JPH0542130A - Phantom for calibration and data calibration method - Google Patents

Phantom for calibration and data calibration method

Info

Publication number
JPH0542130A
JPH0542130A JP3200618A JP20061891A JPH0542130A JP H0542130 A JPH0542130 A JP H0542130A JP 3200618 A JP3200618 A JP 3200618A JP 20061891 A JP20061891 A JP 20061891A JP H0542130 A JPH0542130 A JP H0542130A
Authority
JP
Japan
Prior art keywords
phantom
calibration
substance
measured
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3200618A
Other languages
Japanese (ja)
Other versions
JP3030950B2 (en
Inventor
Tetsuo Ootsuchi
哲郎 大土
Yasuichi Oomori
康以知 大森
Matsuki Baba
末喜 馬場
Hiroshi Tsutsui
博司 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3200618A priority Critical patent/JP3030950B2/en
Publication of JPH0542130A publication Critical patent/JPH0542130A/en
Application granted granted Critical
Publication of JP3030950B2 publication Critical patent/JP3030950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/582Calibration
    • A61B6/583Calibration using calibration phantoms

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To simultaneously execute the correction of the sensitivity between plural radiation detecting elements and the calibration of a quantitative analysis value with a quantitative analysis apparatus for a material consisting of these elements. CONSTITUTION:The phantom 5 for calibration is constituted of an acrylic plate 1 and a bone equiv. phantom 2 of a known Ca quantity. This phantom for calibration is so installed to the X-ray quantitative analysis apparatus that all the radiation detecting elements measure the intensity of the transmission X-rays of the bone equiv. phantom 2 part of the phantom 5 for calibration. This bone equiv. phantom scans an X-ray generator and the radiation detecting elements in synchronization. The correction factor of the sensitivity between the radiation detecting elements is calculated from the resulted data. The Ca quantity of the bone equiv. phantom 2 is determined in accordance with an energy differentiation method. The calibration factor of the quantitative analysis value is calculated from the relation between the calculated Ca quantity and the known Ca quantity. The correction factor of the sensitivity and the quantitative analysis value are easily obtd. by only one measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業用の利用分野】本発明は、医療用X線診断装置、
骨塩定量装置、非破壊検査装置、X線分析装置等に使用
する校正用ファントムおよびデータ校正法関するもので
ある。
BACKGROUND OF THE INVENTION The present invention relates to a medical X-ray diagnostic apparatus,
The present invention relates to a calibration phantom and a data calibration method used for a bone mineral quantification device, a nondestructive inspection device, an X-ray analysis device, and the like.

【0002】[0002]

【従来の技術】複数の放射線検出素子を用いた放射線計
測機器においては、一般に計測開始前に、素子間の感度
ばらつきを知るために、一度、実際の測定対象にちかい
校正用ファントムの計測を行い、その各検出素子素子の
放射線強度を示す値から、演算装置により素子間の補正
係数を得る。その後、実際の計測を行い、そこで得た各
素子の放射線強度を示す値に補正係数を乗算して測定結
果とする。
2. Description of the Related Art In a radiation measuring device using a plurality of radiation detecting elements, in general, a calibration phantom, which is close to an actual object to be measured, is measured once in order to know sensitivity variations between the elements before starting measurement. From the value indicating the radiation intensity of each detection element, the correction coefficient between the elements is obtained by the arithmetic unit. After that, actual measurement is performed, and the value indicating the radiation intensity of each element obtained there is multiplied by the correction coefficient to obtain the measurement result.

【0003】この放射線検出素子の感度補正を行なう際
の校正用ファントムは、測定する範囲において、放射線
に対する吸収が均一な素材により作成されている。たと
えば、図4に示す校正用ファントム5は、厚さが一定の
アクリル板が用いられる。
The calibration phantom for correcting the sensitivity of the radiation detecting element is made of a material having a uniform absorption of radiation in the measuring range. For example, the calibration phantom 5 shown in FIG. 4 uses an acrylic plate having a constant thickness.

【0004】また、放射線と放射線検出器からなる物質
の定量装置においては、測定した定量値の正確度を再現
性よく得るために、測定開始前に含有量が既知のファン
トムの測定を行ない測定値の校正係数を算出している。
Further, in a quantitative device for a substance consisting of radiation and a radiation detector, in order to obtain the accuracy of the measured quantitative value with good reproducibility, a phantom of which the content is known is measured before starting the measurement. The calibration coefficient of is calculated.

【0005】[0005]

【発明が解決しようとする課題】多数の放射線検出素子
を用いた定量装置では、放射線検出素子間の感度補正を
行なうための測定と、測定値の校正係数を得るための測
定を行なわなければならず、測定対象の計測を行なう前
に、少なくとも2度の測定操作を行なわなければならな
い。
In a quantification device using a large number of radiation detecting elements, it is necessary to perform a measurement for correcting the sensitivity between the radiation detecting elements and a measurement for obtaining a calibration coefficient of the measured value. First, the measurement operation must be performed at least twice before the measurement of the measurement target.

【0006】[0006]

【課題を解決するための手段】測定対象となる物質を少
なくとも一部に含む校正用ファントムを用いる。このフ
ァントムを測定し、放射線検出素子間の感度補正係数
と、測定密度の校正係数を同時に算出する。
A calibration phantom including at least a part of a substance to be measured is used. This phantom is measured, and the sensitivity correction coefficient between the radiation detection elements and the calibration coefficient of the measurement density are calculated at the same time.

【0007】[0007]

【作用】この手段により、1回の測定で、放射線検出素
子間の感度補正係数と、測定密度の校正係数を同時に得
ることができる。
By this means, the sensitivity correction coefficient between the radiation detecting elements and the calibration coefficient of the measurement density can be simultaneously obtained by one measurement.

【0008】また、含有量の大小に対する直線性の校正
も、1回の測定のみで精度よく行なうことができる。
Further, the calibration of the linearity with respect to the amount of the content can be accurately performed by only one measurement.

【0009】[0009]

【実施例】以下に本発明を実施例にもとづき説明する。EXAMPLES The present invention will be described below based on examples.

【0010】(実施例1)図1は、本発明の校正用ファ
ントムの一実施例の外観図である。本実施例の校正用フ
ァントムは、人骨中のCaやPを主とするミネラル量を
定量する際に用いられる。本実施例では、簡単のため、
Ca定量に限って説明する。厚さ12cmのアクリル板1
の中央部に厚さ1cmの骨等価ファントム2をはめ込んだ
ものである。アクリル板の60keVのγ線に対する質量減
弱係数は、0.190cm2/cmであり、骨等価ファントム2は
人骨にほぼ等しい成分組成を有するもので、質量減弱係
数は、0.274cm2/gである。骨等価ファントム中には、
Caを含有しており、そのCa含有量DCaFは1.0g/cm3
である。一方、アクリル中にはCaは含まれておらず、
人体の軟組織とほぼ等しい減弱係数をもつ。
(Embodiment 1) FIG. 1 is an external view of an embodiment of a calibration phantom of the present invention. The calibration phantom of this embodiment is used when quantifying the amount of minerals mainly containing Ca and P in human bones. In this embodiment, for simplicity,
Only Ca quantification will be described. 12 cm thick acrylic plate 1
The bone-equivalent phantom 2 having a thickness of 1 cm is fitted in the central part of the. The mass attenuation coefficient for 60 keV γ-rays of the acrylic plate is 0.190 cm 2 / cm, the bone equivalent phantom 2 has a composition substantially equal to human bone, and the mass attenuation coefficient is 0.274 cm 2 / g. During the bone equivalent phantom,
Contains Ca, and its Ca content D CaF is 1.0 g / cm 3
Is. On the other hand, acrylic does not contain Ca,
It has an attenuation coefficient almost equal to that of the soft tissue of the human body.

【0011】この校正用ファントム5を用い、測定デー
タの校正を以下のように行った。密度測定装置は、図2
に示すように、X線発生装置3とCdTeを用いた51
2個のチャンネル7からなる多チャンネル型半導体X線
検出器4から構成される。
Using this calibration phantom 5, the measurement data was calibrated as follows. The density measuring device is shown in FIG.
As shown in FIG. 5, 51 using the X-ray generator 3 and CdTe
It is composed of a multi-channel type semiconductor X-ray detector 4 consisting of two channels 7.

【0012】測定対象をX線発生装置3と多チャンネル
型半導体X線検出器4の間に設置し、X線発生装置3と
多チャンネル型半導体X線検出器4を同期して走査する
ことにより、2次元の領域の測定を行う。多チャンネル
型半導体X線検出器4では、高エネルギーのX線強度と
低エネルギーのX線強度を同時に、別々に分離して計測
している。
The object to be measured is placed between the X-ray generator 3 and the multi-channel type semiconductor X-ray detector 4, and the X-ray generator 3 and the multi-channel type semiconductor X-ray detector 4 are synchronously scanned. Measure a two-dimensional area. The multi-channel semiconductor X-ray detector 4 simultaneously measures the high-energy X-ray intensity and the low-energy X-ray intensity separately and separately.

【0013】図1の校正用ファントム5を、骨等価ファ
ントム2部分を透過したX線6が多チャンネル型半導体
X線検出器4のすべてのチャンネル7で測定されるよう
に設置した。校正用ファントム5を測定したデータか
ら、半導体X線検出器のチャンネル間の感度補正係数と
定量値の校正係数を以下のように求めた。
The calibration phantom 5 shown in FIG. 1 is installed so that the X-rays 6 transmitted through the bone equivalent phantom 2 can be measured in all channels 7 of the multi-channel type semiconductor X-ray detector 4. From the data obtained by measuring the calibration phantom 5, the sensitivity correction coefficient between the channels of the semiconductor X-ray detector and the calibration coefficient of the quantitative value were obtained as follows.

【0014】まず、感度補正係数について説明する。ま
ず、高エネルギーX線の測定強度について行なう。各チ
ャンネルについて、走査を行なうことにより512個のデ
−タを得る。これにより得られた512×512全データの平
均値AVを求める。n番目のチャンネルのmラインのX
線強度をCn(m)とする。Cn(1)からCn(51
2)までの512個のデータの平均値Cnavを計算
し、各チャンネルごとに補正係数CnHを(数1)とし
て求めた。
First, the sensitivity correction coefficient will be described. First, the measurement intensity of high energy X-rays is performed. By scanning each channel, 512 data are obtained. The average value AV of all the 512 × 512 data thus obtained is obtained. X on the m line of the nth channel
The line intensity is C n (m). From C n (1) to C n (51
The average value C n av of 512 data up to 2) was calculated, and the correction coefficient C n H was calculated as (Equation 1) for each channel.

【0015】[0015]

【数1】 [Equation 1]

【0016】これを低エネルギーX線の測定強度につい
ても行った。測定した領域の走査方向については、骨等
価ファントムが含まれるため、従来のように同一の材料
を測定した場合とはことなるが、各チャンネルは常に同
じ材料を測定しているためこの方法が可能である。
This was also performed on the measurement intensity of low energy X-rays. Regarding the scanning direction of the measured area, since the bone equivalent phantom is included, it is different from the case of measuring the same material as before, but this method is possible because each channel always measures the same material. Is.

【0017】次に、校正用ファントム内の骨等価ファン
トムのCaの単位面積あたりの密度を算出した。骨等価
ファントム部を透過した高エネルギーX線強度、低エネ
ルギーX線強度それぞれについて、平均値を計算した。
また、アクリル部のデータについても同様に平均値を算
出した。この結果を4つの測定値を用い、エネルギー差
分法にもとづき、骨等価ファントム内の単位面積あたり
のCa密度DCaHを計算した。これより、測定密度の校
正係数Dは、(数2)により得た。
Next, the density per unit area of Ca of the bone equivalent phantom in the calibration phantom was calculated. An average value was calculated for each of the high-energy X-ray intensity and the low-energy X-ray intensity transmitted through the bone equivalent phantom part.
Moreover, the average value was similarly calculated also about the data of an acrylic part. The Ca density D CaH per unit area in the bone-equivalent phantom was calculated based on the energy difference method using the four measured values. From this, the calibration coefficient D of the measured density was obtained by (Equation 2).

【0018】[0018]

【数2】 [Equation 2]

【0019】校正用ファントムに代えて、測定対象を設
置し、同様に測定した。チャンネル間の感度ばらつきを
補正するため、nチャンネルの各ラインのX線強度測定
値にチャンネル間感度補正係数CnHを乗算する。
Instead of the calibration phantom, an object to be measured was set and the same measurement was performed. In order to correct the sensitivity variation between channels, the X-ray intensity measurement value of each line of the n channel is multiplied by the interchannel sensitivity correction coefficient C n H.

【0020】この感度補正を行なったデータを用い、測
定対象中のCa密度を算出する。計算の方法は、校正係
数を求める場合と同様であり、エネルギー差分法を用い
る。得られたCa密度DCamに、校正係数Dを乗じた値
D×DCamを測定対象のCa密度とした。
The Ca density in the measurement object is calculated using the data obtained by this sensitivity correction. The calculation method is the same as that for obtaining the calibration coefficient, and the energy difference method is used. A value D × D Cam obtained by multiplying the obtained Ca density D Cam by the calibration coefficient D was taken as the Ca density to be measured.

【0021】以上の方法により、1回の事前の測定によ
り、感度補正と測定密度の校正が行うことができた。
According to the above method, the sensitivity correction and the calibration of the measurement density could be carried out by one preliminary measurement.

【0022】(実施例2)図3に、本発明の校正用ファ
ントムの他の実施例の外観図である。アクリル板の校正
用ファントム5の2カ所に、単位体積当りのCa量は同
じファントム材料11、12、を厚さを変えて設けたも
のである。ファントム材料12はファントム材料11の
1/2の厚さとしたため、単位面積あたりのCa量も1
/2となる。これらのファントム材料11、12のCa
量は、Dca11、Dca12で、ともに既知である。
(Embodiment 2) FIG. 3 is an external view of another embodiment of the calibration phantom of the present invention. Phantom materials 11 and 12 having the same amount of Ca per unit volume are provided at two locations on an acrylic plate calibrating phantom 5 with different thicknesses. Since the phantom material 12 has a thickness half that of the phantom material 11, the amount of Ca per unit area is also 1
/ 2. Ca of these phantom materials 11 and 12
The amounts are D ca11 and D ca12 , both of which are known.

【0023】実施例1と同様に、多チャンネル型X線検
出器のすべてのチャンネルを覆うように設計されてい
る。
Like the first embodiment, the multi-channel X-ray detector is designed to cover all the channels.

【0024】この校正用ファントムを実施例1と同様
に、測定してチャンネル間の感度補正係数をCnHを求
めた。
This calibration phantom was measured in the same manner as in Example 1 to determine the sensitivity correction coefficient C n H between channels.

【0025】次に、ファントム材料11、12の単位面
積当りのCa密度を同じく、エネルギー差分法をもとに
求めた。算出されたファントム材料11、12のCa密
度をそれぞれDCaH11、DCaH12とする。この2つのCa
密度から、その日の密度定量装置の密度に対する直線性
をも考慮した校正式(数3)を得る。
Next, the Ca densities per unit area of the phantom materials 11 and 12 were similarly obtained by the energy difference method. The calculated Ca densities of the phantom materials 11 and 12 are D CaH11 and D CaH12 , respectively. These two Ca
From the density, a calibration formula (Equation 3) that takes linearity with respect to the density of the density quantification device on that day into consideration is obtained.

【0026】[0026]

【数3】 [Equation 3]

【0027】ここで、(数3)において、yは校正され
たCa密度、Dcam は測定した密度、kは比例定数、D
0 は定数である。k、D0 は、それぞれ(数4)、(数
5)である。
Here, in (Equation 3), y is a calibrated Ca density, D cam is a measured density, k is a proportional constant, and D is a proportional constant.
0 is a constant. k and D 0 are (Equation 4) and (Equation 5), respectively.

【0028】[0028]

【数4】 [Equation 4]

【0029】[0029]

【数5】 [Equation 5]

【0030】以上により、測定値Dcam を(数3)にし
たがい、より精度よく校正できる。本実施例では、校正
ファントム中のファントム材料を厚さの異なる2種類と
したが、3種類以上の厚さのファントム材料で構成して
もよい。この場合も、同様に最小2乗法などにより、
(数3)のような校正式をもとめ、密度に対する直線性
のよい校正を行なうことができる。
As described above, according to the measured value D cam (Equation 3), it is possible to calibrate more accurately. In the present embodiment, the phantom materials in the calibration phantom are of two types having different thicknesses, but may be composed of phantom materials of three or more types of thickness. Also in this case, the least squares method, etc.
Based on a calibration formula such as (Equation 3), it is possible to perform calibration with good linearity with respect to density.

【0031】また、校正用ファントム内のCa含有ファ
ントム材料は、厚さを一定にしCa含有量の異なるもの
を使用してもよい。
Further, as the Ca-containing phantom material in the calibration phantom, those having a constant thickness and different Ca contents may be used.

【0032】本実施例の方法は、Ca以外の元素につい
ても、密度または厚さのことなる材料で構成したファン
トムにより、同様に行える。また、複数の元素の密度の
和や、化合物密度についても実施可能である。
The method of this embodiment can be similarly performed for elements other than Ca by using a phantom composed of materials having different densities or thicknesses. Further, the sum of the densities of a plurality of elements and the compound density can also be implemented.

【0033】多チャンネル型X線検出器としては、半導
体X線検出器のほかにタングステン酸カドミウムにより
構成されたシンチレーション検出器を多数配列したもの
を用いることも可能である。
As the multi-channel X-ray detector, in addition to the semiconductor X-ray detector, it is also possible to use an array of a large number of scintillation detectors made of cadmium tungstate.

【0034】また、実施例1のように、検出器にX線エ
ネルギーを識別して計測することができない場合には、
X線管の管電圧を切り替えて、エネルギースペクトルを
変化させることによっても可能である。
When the detector cannot discriminate and measure X-ray energy as in the first embodiment,
It is also possible by changing the tube voltage of the X-ray tube to change the energy spectrum.

【0035】[0035]

【発明の効果】本実施例の校正用ファントムおよびデー
タ校正法を用いることにより、多チャンネル放射線検出
器のチャンネル感度補正と、測定密度の校正が同時に行
えるため、事前の測定が1回で容易に行なうことができ
た。
By using the calibration phantom and the data calibration method of this embodiment, the channel sensitivity correction of the multi-channel radiation detector and the calibration of the measurement density can be performed at the same time, so that the preliminary measurement can be easily performed once. I was able to do it.

【0036】また、測定密度の直線性をも良好に校正す
ることができた。
Also, the linearity of the measured density could be calibrated well.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の校正用ファントムの一実施例の外観図FIG. 1 is an external view of an embodiment of a calibration phantom of the present invention.

【図2】図1の実施例の校正用ファントムを用いた定量
装置の構成図
FIG. 2 is a block diagram of a quantification device using the calibration phantom of the embodiment of FIG.

【図3】本発明の校正用ファントムの他の実施例の外観
FIG. 3 is an external view of another embodiment of the calibration phantom of the present invention.

【図4】従来の校正用ファントムの外観図FIG. 4 is an external view of a conventional calibration phantom.

【符号の説明】[Explanation of symbols]

1 アクリル板 2 骨等価ファントム 3 X線発生装置 4 多チャンネル型半導体X線検出器 5 校正用ファントム 6 X線 11 ファントム材料 12 ファントム材料 DESCRIPTION OF SYMBOLS 1 Acrylic plate 2 Bone equivalent phantom 3 X-ray generator 4 Multi-channel semiconductor X-ray detector 5 Calibration phantom 6 X-ray 11 Phantom material 12 Phantom material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 筒井 博司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroshi Tsutsui 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 放射線源と複数の放射線検出素子からな
る物質の定量を行なう装置に用いる校正用ファントムで
あって、定量しようとする物質をすくなくとも1カ所に
含有することを特徴とする校正用ファントム。
1. A calibration phantom for use in an apparatus for quantifying a substance consisting of a radiation source and a plurality of radiation detection elements, wherein the substance to be quantified is contained in at least one place. ..
【請求項2】 定量しようとする物質が骨等価物質であ
り、それが軟組織等価物質の1カ所に含有された請求項
1記載の校正用ファントム。
2. The calibration phantom according to claim 1, wherein the substance to be quantified is a bone equivalent substance, and the substance is contained in one site of the soft tissue equivalent substance.
【請求項3】 放射線源と複数の放射線検出素子からな
る物質の定量装置において、校正用ファントムを測定す
ることにより、前記放射線検出素子間の感度補正と、測
定した物質の定量値の校正を同時に行なうことを特徴と
するデータ校正法。
3. In a quantification device for a substance comprising a radiation source and a plurality of radiation detection elements, by measuring a calibration phantom, sensitivity correction between the radiation detection elements and calibration of a quantitative value of the measured substance are performed at the same time. A data calibration method characterized by performing.
【請求項4】 校正用ファントムが測定対象となる物質
の含有量の異なる部分を2カ所以上含み、前記校正用フ
ァントムを測定することにより、定量値の物質の含有量
に対する直線性の校正を行なうことを特徴とするデータ
校正法。
4. The calibration phantom includes two or more portions having different contents of the substance to be measured, and the calibration phantom is measured to calibrate the linearity with respect to the substance content of the quantitative value. A data proofing method characterized in that
【請求項5】 放射線源が、X線管、前記放射線検出素
子が、多チャンネル型半導体放射線検出器よりなること
を特徴とする請求項3または4記載のデータ校正法。
5. The data calibrating method according to claim 3, wherein the radiation source is an X-ray tube, and the radiation detecting element is a multi-channel semiconductor radiation detector.
JP3200618A 1991-08-09 1991-08-09 Calibration phantom and data calibration method Expired - Fee Related JP3030950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3200618A JP3030950B2 (en) 1991-08-09 1991-08-09 Calibration phantom and data calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3200618A JP3030950B2 (en) 1991-08-09 1991-08-09 Calibration phantom and data calibration method

Publications (2)

Publication Number Publication Date
JPH0542130A true JPH0542130A (en) 1993-02-23
JP3030950B2 JP3030950B2 (en) 2000-04-10

Family

ID=16427375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3200618A Expired - Fee Related JP3030950B2 (en) 1991-08-09 1991-08-09 Calibration phantom and data calibration method

Country Status (1)

Country Link
JP (1) JP3030950B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057786A1 (en) 1999-03-29 2000-10-05 Matsushita Electric Industrial Co., Ltd. X-ray camera
KR20040051938A (en) * 2002-12-13 2004-06-19 한국전자통신연구원 Method for calibrating bone mineral density index variation and storage medium for storing program of executing the same
JP2006141905A (en) * 2004-11-25 2006-06-08 Hitachi Medical Corp X-ray radiographing apparatus
CN109788926A (en) * 2016-09-22 2019-05-21 通用电气公司 The spectroscopic calibration of spectrum computed tomography (CT)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057786A1 (en) 1999-03-29 2000-10-05 Matsushita Electric Industrial Co., Ltd. X-ray camera
US6748049B1 (en) 1999-03-29 2004-06-08 Matsushita Electric Industrial Co., Ltd. X-ray camera
KR20040051938A (en) * 2002-12-13 2004-06-19 한국전자통신연구원 Method for calibrating bone mineral density index variation and storage medium for storing program of executing the same
JP2006141905A (en) * 2004-11-25 2006-06-08 Hitachi Medical Corp X-ray radiographing apparatus
CN109788926A (en) * 2016-09-22 2019-05-21 通用电气公司 The spectroscopic calibration of spectrum computed tomography (CT)
JP2019532699A (en) * 2016-09-22 2019-11-14 ゼネラル・エレクトリック・カンパニイ Spectral computer tomography (CT) spectral calibration

Also Published As

Publication number Publication date
JP3030950B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
US5493601A (en) Radiographic calibration phantom
Dance et al. Breast dosimetry
US7881424B2 (en) Method for calibrating dual-energy CT system and method of image reconstruction
KR102252847B1 (en) X-ray device, X-ray inspection method, data processing device, data processing method, and computer program
US20050069086A1 (en) Dynamic exposure control in radiography
EP0549858A2 (en) Substance quantitative analysis method
JPS6282942A (en) Phantom for inspecting quality of bone and ct scanner and scanning method utilizing the same
Chapple et al. A phantom based method for deriving typical patient doses from measurements of dose–area product on populations of patients
KR0171081B1 (en) Apparatus and method for measuring physical characteristics of materials
Rutherford et al. Calibration and response of an EMI scanner
US4016418A (en) Method of radioactivity analysis
Doyle et al. Calibrating automatic exposure control devices for digital radiography
US5682036A (en) Method and apparatus for accurately calibrating an attenuation map for emission computed tomography
JP3030950B2 (en) Calibration phantom and data calibration method
US8611625B2 (en) Tomographic apparatus
GB2030815A (en) Determination of internal body structures by measuring scattered radiation
JP5648891B2 (en) Radiation measurement method and radiation measurement apparatus
CA1164580A (en) Compton scatter diagnostic apparatus for determining structures in a body
EP0659386B1 (en) Radiographic calibration phantom
Clarke et al. Calibration methods for measuring splenic sequestration by external scanning
Zink et al. The measurement of radiation dose profiles for electron‐beam computed tomography using film dosimetry
US5351689A (en) Method and apparatus for low dose estimates of bone minerals in vivo gamma ray backscatter
JPH08266532A (en) X-ray ct system
JP3333940B2 (en) Apparatus and method for calibrating apparatus for measuring layer thickness using X-rays
JPH05329141A (en) X-ray diagnostic system and correction method therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees