JPH054215B2 - - Google Patents

Info

Publication number
JPH054215B2
JPH054215B2 JP61038468A JP3846886A JPH054215B2 JP H054215 B2 JPH054215 B2 JP H054215B2 JP 61038468 A JP61038468 A JP 61038468A JP 3846886 A JP3846886 A JP 3846886A JP H054215 B2 JPH054215 B2 JP H054215B2
Authority
JP
Japan
Prior art keywords
sheet
volume resistivity
conductive
colored
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61038468A
Other languages
Japanese (ja)
Other versions
JPS6243463A (en
Inventor
Tsukasa Chiba
Norio Takahata
Hisami Kimura
Juichiro Kushida
Akio Adakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Denki Kagaku Kogyo KK filed Critical Hitachi Cable Ltd
Publication of JPS6243463A publication Critical patent/JPS6243463A/en
Publication of JPH054215B2 publication Critical patent/JPH054215B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、自由に着色可能であつて十分な帯電
防止性能を有する導電性床シートに関するもので
ある。 [従来の技術] ゴムあるいはプラスチツク成形品において、静
電気の帯電を防止する対策としては、成形品の電
気抵抗を下げ、摩擦によつて生じた静電気を素早
く接地して逃やることである。 ゴムあるいはプラスチツクの電気抵抗を下げる
方法としては次のようなものがこれまでに知られ
ている。 (1) ゴムあるいはプラスチツクに導電性の高い
銀、銅、ステンレス、ニツケル等の金属粉や繊
維を添加する方法、 (2) ゴムあるいはプラスチツクにカーボンブラツ
クやカーボン繊維を添加する方法、 (3) ゴムあるいはプラスチツクに帯電防止剤と呼
ばれる界面活性剤やこれに類するものを添加す
る方法。 [発明が解決しようとする問題点] (1)の方法は、静電帯電防止には非常に効果的で
あるが、自由な色に着色できず、メタリツク色に
制限される。また、非常に高価であり経済性に欠
ける。さらに、成形品の電気抵抗は低圧電気によ
る感電の危険性を排除するために一定の範囲内で
あることが望ましいが、金属粉や金属繊維を用い
てこのようなものを安定して製造することは非常
に困難である。 (2)の方法では、特にカーボンブラツクは安価な
導電性付与剤としてよく使用されているが、色相
が黒色に制限されてしまうという欠点がある。ま
た、この方法によつても低圧電気による感電の危
険性のない範囲の成形品を工業的に安定して製造
することは困難である。 (3)の方法は、自由に着色できるという長所があ
るものの、ゴムやプラスチツクとの相溶性が悪
く、吸湿しやすい界面活性剤を練り込み、これを
表面にブリードさせて表面抵抗を下げ、静電気を
表面から逃がすことによつて得られるもので、表
面抵抗という環境条件に左右されやすい電気抵抗
に頼つており、帯電防止性能の安定性に欠ける。
特に、低湿度環境では帯電防止効果が相当に低下
することになる。また、帯電防止性能の持続期間
が短い。 一方、近年IC,LSIなどの半導体部品工場や電
子機器工場等においては静電気の発生によりミク
ロン単位、サブミクロン単位のチリやほこりの吸
着による生産障害の発生防止のため、また、OA
ルーム等においては静電気によるコンピユータの
誤動作、回路破壊防止のために導電性床の使用が
検討されてきている。 この場合、美観上から自由に着色できる(3)の方
法によつて得たシートの使用が好ましいが、静電
気の帯電防止性能に不安がある。 本発明は上記に基づいてなされたものであり、
自由な色彩に着色でき、しかも優れた帯電防止性
能を発揮する導電性床シートの提供を目的とする
ものである。 [問題点を解決するための手段] 本発明の導電性床シートは、体積抵抗率が1012
Ω−cm以下のポリマ成分に体積抵抗率が108Ω−
cm以下の可塑剤および着色剤を含有せしめてなる
樹脂組成物からなる導電性着色シートと、ゴムま
たはプラスチツクにカーボンブラツク、カーボン
繊維、金属粉および金属繊維のうちの少なくとも
1種を含有せしめた樹脂組成物からなる上記導電
性着色シートよりも体積抵抗率が小なる導電性シ
ートとを積層してなることを特徴とするものであ
る。 ポリマ成分および可塑剤のいずれかの体積抵抗
率が上記規定値を上回ると、床シートとして必要
な機械的特性を維持した上で所望の体積抵抗率を
実現することは困難となり、本発明の目的を達成
することはできない。 体積抵抗率が1012Ω−cm以下のポリマ成分と体
積抵抗率が108Ω−cm以下の可塑剤とを主成分と
する組成物から得られるシート(表面)に、これ
よも体積抵抗率が小なるシート(裏面)を積層す
ることにより、表面に帯電した静電気を裏側のシ
ートに効果的にリークさせて接地することがで
き、優れた帯電防止性能を発揮できる。 本発明において、体積抵抗率が1012Ω−cm以下
のポリマ成分としては、単独重合体、共重合体、
グラフト化物、混合物のいずれであつてもよい。
例えば、アクリルゴム、エピクロルヒドリンゴ
ム、ニトリルブタジエンゴム(NBR)、クロロプ
レンゴム、これらのゴムとポリ塩化ビニルとの混
合物、ポリウレタンに塩化ビニルをグラフトした
ポリマ、ポリウレタンとポリ塩化ビニルとの混合
物等があげられる。 また、可塑剤についても体積抵抗率が108Ω−
cm以下であればその他の性状等については特に制
限するものではないが、常温において液状で揮発
性の少ないものが望ましい。例えば、リン酸クレ
ジルジフエニルエステル、リン酸ジ(2,3−ジ
ブロモプロピル)2,3−ジクロロプロピルエス
テル、リン酸ジ(2−エチルヘキシル)エステ
ル、リン酸ジオクチルエステル、リン酸トリアミ
ルエステル、リン酸トリ(2−ブトキシエチル)
エステル、リン酸トリ(2−クロロエチル)エス
テル、リン酸トリ(クロロプロピル)エステル、
リン酸トリクレジルエステル、リン酸トリ(2,
3−ジブロモプロピル)エステル、リン酸トリ
(ジクロロプロピル)エステル等のリン酸エステ
ル、ジエチレングリコール−ジカプロン酸エステ
ル、トリエチレングリコール−ジカプロン酸エス
テル等のグリコール脂肪酸エステル、フタル酸と
トリエチレングリコール−モノカツプル酸エステ
ルとのエステルのようにグリコールの一方が脂肪
酸で他方が芳香族カルボン酸のエステルといつた
ものがあげられる。また、上記の各種可塑剤に
0.005〜2%の電解質を加えた可塑剤であつても
よい。電解質としては塩化リチウムや塩化ナトリ
ウムのように変質しにくく化学的に安定なものが
好ましい。 ポリマ成分に対する可塑剤の添加量は、目的と
する体積抵抗率が得られれば特に制限しないが、
ポリマ成分100重量部に対して5〜100重量部の範
囲が好ましい。5重量部未満では目的とする体積
抵抗率が得られにくくなり、100重量部程度で体
積抵抗率はほぼ飽和状態となり、これ以上添加し
ても体積抵抗率の変化は殆どなくなり、かえつて
相溶性の悪化、機械的特性の低下につながる。 上記成分以外に当然のことながらDOP等の可
塑剤、その他の配合剤、例えば安定剤、酸化防止
剤、架橋剤、加硫剤、加硫助剤、滑剤、加工助
剤、難燃剤、充填剤、着色剤、紫外線吸収剤等を
適宜使用可能であり、実用上問題のない配合とす
ることができる。 かくして、上記配合成分に好みの着色剤を添加
し、これをシート成形してなる導電性着色シート
は、これよりも体積抵抗率が小さな導電性シート
と積層されて導電性床シートが構成される。導電
性シートとしては、ゴムまたはプラスチツクにカ
ーボンブラツク、カーボン繊維、金属粉、金属繊
維等を配合したものをシート成形したものがあげ
られる。 [実施例] 実施例 1 導電性着色シート ○ ポリウレタンに塩化ビニルをグラフトしたポ
リマ(塩化ビニルグラフト量70%、体積抵抗率
9.0×1011Ω−cm) 100重量部 ○ リン酸トリ(2−ブトキシエチル)エステル
(体積抵抗率8.7×106Ω−cm) 50重量部 ○ フタロシアニングリーン 1重量部 上記成分を電熱2本ロールで混練し、上記プレ
スを用いて0.5mmの厚さにシート成形した。この
シートの体積抵抗率は7.8×108Ω−cmであつた。 なお、体積抵抗率は以降の例も含めて日本ゴム
協会標準規格SRIS2304およびその解説に基づき
測定した。 導電性シート ○ ポリ塩化ビニル樹脂 100重量部 ○ フタル酸ジオクチル 70重量部 ○ カーボンブラツク 80重量部 ○ 安定剤等 5重量部 上記成分を電熱2本ロールで混練し、上記プレ
スを用いて2.5mmの厚さにシート成形した。この
シートの体積抵抗率は3×102Ω−cmであつた。 導電性着色シートと導電性シートとを上記プレ
スで積層し、第1図に示すような表面が着色され
た床シートを作製した。第1図において、1は導
電性着色シート、2は導電性シートである。 実施例 2 導電性着色シート ○ ポエピクロルヒドリンゴムとポリ塩化ビニル
との混合物(エピクロルヒドリンゴム:ポリ塩
化ビニル=50:50、体積抵抗率8.5×1011Ω−
cm) 100重量部 ○ 下記化学式で表わされる可塑剤(体積抵抗率
4.5×106Ω−cm) 50重量部 ○ フタロシアニングリーン 1重量部 上記成分を電熱2本ロールで混練し、上記プレ
スを用いて0.5mmの厚さにシート成形した。この
シートの体積抵抗率は5.1×108Ω−cmであつた。 上記導電性着色シートと実施例1で用いた導電
性シートとを蒸気プレスで積層し、第1図に示す
ような表面が着色された床シートを作製した。 比較例 導電性着色シート ○ ポリ塩化ビニル樹脂(体積抵抗率5.0×1015
Ω−cm) 100重量部 ○ フタル酸ジオクチル(体積抵抗率1.3×1013
Ω−cm) 50重量部 ○ 非イオン系帯電防止剤(第一工業製薬(株)製レ
ジスタツト141) 2重量部 ○ 安定剤等 6重量部 ○ フタロシアニングリーン 1重量部 上記成分を電熱2本ロールで混練し、上記プレ
スを用いて0.5mmの厚さにシート成形した。この
シートの体積抵抗率は5.6×1014Ω−cmであつた。 上記導電性着色シートと実施例1で用いた導電
性シートとを蒸気プレスで積層し、第1図に示す
ような表面が着色された床シートを作製した。 実施例1,2および比較例の導電性床シートの
電気抵抗を測定した結果を第1表に示す。 電気抵抗の測定は、第2図に示すよう、導電性
シート2と接触している銅板4に直流電源5でも
つて電圧を印加し、60mmΦの電極3に流れる電流
を測定し、オームの法則から求めた。なお、6は
電圧計、7は電流計である。
[Industrial Field of Application] The present invention relates to a conductive floor sheet that can be freely colored and has sufficient antistatic performance. [Prior Art] A measure to prevent static electricity from forming on rubber or plastic molded products is to lower the electrical resistance of the molded product and quickly ground and dissipate static electricity generated by friction. The following methods have been known to lower the electrical resistance of rubber or plastic. (1) Adding highly conductive metal powder or fibers such as silver, copper, stainless steel, or nickel to rubber or plastic; (2) Adding carbon black or carbon fiber to rubber or plastic; (3) Rubber. Another method is to add a surfactant called an antistatic agent or something similar to the plastic. [Problems to be Solved by the Invention] Although the method (1) is very effective in preventing electrostatic charging, it cannot be colored in any desired color and is limited to metallic colors. Moreover, it is very expensive and lacks economic efficiency. Furthermore, it is desirable that the electrical resistance of the molded product be within a certain range to eliminate the risk of electric shock due to low-voltage electricity, but it is difficult to stably manufacture such a product using metal powder or metal fiber. is extremely difficult. In method (2), carbon black is often used as an inexpensive conductivity imparting agent, but it has the disadvantage that the hue is limited to black. Further, even with this method, it is difficult to industrially and stably produce molded products that are free from the risk of electric shock due to low voltage electricity. Although method (3) has the advantage of being able to be colored freely, it incorporates a surfactant that has poor compatibility with rubber and plastic and easily absorbs moisture, and bleeds onto the surface to lower surface resistance and reduce static electricity. It is obtained by letting ions escape from the surface, and relies on surface resistance, which is an electrical resistance that is easily affected by environmental conditions, and lacks stability in antistatic performance.
In particular, the antistatic effect will be considerably reduced in a low humidity environment. Moreover, the duration of antistatic performance is short. On the other hand, in recent years, factories for semiconductor parts such as ICs and LSIs and electronic equipment factories have started to use OA to prevent production failures due to the adsorption of dust and particles in micron and submicron levels due to the generation of static electricity.
The use of conductive floors in rooms and the like is being considered to prevent computer malfunctions and circuit damage caused by static electricity. In this case, it is preferable to use a sheet obtained by method (3), which can be freely colored from an aesthetic point of view, but there are concerns about its antistatic performance. The present invention has been made based on the above,
The object of the present invention is to provide a conductive floor sheet that can be colored in any color and exhibits excellent antistatic performance. [Means for solving the problems] The conductive floor sheet of the present invention has a volume resistivity of 10 12
Volume resistivity is 10 8 Ω− for polymer components below Ω−cm.
A conductive colored sheet made of a resin composition containing a plasticizer and a colorant of less than cm, and a resin made of rubber or plastic containing at least one of carbon black, carbon fiber, metal powder, and metal fiber. It is characterized in that it is formed by laminating a conductive sheet having a lower volume resistivity than the conductive colored sheet made of the composition. If the volume resistivity of either the polymer component or the plasticizer exceeds the specified value above, it will be difficult to achieve the desired volume resistivity while maintaining the mechanical properties necessary for a floor sheet, which is an object of the present invention. cannot be achieved. A sheet (surface) obtained from a composition whose main components are a polymer component with a volume resistivity of 10 12 Ω-cm or less and a plasticizer with a volume resistivity of 10 8 Ω-cm or less has a volume resistivity of 10 Ω-cm or less. By laminating sheets (on the back side) with a small resistance, the static electricity charged on the front surface can be effectively leaked to the back side sheet and grounded, resulting in excellent antistatic performance. In the present invention, the polymer component having a volume resistivity of 10 12 Ω-cm or less includes homopolymers, copolymers,
It may be either a grafted product or a mixture.
Examples include acrylic rubber, epichlorohydrin rubber, nitrile butadiene rubber (NBR), chloroprene rubber, mixtures of these rubbers and polyvinyl chloride, polymers in which vinyl chloride is grafted onto polyurethane, and mixtures of polyurethane and polyvinyl chloride. . Also, the volume resistivity of plasticizer is 10 8 Ω−
There are no particular restrictions on other properties as long as it is less than cm, but it is desirable that it is liquid at room temperature and has little volatility. For example, cresyl diphenyl phosphate, di(2,3-dibromopropyl) 2,3-dichloropropyl phosphate, di(2-ethylhexyl) phosphate, dioctyl phosphate, triamyl phosphate, Tri(2-butoxyethyl) phosphate
ester, tri(2-chloroethyl) phosphate, tri(chloropropyl) phosphate,
Phosphate tricresyl ester, phosphate tri(2,
Phosphate esters such as 3-dibromopropyl) ester, tri(dichloropropyl) phosphate, glycol fatty acid esters such as diethylene glycol dicaproate, triethylene glycol dicaproate, phthalic acid and triethylene glycol monocaproate ester Examples include esters where one side of the glycol is a fatty acid and the other side is an aromatic carboxylic acid. In addition, the various plasticizers listed above
It may be a plasticizer with 0.005-2% electrolyte added. As the electrolyte, it is preferable to use an electrolyte that is resistant to deterioration and is chemically stable, such as lithium chloride or sodium chloride. The amount of plasticizer added to the polymer component is not particularly limited as long as the desired volume resistivity can be obtained.
The amount is preferably in the range of 5 to 100 parts by weight per 100 parts by weight of the polymer component. If it is less than 5 parts by weight, it will be difficult to obtain the desired volume resistivity, and if it is about 100 parts by weight, the volume resistivity will be almost saturated, and even if more than this is added, there will be almost no change in the volume resistivity, and the compatibility will be reduced. lead to deterioration of mechanical properties. In addition to the above ingredients, of course, there are plasticizers such as DOP, and other additives such as stabilizers, antioxidants, crosslinking agents, vulcanizing agents, vulcanizing aids, lubricants, processing aids, flame retardants, and fillers. , colorants, ultraviolet absorbers, etc. can be used as appropriate, and the composition can be formulated without causing any practical problems. In this way, a conductive colored sheet obtained by adding a desired coloring agent to the above-mentioned ingredients and molding it into a sheet is laminated with a conductive sheet having a smaller volume resistivity to form a conductive floor sheet. . Examples of the conductive sheet include sheets formed from rubber or plastic mixed with carbon black, carbon fibers, metal powder, metal fibers, etc. [Example] Example 1 Conductive colored sheet ○ Polymer obtained by grafting vinyl chloride onto polyurethane (vinyl chloride graft amount 70%, volume resistivity
9.0×10 11 Ω-cm) 100 parts by weight ○ Tri(2-butoxyethyl) phosphate ester (volume resistivity 8.7×10 6 Ω-cm) 50 parts by weight ○ Phthalocyanine green 1 part by weight Two rolls of the above ingredients heated The mixture was kneaded and formed into a sheet with a thickness of 0.5 mm using the press described above. The volume resistivity of this sheet was 7.8×10 8 Ω-cm. The volume resistivity, including the following examples, was measured based on the Japan Rubber Association standard SRIS2304 and its commentary. Conductive sheet ○ Polyvinyl chloride resin 100 parts by weight ○ Dioctyl phthalate 70 parts by weight ○ Carbon black 80 parts by weight ○ Stabilizer, etc. 5 parts by weight The above ingredients were kneaded with two electric heated rolls, and the above press was used to form a 2.5 mm sheet. It was formed into a thick sheet. The volume resistivity of this sheet was 3×10 2 Ω-cm. A colored conductive sheet and a conductive sheet were laminated using the above-mentioned press to produce a floor sheet with a colored surface as shown in FIG. 1. In FIG. 1, 1 is a conductive colored sheet, and 2 is a conductive sheet. Example 2 Conductive colored sheet ○ Mixture of poepichlorohydrin rubber and polyvinyl chloride (epichlorohydrin rubber: polyvinyl chloride = 50:50, volume resistivity 8.5×10 11 Ω−
cm) 100 parts by weight ○ Plasticizer represented by the chemical formula below (volume resistivity
4.5×10 6 Ω-cm) 50 parts by weight ○ Phthalocyanine Green 1 part by weight The above ingredients were kneaded using two electrically heated rolls and formed into a sheet with a thickness of 0.5 mm using the above press. The volume resistivity of this sheet was 5.1×10 8 Ω-cm. The above electroconductive colored sheet and the electroconductive sheet used in Example 1 were laminated using a steam press to produce a floor sheet with a colored surface as shown in FIG. 1. Comparative example Conductive colored sheet ○ Polyvinyl chloride resin (volume resistivity 5.0×10 15
Ω-cm) 100 parts by weight ○ Dioctyl phthalate (volume resistivity 1.3×10 13
Ω-cm) 50 parts by weight ○ Nonionic antistatic agent (Resistant 141 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) 2 parts by weight ○ Stabilizers, etc. 6 parts by weight ○ Phthalocyanine green 1 part by weight The above ingredients were heated using two rolls of electric heat. The mixture was kneaded and formed into a sheet with a thickness of 0.5 mm using the press described above. The volume resistivity of this sheet was 5.6×10 14 Ω-cm. The above electroconductive colored sheet and the electroconductive sheet used in Example 1 were laminated using a steam press to produce a floor sheet with a colored surface as shown in FIG. 1. Table 1 shows the results of measuring the electrical resistance of the conductive floor sheets of Examples 1 and 2 and Comparative Example. To measure the electrical resistance, as shown in Figure 2, voltage is applied to the copper plate 4 in contact with the conductive sheet 2 using the DC power supply 5, and the current flowing through the 60 mmΦ electrode 3 is measured, and according to Ohm's law, I asked for it. Note that 6 is a voltmeter and 7 is an ammeter.

【表】 実施例1,2の電気抵抗は比較例に比して著し
く低く、優れた帯電防止性能を有することがわか
る。 実施例 3〜7 第2表の各例に示すような配合割合に従い、電
熱2本ロールを用いて混練したコンパウンドを高
圧蒸気プレスで成形し、厚さ1mmのシートを作製
した。このシートについて体積抵抗率を測定した
結果を下欄に併せて示す。
[Table] The electrical resistance of Examples 1 and 2 is significantly lower than that of Comparative Example, indicating that they have excellent antistatic performance. Examples 3 to 7 In accordance with the compounding ratios shown in each example in Table 2, the compounds were kneaded using two electrically heated rolls and molded using a high-pressure steam press to produce sheets with a thickness of 1 mm. The results of measuring the volume resistivity of this sheet are also shown in the lower column.

【表】【table】

【表】 各例のシートの体積抵抗率は実施例1,2の着
色導電性シートとほぼ同等であり、これらと上記
実施例で使用した導電性シートを積層することに
より、優れた帯電防止性能が発揮されることがわ
かる。 [発明の効果] 以上説明してきた通り、本発明によれば自由な
色彩に着色でき、しかも優れた帯電防止性能を有
する導電性床シートを実現できる。
[Table] The volume resistivity of the sheets of each example is almost the same as the colored conductive sheets of Examples 1 and 2, and by laminating these and the conductive sheets used in the above examples, excellent antistatic performance can be achieved. It can be seen that this is achieved. [Effects of the Invention] As explained above, according to the present invention, it is possible to realize a conductive floor sheet that can be colored in any color and has excellent antistatic performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における導電性床シートの一実
施例の説明図、第2図は導電性床シートの電気抵
抗の測定方法の説明図である。 1……導電性着色シート、2……導電性シー
ト。
FIG. 1 is an explanatory diagram of one embodiment of the conductive floor sheet of the present invention, and FIG. 2 is an explanatory diagram of a method for measuring the electrical resistance of the conductive floor sheet. 1... Conductive colored sheet, 2... Conductive sheet.

Claims (1)

【特許請求の範囲】[Claims] 1 体積抵抗率が1012Ω−cm以下のポリマ成分に
体積抵抗率が108Ω−cm以下の可塑剤および着色
剤を含有せしめてなる樹脂組成物からなる導電性
着色シートと、ゴムまたはプラスチツクにカーボ
ンブラツク、カーボン繊維、金属粉および金属繊
維のうちの少なくとも1種を含有せしめた樹脂組
成物からなる上記導電性着色シートよりも体積抵
抗率が小なる導電性シートとを積層してなること
を特徴とする導電性床シート。
1. A conductive colored sheet made of a resin composition made of a polymer component with a volume resistivity of 10 12 Ω-cm or less containing a plasticizer and a colorant with a volume resistivity of 10 8 Ω-cm or less, and rubber or plastic. and a conductive sheet having a volume resistivity lower than that of the conductive colored sheet made of a resin composition containing at least one of carbon black, carbon fiber, metal powder, and metal fiber. A conductive floor sheet featuring:
JP61038468A 1985-04-25 1986-02-24 Electrically conductive resin composition and electrically conductive floor sheet Granted JPS6243463A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8927685 1985-04-25
JP60-89276 1985-04-25

Publications (2)

Publication Number Publication Date
JPS6243463A JPS6243463A (en) 1987-02-25
JPH054215B2 true JPH054215B2 (en) 1993-01-19

Family

ID=13966203

Family Applications (2)

Application Number Title Priority Date Filing Date
JP61038468A Granted JPS6243463A (en) 1985-04-25 1986-02-24 Electrically conductive resin composition and electrically conductive floor sheet
JP3846986A Granted JPS6230141A (en) 1985-04-25 1986-02-24 Electrically conductive resin composition and electrically conductive floor sheet

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP3846986A Granted JPS6230141A (en) 1985-04-25 1986-02-24 Electrically conductive resin composition and electrically conductive floor sheet

Country Status (1)

Country Link
JP (2) JPS6243463A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6367141A (en) * 1986-09-09 1988-03-25 アキレス株式会社 Antistatic laminated sheet
JPH0445881Y2 (en) * 1987-03-25 1992-10-28
US4897984A (en) * 1987-06-30 1990-02-06 Laurel Bank Machines Co. Ltd. Coin receiving and wrapping apparatus
DE10156635B4 (en) 2001-11-17 2007-03-01 Carl Freudenberg Kg Table or workbench covering, method of manufacture and use
KR100757180B1 (en) * 2005-03-11 2007-09-07 주식회사 엘지화학 PVC-rubber flooring using rubber sol and method for producing the same
KR100676303B1 (en) * 2005-04-12 2007-01-30 주식회사 엘지화학 Triethylene glycol ester based plasticizer composition for polyvinyl chloride resin
TWI368609B (en) * 2008-05-06 2012-07-21 Nanya Plastics Corp Method of preparing cyclohexanedicarboxylic ester as plasticizer
CN107118406B (en) 2016-02-24 2019-05-28 香港纺织及成衣研发中心有限公司 A kind of weaving roller rubber and preparation method thereof
CN108250509A (en) * 2017-12-25 2018-07-06 北京欧美中科学技术研究院 A kind of oil resistance anticorrosion loses rubber compounding
JP7319032B2 (en) * 2018-09-27 2023-08-01 アキレス株式会社 Conductive synthetic leather for vehicle seats

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765769A (en) * 1980-10-08 1982-04-21 Showa Electric Wire & Cable Co Ltd Electric field relaxation self-welding tape
JPS5829658A (en) * 1981-08-13 1983-02-21 太平化学製品株式会社 Semi-conductive plastic structure material which can freely be colored
JPS5894799A (en) * 1981-11-30 1983-06-06 住友ゴム工業株式会社 Conductive floor
JPS59192560A (en) * 1983-04-18 1984-10-31 東北ゴム株式会社 Antistatic mat material
JPS6012230A (en) * 1983-06-30 1985-01-22 Chokichi Sato Method and device for slitting of strainer for well
JPS61152750A (en) * 1984-12-26 1986-07-11 Tokai Rubber Ind Ltd Rubber composition
JPS61176098A (en) * 1985-01-29 1986-08-07 東海ゴム工業株式会社 Antistatic mat
JPS62112653A (en) * 1985-11-11 1987-05-23 Osaka Soda Co Ltd Electrically conductive rubber composition
JPH054215A (en) * 1991-06-26 1993-01-14 Murata Mfg Co Ltd Method for cutting ceramic green block

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1115768A (en) * 1977-09-06 1982-01-05 Walter M. Westberg Electrically conductive web
JPS58108245A (en) * 1981-12-21 1983-06-28 Fukuyama Gomme Kogyo Kk Resin composition for sole of shoe and other footware
JPS58174551U (en) * 1982-05-18 1983-11-22 清水 暢 Colored rubber flooring material for static electricity removal that does not deteriorate conductivity due to weight stress
JPS58215477A (en) * 1982-06-08 1983-12-14 Sumitomo Bakelite Co Ltd Vinyl chloride resin packing
JPS5943045A (en) * 1982-09-06 1984-03-09 Shin Etsu Chem Co Ltd Vinyl chloride resin composition
JPS5951933A (en) * 1982-09-17 1984-03-26 Kanegafuchi Chem Ind Co Ltd Vinyl chloride resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765769A (en) * 1980-10-08 1982-04-21 Showa Electric Wire & Cable Co Ltd Electric field relaxation self-welding tape
JPS5829658A (en) * 1981-08-13 1983-02-21 太平化学製品株式会社 Semi-conductive plastic structure material which can freely be colored
JPS5894799A (en) * 1981-11-30 1983-06-06 住友ゴム工業株式会社 Conductive floor
JPS59192560A (en) * 1983-04-18 1984-10-31 東北ゴム株式会社 Antistatic mat material
JPS6012230A (en) * 1983-06-30 1985-01-22 Chokichi Sato Method and device for slitting of strainer for well
JPS61152750A (en) * 1984-12-26 1986-07-11 Tokai Rubber Ind Ltd Rubber composition
JPS61176098A (en) * 1985-01-29 1986-08-07 東海ゴム工業株式会社 Antistatic mat
JPS62112653A (en) * 1985-11-11 1987-05-23 Osaka Soda Co Ltd Electrically conductive rubber composition
JPH054215A (en) * 1991-06-26 1993-01-14 Murata Mfg Co Ltd Method for cutting ceramic green block

Also Published As

Publication number Publication date
JPH0233064B2 (en) 1990-07-25
JPS6243463A (en) 1987-02-25
JPS6230141A (en) 1987-02-09

Similar Documents

Publication Publication Date Title
JPH054215B2 (en)
JPH0529550B2 (en)
JP4592334B2 (en) Conductivity imparting agent and conductive resin composition
JPH0572499B2 (en)
JPH0571740B2 (en)
JPS62185731A (en) Electroconductive resin composition and electroconductive floor sheet
JPH0571739B2 (en)
JPH0571741B2 (en)
JPS62185737A (en) Electroconductive resin composition and electroconductive floor sheet
JPH0572500B2 (en)
JPH0571742B2 (en)
JPS6112947B2 (en)
JP5362448B2 (en) Antistatic laying mat
JPS63112777A (en) Electrically conductive decorative sheet
JPS62185726A (en) Electroconductive resin composition and electroconductive floor sheet
JPS62185738A (en) Electroconductive resin composition and electroconductive floor sheet
JPS62185730A (en) Electroconductive resin composition and electroconductive floor sheet
JP2001273815A (en) Conductive material
JPH0261798B2 (en)
JPS62185735A (en) Electroconductive resin composition and electroconductive floor sheet
JP5132110B2 (en) Conductivity imparting agent and conductive resin composition
JPS62185733A (en) Electroconductive resin composition and electroconductive floor sheet
JPS62185728A (en) Electroconductive resin composition and electroconductive floor sheet
CA2411902C (en) Antistatic table or workbench covering
CN109735025B (en) Antistatic PVC (polyvinyl chloride) plate material as well as preparation method and application thereof