の発熱と比較
して発熱は過度に大きくないのでパウダ−との接触面が
過熱し、問題となるようなパウダ−の変質や温度不均一
などの不都合を生じる恐れもない。
A ceramic mainly composed of quartz glass, silicon nitride or alumina has a very small dielectric loss angle and a small relative permittivity, so that it does not absorb microwaves so much that the powder passing through the inside thereof is not absorbed. Since microwaves can easily reach the powder, the powder can be efficiently heated. On the other hand, a quartz glass tube, a silicon nitride tube, or a ceramic tube made mainly of alumina absorbs less microwaves, and the heat generation is not excessively large as compared with the heat generation of the powder. Is not overheated, and there is no possibility of causing inconvenience such as deterioration of the powder and uneven temperature, which may cause problems.

【0040】次に実施例にもとづき本発明の効果を明ら
かにする。図8は本実施例に使用した連続鋳造機におけ
る鋳造部分を模式的に示したものである。取鍋から溶鋼
を受けたタンディッシュの下部に取り付けた2孔浸漬ノ
ズル21は、モ−ルド22内の溶鋼M内に浸漬され、そ
のノズル21の吐出孔21aからモ−ルド22の短辺面
方向に溶鋼Mが吐出される。23Aは本発明に係る予熱
パウダ−、23Bは保温層、23Cは溶融パウダ−、2
4は凝固シェルである。このような連続鋳造機(湾曲半
径10m)のモ−ルド内に、表1に示す組成の溶鋼を鋳
造速度1.6m/minで鋳造し、厚さが250mm、
幅が1600mmの鋳片を製造した。
Next, the effects of the present invention will be clarified based on Examples. FIG. 8 schematically shows a cast portion in the continuous casting machine used in this example. The two-hole immersion nozzle 21 attached to the lower part of the tundish that has received molten steel from the ladle is immersed in the molten steel M in the mold 22, and the discharge hole 21a of the nozzle 21 causes the short side surface of the mold 22. Molten steel M is discharged in the direction. 23A is a preheating powder according to the present invention, 23B is a heat retaining layer, 23C is a melting powder, 2
4 is a solidification shell. Molten steel having the composition shown in Table 1 was cast at a casting speed of 1.6 m / min in a mold of such a continuous casting machine (curving radius of 10 m), and a thickness of 250 mm,
A slab with a width of 1600 mm was produced.

【0041】[0041]

【表1】 [Table 1]

【0042】ただし、本発明の効果を明らかにするため
に、No.1ストランドにおいては、従来法を適用して
鋳造し、No.2ストランドでは本発明方法および装置
により図9に示すように鋳込みの定常状態および非定常
状態に対応させて200〜550℃に予熱した、表2に
示す組成のモ−ルドパウダ−を投入して鋳造した。使用
した装置は、図3,図4および図5に概略を示す装置で
あり、マイクロ波発振装置の周波数は2450MHz、
出力5kw×2台、加熱部の管径が50mmの石英ガラ
スとし、該加熱部の長さを50cm、該加熱部の設置数
を2として実施した。モ−ルド内へのパウダ−供給量は
平均0.5Kg/分、キャリヤ−ガスの種類はアルゴン
とした。
However, in order to clarify the effect of the present invention, No. No. 1 strand was cast by applying the conventional method. In the case of the two strands, a mold powder having the composition shown in Table 2, which was preheated to 200 to 550 ° C. corresponding to the steady state and unsteady state of casting as shown in FIG. did. The device used is the device schematically shown in FIGS. 3, 4 and 5, and the frequency of the microwave oscillation device is 2450 MHz,
The output was 5 kw × 2 units, the heating section was made of quartz glass having a tube diameter of 50 mm, the heating section had a length of 50 cm, and the number of heating sections installed was two. The powder supply rate into the mold was 0.5 Kg / min on average, and the carrier gas type was argon.

【0043】[0043]

【表2】 [Table 2]

【0044】この予熱したパウダ−の使用により、メニ
スカス部の温度低下は図10に示すように状来より大幅
に改善された。この結果、得られた鋳片の縦割れ発生の
頻度は図11に示すようになった。図11から判るよう
に、本発明の実施例では、縦割れ発生率は従来方法の約
1/10に減少し、鋳片品質上に全く問題のないレベル
まで好転した。また、縦割れ以外の有害欠陥の発生は、
従来方法では鋳片長さ1m当り平均約10個であった
が、本発明実施例では皆無であった。
By using this preheated powder, the temperature drop in the meniscus portion was significantly improved as shown in FIG. As a result, the frequency of occurrence of vertical cracks in the obtained slab was as shown in FIG. As can be seen from FIG. 11, in the example of the present invention, the vertical cracking occurrence rate was reduced to about 1/10 of that of the conventional method, and it improved to a level at which there was no problem in terms of slab quality. In addition, the occurrence of harmful defects other than vertical cracks,
In the conventional method, the average length of slabs was about 10 per 1 m, but none was found in the examples of the present invention.

【0045】さらに前記実施例とは別の実施例では、低
炭素アルミキルド鋼の鋳込みに対してパウダ−を前記実
施例と同様にして200〜550℃に加熱してモ−ルド
に投入して鋳込んだ結果、図12に示すように鋳片表皮
下のピンホ−ルを従来に比較して大幅に低減することが
できた。
Further, in another embodiment different from the above-mentioned embodiment, in the case of casting low carbon aluminum killed steel, the powder is heated to 200 to 550 ° C. in the same manner as in the above-mentioned embodiment and put into a mold for casting. As a result, as shown in FIG. 12, the pinholes under the epidermis of the slab could be significantly reduced as compared with the prior art.

【0046】[0046]

【発明の効果】以上詳しく説明した通り、本発明は連続
鋳造用モ−ルド内へパウダ−を投入するに際し、パウダ
−をパウダ−供給過程の管内でマイクロ波を照射して加
熱すると共に、加熱温度をパウダ−の構成成分および物
性値が変化しない温度とし、かつ連続鋳造の定常あるい
は非定常の鋳込み状況に対応させ所定温度に調節し、加
熱されたパウダ−をモ−ルド内に投入するようにしたた
め、次のような効果を奏する。
As described above in detail, according to the present invention, when the powder is charged into the continuous casting mold, the powder is heated by irradiating with microwaves in the pipe during the powder supplying process. The temperature should be a temperature at which the constituents and physical properties of the powder do not change, and the temperature should be adjusted to a predetermined temperature according to the steady or unsteady casting condition of continuous casting, and the heated powder should be put into the mold. Therefore, the following effects can be obtained.

【0047】即ち、高温で、かつ構成成分や物性値に変
化のないパウダ−により連続的で充分な保温効果が得ら
れ、縦割れ,ピンホ−ル,スラグ噛み込み等の鋳片表面
欠陥を大幅に低減させることができる。これにより、次
工程での鋳片の表面手入れを大幅に削減できると共に、
製品品質の信頼性を高めることができる。
That is, a powder having a high temperature and no change in the constituents and physical properties provides a continuous and sufficient heat retaining effect, and the slab surface defects such as vertical cracks, pinholes, slag entrapment, etc. Can be reduced to As a result, it is possible to significantly reduce the surface maintenance of the slab in the next step,
The reliability of product quality can be improved.

【0048】またマイクロ波加熱により、脱炭反応等を
起こさせることなく、パウダ−を内部まで温度を均等
に、かつ精度よく加熱でき、加熱しにくいパウダ−を全
体にわたって所望の温度まで容易かつ迅速に加熱するこ
とができる。
By microwave heating, the powder can be heated evenly and accurately to the inside without causing a decarburization reaction, etc., and the powder which is difficult to be heated can be easily and quickly heated to a desired temperature. Can be heated to.

【0049】また本発明の装置は加熱部を複数設けるこ
とが容易で、かつマイクロ波を照射する誘電加熱の特性
から、パウダ−加熱開始前の装置の予熱時間が不要で通
電開始と同時にパウダ−の加熱を開始することができ加
熱時の立ち上げ時間が少なくてすむので、連続鋳造の非
定常時あるいは定常時の任意のタイミングに選択的に加
熱することも容易である。さらに加熱温度の制御は加熱
部の加熱実施数を変化させたりあるいはマイクロ波発振
装置の出力を調節することにより容易に実施できるか
ら、温度調節範囲が広く、かつ応答も迅速で、操作性が
良好である。
Further, in the apparatus of the present invention, it is easy to provide a plurality of heating sections, and because of the characteristic of the dielectric heating for irradiating microwaves, the preheating time of the apparatus before the start of powder heating is not required and the powder is started at the same time when the energization is started. Since the heating can be started and the start-up time at the time of heating can be shortened, it is also easy to selectively heat at an arbitrary time during the unsteady state or the steady state of continuous casting. Furthermore, since the heating temperature can be controlled easily by changing the number of heating operations in the heating section or adjusting the output of the microwave oscillator, the temperature adjustment range is wide, the response is quick, and the operability is good. Is.

【0050】また加熱部をパウダ−移送途中の管状体に
したので、例えば容器類にパウダ−を入れた状態で加熱
するようなバッチ式加熱炉とは異なり移送中に連続的に
加熱でき、管の材質を石英ガラスまたは窒化ケイ素ある
いはアルミナを主体としたセラミック等の誘電体損失が
小さいものにしたので、マイクロ波は効率よく管内を通
過中のパウダ−層に到達しパウダ−を充分な温度まで均
一に加熱することができる。
Further, since the heating portion is a tubular member in the middle of powder transfer, unlike a batch type heating furnace in which the powder is placed in a container, for example, heating can be performed continuously during transfer, The material of the material was made of quartz glass, silicon nitride, or ceramics mainly composed of alumina with a low dielectric loss, so that the microwave efficiently reaches the powder layer passing through the tube and the powder is heated to a sufficient temperature. It can be heated uniformly.

【0051】さらに本発明方法は、マイクロ波を照射す
る誘電加熱の原理に基づく自己発熱によりパウダ−を予
熱するので、従来方法の有する次のような欠点も解消で
きる。即ち、従来方法のような外部加熱方法と異なり熱
源は粉体自身の発熱であり本装置の外部への放熱がほと
んどないので、作業環境が高温に曝されることがなく、
また密閉流路内での誘電加熱であるので高温ガスや粉塵
の漏洩もないので、作業環境の悪化を伴うことがないこ
と(本発明では、前述のようにシ−ルカバ−等の装置に
より装置外へのマイクロ波の漏出を防止することが容易
である。)。これと、マイクロ波発振装置やその制御装
置は鋳込み作業場と離れた位置に配置して、伝播管でも
って照射部と連結することが容易であり、鋳込み作業場
に必要な装置は伝播管と照射部および照射部とに包囲さ
れた加熱部等に限定することが可能で、全体の装置も簡
易であるが作業場周辺も簡易にすることができることも
長所として上げることができる。
Further, according to the method of the present invention, the powder is preheated by self-heating based on the principle of dielectric heating by irradiating microwaves, so that the following drawbacks of the conventional method can be solved. That is, unlike the external heating method such as the conventional method, the heat source is the heat generated by the powder itself and there is almost no heat radiation to the outside of the device, so the working environment is not exposed to high temperatures,
Further, since it is the dielectric heating in the closed flow path, there is no leakage of high temperature gas or dust, so that the working environment is not deteriorated (in the present invention, the device such as a seal cover is used as described above. It is easy to prevent microwave leakage to the outside.) The microwave oscillating device and its control device can be easily located by arranging them at a position away from the casting work place and connecting them to the irradiation part with a propagation pipe. Further, it is possible to limit to a heating part surrounded by the irradiation part and the like, and the whole device is simple, but the vicinity of the work place can also be simplified, which is also an advantage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す模式図である。FIG. 1 is a schematic view showing an embodiment of the present invention.

【図2】本発明の実施例を示す模式図である。FIG. 2 is a schematic view showing an example of the present invention.

【図3】本発明の実施例を示す模式図である。FIG. 3 is a schematic view showing an example of the present invention.

【図4】図1,図2および図3に示した実施例を部分的
に詳しく説明するための模式図である。
FIG. 4 is a schematic view for partially partially explaining the embodiment shown in FIGS. 1, 2 and 3 in detail.

【図5】図4における断面Aを説明するための模式図で
ある。
5 is a schematic diagram for explaining a cross section A in FIG.

【図6】図4と同一部分についてこれとは別態様の実施
例を説明するための模式図である。
FIG. 6 is a schematic diagram for explaining an example of a different aspect of the same portion as FIG. 4;

【図7】図6における断面Bを説明するための模式図で
ある。
FIG. 7 is a schematic diagram for explaining a cross section B in FIG.

【図8】本発明の実施例に使用した連続鋳造機における
モ−ルド内の模式的説明図である。
FIG. 8 is a schematic explanatory view of the inside of a mold in the continuous casting machine used in the example of the present invention.

【図9】本発明の実施例におけるモ−ルドパウダ−の加
熱状況を示す説明図である。
FIG. 9 is an explanatory view showing a heating situation of the mold powder in the embodiment of the present invention.

【図10】本発明法によるメニスカス部の温度低下を従
来法と対比させて示す説明図である。
FIG. 10 is an explanatory diagram showing the temperature drop of the meniscus portion according to the method of the present invention in comparison with the conventional method.

【図11】本発明法を適用した場合の縦割れ発生率を従
来法と対比させて示す説明図である。
FIG. 11 is an explanatory diagram showing the vertical crack occurrence rate when the method of the present invention is applied, in comparison with the conventional method.

【図12】本発明法を適用した場合の鋳片ピンホ−ル発
生率を従来法と対比させて示す説明図である。
FIG. 12 is an explanatory view showing a slab pinhole occurrence rate when the method of the present invention is applied, in comparison with the conventional method.

【符号の説明】[Explanation of symbols]

1…タンディッシュ、3…モ−ルド、5…パウダ−層、
6…ホッパ−、11…照射部、12…マイクロ波発振装
置、13…伝播管、14…アイソレ−タ−、15…熱電
対、16…温度設定装置、17…制御装置、18…非金
属管。
1 ... Tundish, 3 ... Mold, 5 ... Powder layer,
6 ... Hopper, 11 ... Irradiation part, 12 ... Microwave oscillating device, 13 ... Propagation pipe, 14 ... Isolator, 15 ... Thermocouple, 16 ... Temperature setting device, 17 ... Control device, 18 ... Non-metal pipe ..

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造用モ−ルド内へパウダ−を投入
するに際し、パウダ−をパウダ−供給過程の管内でマイ
クロ波を照射して加熱すると共に、加熱温度をパウダ−
の構成成分および物性値が変化しない温度とし、かつ、
連続鋳造の定常あるいは非定常の鋳込み状況に対応させ
た温度に調節し、加熱されたパウダ−をモ−ルド内に投
入することを特徴とする連鋳用モ−ルドパウダ−の加熱
供給方法。
1. When the powder is charged into the continuous casting mold, the powder is heated by irradiating it with microwaves in a tube during the powder supply process, and the heating temperature is set to the powder.
And the temperature at which the constituents and physical properties of
A method for heating and supplying a continuous casting mold powder, characterized in that the temperature is adjusted to a steady or unsteady casting condition of continuous casting and the heated powder is charged into the mold.
【請求項2】 マイクロ波が照射される複数の加熱部の
加熱実施数ないしはマイクロ波発振装置の出力を変化さ
せることにより、所定の加熱温度に調節することを特徴
とする請求項1記載の連鋳用モ−ルドパウダ−の加熱供
給方法。
2. The continuous heating method according to claim 1, wherein the heating temperature is adjusted to a predetermined value by changing the number of heating operations of a plurality of heating units to which microwaves are applied or the output of the microwave oscillating device. Method for heating and supplying mold powder for casting.
【請求項3】 連続鋳造用モ−ルドへパウダ−を供給す
る過程の途中に挿設した非金属管からなりマイクロ波を
照射される加熱部と、該加熱部を包囲するように周設し
た照射部と、該照射部の近傍に配設したマイクロ波発振
装置と、該マイクロ波発振装置と前記照射部とを連結し
てマイクロ波を照射部に導く伝播管と、該伝播管の途中
に挿設したアイソレ−タ−とを設けてなることを特徴と
する連鋳用モ−ルドパウダ−の加熱供給装置。
3. A heating part which is made up of a non-metal tube inserted in the middle of the process of supplying powder to a continuous casting mold and which is irradiated with microwaves, and a heating part which surrounds the heating part. An irradiation unit, a microwave oscillating device arranged in the vicinity of the irradiation unit, a propagation pipe for connecting the microwave oscillation device and the irradiation unit to guide microwaves to the irradiation unit, and a midway of the propagation pipe. A heating and supplying device for a continuous casting mold powder, which is provided with an inserted isolator.
【請求項4】 前記加熱部を構成する非金属管の材質
を、石英ガラスまたは窒化ケイ素あるいはアルミナを主
体としたセラミックとしてなること特徴とする請求項3
記載の連鋳用モ−ルドパウダ−の加熱供給装置。
4. The non-metallic tube forming the heating section is made of quartz glass, silicon nitride, or a ceramic mainly composed of alumina.
A heating and supplying device for a continuous casting mold powder.
JP3197998A 1991-08-07 1991-08-07 Method and device for supplying heated mold powder for continuous casting Pending JPH0542350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3197998A JPH0542350A (en) 1991-08-07 1991-08-07 Method and device for supplying heated mold powder for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3197998A JPH0542350A (en) 1991-08-07 1991-08-07 Method and device for supplying heated mold powder for continuous casting

Publications (1)

Publication Number Publication Date
JPH0542350A true JPH0542350A (en) 1993-02-23

Family

ID=16383815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3197998A Pending JPH0542350A (en) 1991-08-07 1991-08-07 Method and device for supplying heated mold powder for continuous casting

Country Status (1)

Country Link
JP (1) JPH0542350A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224183A (en) * 2005-02-21 2006-08-31 Kobe Steel Ltd Sequentially continuous casting method for different steel kinds
CN102632210A (en) * 2012-04-20 2012-08-15 天津钢铁集团有限公司 Automatic slag adding machine and slag adding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224183A (en) * 2005-02-21 2006-08-31 Kobe Steel Ltd Sequentially continuous casting method for different steel kinds
JP4549201B2 (en) * 2005-02-21 2010-09-22 株式会社神戸製鋼所 Continuous casting method of different steel types
CN102632210A (en) * 2012-04-20 2012-08-15 天津钢铁集团有限公司 Automatic slag adding machine and slag adding method

Similar Documents

Publication Publication Date Title
KR100749027B1 (en) Continuous casting machine and method using molten mold flux
KR101457368B1 (en) Induction Tapping Equipment and Method for Melt
MX2007007891A (en) Launder for casting molten copper.
JP2011501701A (en) Semi-liquid metal processing / detection device, and processing / detection method using the device
US5901169A (en) Apparatus for discharging molten matter from cold crucible induction melting furnace
EP0007581B1 (en) Mold assembly and method for continuous casting of metallic strands at exceptionally high speeds
JPH0542350A (en) Method and device for supplying heated mold powder for continuous casting
EP3202522B1 (en) Method for the alumino-thermite welding of rails and device for carrying out said method
JPH081294A (en) Method and device for heating mold powder for continuous casting
JP2001516282A (en) Method, apparatus and refractory nozzle for injecting and / or casting liquid metal
JPS6230133B2 (en)
KR100738857B1 (en) Method for purposefully moderating of pouring spout and pouring spout for performing the same
JPH11129059A (en) Method and device for heat supply of continuous casting mold powder
JP7313122B2 (en) Hot water tapping method in induction heating melting device and induction heating melting device
RU2628590C2 (en) Melt charging system for strip casting
JPH0783947B2 (en) Powder feeding device for laser cladding
JPS59137151A (en) Heat insulating method of riser
JPS59159255A (en) Controlling method of heating molten metal in tundish
JP3385156B2 (en) Plasma heating method for molten steel in tundish for continuous casting
WO1984002863A1 (en) Method of heating molten steel in tundish for continuous casting apparatus
KR100335605B1 (en) Heat controllable tundish
JP3462822B2 (en) Continuous casting machine for molten metal
KR100584757B1 (en) Method for Manufacturing Continuously Cast Strand by Continuous Casting Process
JPH1043840A (en) Method for casting metallic strip and apparatus therefor
JP2017177130A (en) Gutter for high temperature fluid

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees