JPH0541690B2 - - Google Patents

Info

Publication number
JPH0541690B2
JPH0541690B2 JP25337488A JP25337488A JPH0541690B2 JP H0541690 B2 JPH0541690 B2 JP H0541690B2 JP 25337488 A JP25337488 A JP 25337488A JP 25337488 A JP25337488 A JP 25337488A JP H0541690 B2 JPH0541690 B2 JP H0541690B2
Authority
JP
Japan
Prior art keywords
weight
particles
alloy
aluminum alloy
hard particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25337488A
Other languages
Japanese (ja)
Other versions
JPH02101141A (en
Inventor
Haruo Shiina
Masami Hoshi
Naoyoshi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP25337488A priority Critical patent/JPH02101141A/en
Priority to CA000614165A priority patent/CA1327153C/en
Priority to US07/414,692 priority patent/US4989556A/en
Priority to DE68915924T priority patent/DE68915924T2/en
Priority to EP89310285A priority patent/EP0363225B1/en
Publication of JPH02101141A publication Critical patent/JPH02101141A/en
Publication of JPH0541690B2 publication Critical patent/JPH0541690B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

A 発明の目的 (1) 産業上の利用分野 本発明は機械構造部材用高強度アルミニウム合
金に関する。 (2) 従来の技術 従来、粉末冶金法の適用により大量のSi、Fe、
Mn等を添加した高強度アルミニウム合金が提案
されている。 (3) 発明が解決しようとする課題 アルミニウム合金より機械構造部材を構成し、
それを高温下で使用する場合には、鋼製機械構造
部材との組合せ使用は避けられないが、従来合金
は、それに析出する初晶Si、共晶Si、金属間化合
物等が非常に微細であるため、摺動摩耗量が比較
的多く、その結果、高面圧および高速摺動下では
耐久性に乏しいといつた問題がある。 本発明は前記に鑑み、特に、耐摩耗性を向上さ
せた前記高強度アルミニウム合金を提供すること
を目的とする。 B 発明の構成 (1) 課題を解決するための手段 本発明に係る機械構造部材用高強度アルミニウ
ム合金は、 12.0重量%≦Si≦28.0重量%、 0.8重量%≦Cu≦5.0重量%、 0.3重量%≦Mg≦3.5重量%、 2.0重量%≦Fe≦10.0重量%、 0.5重量%≦Mn≦2.9重量% および不可避不純物を含むアルミニウム合金マ
トリツクスに、Al2O3粒子、SiC粒子、Si3N4
子、ZrO2粒子、SiO2粒子、TiO2粒子および金属
Si粒子から選択される少なくとも一種の硬質粒子
を前記アルミニウム合金マトリツクスに対して
0.5重量%以上、15.0重量%以下分散させること
により、前記硬質粒子の面積率を1%以上、6%
以下に設定したことを特徴とする。 (2) 作用 硬質粒子の添加量および面積率を前記のように
特定すると、アルミニウム合金マトリツクスにお
ける硬質粒子の分散状態が、そのアルミニウム合
金の耐摩耗性を向上させる上で最適になる。また
硬質粒子は、アルミニウム合金マトリツクスの結
晶転位を固着してクリープ特性および耐応力腐食
割れ特性の改善、熱膨脹係数の低下、ヤング率お
よび疲労強度の向上等の諸効果を有する。 たゞし、アルミニウム合金マトリツクスに対す
る硬質粒子の含有量が0.5重量%を下回ると、耐
摩耗性が改善されず、またヤング率の向上および
熱膨脹係数の減少の程度も低くなり、一方、15.0
重量%を上回ると、相手材の摩耗が増大する。 また硬質粒子の面積率が1%を下回ると、耐摩
耗性が不足し、一方、6%を上回ると、耐応力腐
食割れ特性の劣化および疲労強度の低下を招来
し、その上相手材の摩耗が増大する。 他の成分の含有理由および含有量の限定理由は
以下の通りである。 (a) Siについて Siは、耐摩耗性、ヤング率および熱伝導率を向
上し、また熱膨脹係数を低下する効果を有する。
ただし、12.0重量%を下回ると前記効果を得るこ
とができず、一方、28.0重量%を上回ると、押出
し加工および鍛造加工において成形性が悪化し、
割れを生じ易くなる。 (b) Cuについて Cuは、熱処理においてアルミニウム合金マト
リツクスを強化する効果を有する。ただし、0.8
重量%を下回ると前記効果を得ることができず、
一方、5.0重量%を上回ると、耐応力腐食割れ特
性が悪化し、熱間鍛造加工性が低下する。 (c) Mgについて Mgは、Cuと同様に熱処理においてアルミニウ
ム合金マトリツクスを強化する効果を有する。た
だし、0.3重量%を下回ると前記効果を得ること
ができず、一方、3.5重量%を上回ると、耐応力
腐食割れ特性が悪化し、熱間鍛造加工性が低下す
る。 (d) Feについて Feは、高温強度およびヤング率を向上させる
効果を有する。ただし、2.0重量%を下回ると、
高温強度の向上を期待することができず、一方、
10.0重量%を上回ると高速熱間鍛造加工が事実上
不可能となる。 (e) Mnについて Mnは、特にFe≧4重量%の範囲において、高
温強度および耐応力腐食割れ特性を改善し、また
熱間鍛造加工性を向上させる効果を有する。ただ
し、0.5重量%を下回ると、前記効果を得ること
ができず、一方、2.9重量%を上回ると、却つて
熱間鍛造加工性が悪化する時、悪影響が現れる。 (3) 実施例 本発明合金におけるアルミニウム合金マトリツ
クス粉末として、Si14.5重量%、Cu2.5重量%、
Mg0.6重量%、Fe4.6重量%、Mn2.1重量%およ
び残部が不可避不純物を含むAlである粉末を、
アトマイズ法を適用して製造した。 硬質粒子として、Al2O3粒子、SiC粒子、Si3N4
粒子、ZrO2粒子、SiO2粒子、TiO2粒子および金
属Si粒子を用意し、これらの粒子から下記のもの
を選択して混合硬質粒子を調製した。 Al2O3粒子 48.5重量% ZrO2粒子 30.2重量% SiO2粒子 20.0重量% TiO2粒子 1.3重量% アルミニウム合金マトリツクス粉末に、表に
示す添加量にて混合硬質粒子を配合し、以下に述
べる各工程を経て、表に示す混合硬質粒子の面
積率を持つ本発明合金,を製造した。 即ち、アルミニウム合金マトリツクス粉末と混
合硬質粒子とをV型ブレンダにて混合した後、各
混合粉末に冷間静水圧プレス成形法(CIP法)を
適用して圧粉体を得、次いで各圧粉体を、均熱炉
内に設置して所定時間保持し、その後各圧粉体に
熱間押出し加工を施して直径35mm、長さ800mmの
丸棒状に成形された本発明合金,を得た。
A. Object of the invention (1) Industrial application field The present invention relates to a high-strength aluminum alloy for mechanical structural members. (2) Conventional technology Conventionally, large amounts of Si, Fe,
High-strength aluminum alloys containing elements such as Mn have been proposed. (3) Problem to be solved by the invention A mechanical structural member is constructed from an aluminum alloy,
When used at high temperatures, it is unavoidable to use it in combination with steel mechanical structural parts, but conventional alloys have extremely fine primary Si, eutectic Si, intermetallic compounds, etc. that precipitate in them. Therefore, the amount of sliding wear is relatively large, resulting in a problem of poor durability under high surface pressure and high speed sliding. In view of the above, an object of the present invention is particularly to provide the above-mentioned high-strength aluminum alloy with improved wear resistance. B. Structure of the Invention (1) Means for Solving the Problems The high-strength aluminum alloy for mechanical structural members according to the present invention has the following properties: 12.0% by weight≦Si≦28.0% by weight, 0.8% by weight≦Cu≦5.0% by weight, 0.3% by weight %≦Mg≦3.5 wt%, 2.0 wt%≦Fe≦10.0 wt%, 0.5 wt%≦Mn≦2.9 wt% and in an aluminum alloy matrix containing inevitable impurities, Al 2 O 3 particles, SiC particles, Si 3 N 4 particles, ZrO2 particles, SiO2 particles, TiO2 particles and metals
At least one hard particle selected from Si particles is applied to the aluminum alloy matrix.
By dispersing 0.5% by weight or more and 15.0% by weight or less, the area ratio of the hard particles can be increased from 1% to 6%.
It is characterized by the following settings. (2) Effect When the addition amount and area ratio of the hard particles are specified as described above, the state of dispersion of the hard particles in the aluminum alloy matrix becomes optimal for improving the wear resistance of the aluminum alloy. Further, the hard particles fix crystal dislocations in the aluminum alloy matrix and have various effects such as improving creep properties and stress corrosion cracking resistance, lowering the coefficient of thermal expansion, and improving Young's modulus and fatigue strength. However, if the content of hard particles with respect to the aluminum alloy matrix is less than 0.5% by weight, the wear resistance will not be improved, and the degree of improvement in Young's modulus and reduction in the coefficient of thermal expansion will be low;
When the amount exceeds % by weight, wear of the mating material increases. If the area ratio of hard particles is less than 1%, wear resistance will be insufficient, while if it exceeds 6%, this will lead to deterioration of stress corrosion cracking resistance and a decrease in fatigue strength, as well as wear of the mating material. increases. The reason for the inclusion of other components and the reason for limiting the content are as follows. (a) About Si Si has the effect of improving wear resistance, Young's modulus, and thermal conductivity, and lowering the coefficient of thermal expansion.
However, if it is less than 12.0% by weight, the above effect cannot be obtained, and on the other hand, if it exceeds 28.0% by weight, formability in extrusion processing and forging processing will deteriorate,
Cracks are more likely to occur. (b) About Cu Cu has the effect of strengthening the aluminum alloy matrix during heat treatment. However, 0.8
If it is less than % by weight, the above effect cannot be obtained,
On the other hand, if it exceeds 5.0% by weight, stress corrosion cracking resistance deteriorates and hot forging workability deteriorates. (c) Regarding Mg Mg, like Cu, has the effect of strengthening the aluminum alloy matrix during heat treatment. However, if it is less than 0.3% by weight, the above effects cannot be obtained, while if it exceeds 3.5% by weight, stress corrosion cracking resistance deteriorates and hot forging workability decreases. (d) About Fe Fe has the effect of improving high temperature strength and Young's modulus. However, if it is less than 2.0% by weight,
No improvement in high temperature strength can be expected; on the other hand,
If it exceeds 10.0% by weight, high-speed hot forging becomes virtually impossible. (e) Regarding Mn Mn has the effect of improving high temperature strength and stress corrosion cracking resistance, and improving hot forging workability, especially in the range of Fe≧4% by weight. However, if it is less than 0.5% by weight, the above-mentioned effects cannot be obtained, while if it exceeds 2.9% by weight, an adverse effect appears when hot forging workability deteriorates. (3) Example As the aluminum alloy matrix powder in the alloy of the present invention, 14.5% by weight of Si, 2.5% by weight of Cu,
A powder containing 0.6% by weight of Mg, 4.6% by weight of Fe, 2.1% by weight of Mn, and the balance being Al containing unavoidable impurities,
Manufactured using the atomization method. As hard particles, Al2O3 particles, SiC particles , Si3N4
Particles, ZrO 2 particles, SiO 2 particles, TiO 2 particles, and metal Si particles were prepared, and the following particles were selected from these particles to prepare mixed hard particles. Al 2 O 3 particles 48.5% by weight ZrO 2 particles 30.2% by weight SiO 2 particles 20.0% by weight TiO 2 particles 1.3% by weight Mixed hard particles were added to the aluminum alloy matrix powder in the amounts shown in the table, and each of the following Through the steps, an alloy of the present invention having the area ratio of mixed hard particles shown in the table was manufactured. That is, after mixing the aluminum alloy matrix powder and mixed hard particles in a V-type blender, a cold isostatic pressing method (CIP method) is applied to each mixed powder to obtain a green compact, and then each green compact is The compacts were placed in a soaking furnace and held for a predetermined time, and then hot extrusion was applied to each green compact to obtain an alloy of the present invention formed into a round bar shape with a diameter of 35 mm and a length of 800 mm.

【表】 比較のため、前記と同一組成のアルミニウム合
金粉末に、表に示す添加量にて混合硬質粒子を
配合し、前記各工程と同一工程を経て、表に示
す混合硬質粒子の面積率を持つ比較例合金,
を製造した。
[Table] For comparison, mixed hard particles were added to aluminum alloy powder with the same composition as above in the amount shown in the table, and the area ratio of the mixed hard particles shown in the table was calculated through the same steps as above. Comparative example alloy with
was manufactured.

【表】 本発明合金,および比較例合金,より
テストピースを切出し、各テストピースについて
摺動摩耗試験を行つたところ表の結果が得られ
た。 摺動摩耗試験は、縦10mm、横10mm、厚さ5mmの
テストピースを、速度2.5m/secで回転する直径
135mmのクロムバナジウム鋼(JISSWOCV)より
なる円盤に圧力200Kg/cm2を以て押圧し、また潤
滑油を5cc/minの条件で滴下し、摺動距離18Km
に亘つて行われたもので、摩耗量はテストピース
および円盤における試験前後の重量差(g)を求
めることにより測定された。
[Table] Test pieces were cut out from the alloy of the present invention and the comparative example alloy, and a sliding wear test was conducted on each test piece, and the results shown in the table were obtained. In the sliding wear test, a test piece measuring 10 mm long, 10 mm wide, and 5 mm thick was rotated at a speed of 2.5 m/sec.
A disk made of 135 mm chrome vanadium steel (JISSWOCV) was pressed with a pressure of 200 Kg/cm 2 and lubricating oil was dripped at 5 cc/min to create a sliding distance of 18 Km.
The amount of wear was measured by determining the weight difference (g) between the test piece and the disk before and after the test.

【表】 表から明らかなように、本発明合金,
は、優れた耐摩耗性を有する。また円盤の摩耗量
も、本発明合金との組合せにおいて、0.0002
g、また本発明合金との組合せにおいて、
0.0003gと抑制されていることが判明した。これ
により本発明合金,が鋼製相手材との組合せ
において優秀な摺動特性を示すことが明らかとな
つた。比較例合金は、混合硬質粒子の添加量が
少なく、また面積率も低いため摩耗が増大する。
比較例合金は、混合硬質粒子の添加量が多く、
また面積率が高いため、良好な耐摩耗性を有する
が、相手材である円盤の摩耗が増大し、その摩耗
量は0.0007gであつた。 なお、前記クロムバナジウム鋼は内燃機関用バ
ルブスプリング構成材料として用いられているも
のである。 前記のように本発明合金は鉄合金との組合せに
おいて優秀な摺動特性を示すが、この場合の鉄合
金の硬さはHv400以上であることが望ましい。鉄
合金の硬さがHv400を下回ると、その摩耗量が増
大する。 次に、各テストピースについて応力腐食割れ試
験(JIS H8711)を行つたところ表の結果が得
られた。 応力腐食割れ試験は、縦100mm、横20mm、厚さ
3mmのテストピースを、それに対する負荷応力を
σ0.2×0.9(たゞし、σ0.2は、各合金の0.2%耐力)
として、液温30℃、濃度3.5%のNaCl水溶液中に
28日間浸漬することにより行われ、耐応力腐食割
れ特性の優秀なテストピースにおけるクラツクの
発生の有無により判断した。
[Table] As is clear from the table, the alloy of the present invention,
has excellent wear resistance. In addition, the wear amount of the disk was 0.0002 in combination with the alloy of the present invention.
g, also in combination with the alloy of the present invention,
It was found that the amount was suppressed to 0.0003g. This revealed that the alloy of the present invention exhibits excellent sliding properties in combination with a steel counterpart. In the comparative example alloy, the amount of mixed hard particles added is small and the area ratio is also low, so wear increases.
The comparative example alloy has a large amount of mixed hard particles added,
Also, since the area ratio is high, it has good wear resistance, but the wear of the mating disk was increased, and the amount of wear was 0.0007 g. Note that the chromium vanadium steel is used as a constituent material of valve springs for internal combustion engines. As mentioned above, the alloy of the present invention exhibits excellent sliding properties when combined with an iron alloy, but the hardness of the iron alloy in this case is preferably Hv400 or higher. When the hardness of the iron alloy falls below Hv400, the amount of wear increases. Next, a stress corrosion cracking test (JIS H8711) was conducted on each test piece, and the results shown in the table were obtained. In the stress corrosion cracking test, a test piece with a length of 100 mm, a width of 20 mm, and a thickness of 3 mm was used, and the stress applied to it was σ 0.2 × 0.9 (σ 0.2 is 0.2% yield strength of each alloy).
In a NaCl aqueous solution with a temperature of 30℃ and a concentration of 3.5%,
The test piece was immersed for 28 days, and judgment was made based on the presence or absence of cracks in the test piece, which had excellent stress corrosion cracking resistance.

【表】 表から明らかなように、本発明合金,お
よび比較例合金は、優れた耐応力腐食割れ特性
を有する。比較例合金はその混合硬質粒子の面
積率が高いため耐応力腐食割れ特性が劣化する。 さらに、各テストピースについて、試験温度
150℃にて繰返し回数107回の圧縮−引張り疲労試
験を行つたところ表Vの結果が得られた。
[Table] As is clear from the table, the alloy of the present invention and the comparative example alloy have excellent stress corrosion cracking resistance. Since the comparative example alloy has a high area ratio of mixed hard particles, its stress corrosion cracking resistance deteriorates. Furthermore, for each test piece, the test temperature
A compression-tensile fatigue test was conducted at 150° C. and repeated 107 times, and the results shown in Table V were obtained.

【表】 表Vから明らかように、本発明合金,およ
び比較例合金は比較的大きな疲労強度を有す
る。比較例合金はその混合硬質粒子の面積率が
高いため疲労強度が小さい。 前記の各テスト結果より、本発明合金,は
耐摩耗性および耐応力腐食割れ特性において優
れ、また比較的大きな疲労強度を有することが明
らかである。 したがつて、本発明合金は、高温、高面圧およ
び高速摺動下で使用される機械構造部材用構成材
料、例えば内燃機関用摺動部材、特に、動弁系に
用いられるスプリングリテーナ用構成材料として
最適である。 図面は、本発明合金より前記スプリングリテー
ナを構成した場合において、硬質粒子の添加量お
よび面積率と、硬質粒子の平均粒径と、スプリン
グリテーナおよびバブルスプリングの性状との関
係を示す。スプリングリテーナおよびバルブスプ
リングの組合せにおいて、最適範囲は図面中Aで
示す領域である。 C 発明の効果 本発明によれば、前記のように各成分の含有量
および硬質粒子の面積率を特定することにより、
特に、耐摩耗性を向上させた高強度アルミニウム
合金を提供することができる。また前記面積率の
上限値の特定は、アルミニウム合金に、優れた耐
応力腐食割れ特性と比較的大きな疲労強度を持た
せる上に有効である。
[Table] As is clear from Table V, the alloy of the present invention and the comparative example alloy have relatively high fatigue strength. The comparative example alloy has a high area ratio of mixed hard particles, so its fatigue strength is low. From the above test results, it is clear that the alloy of the present invention has excellent wear resistance and stress corrosion cracking resistance, and also has relatively high fatigue strength. Therefore, the alloy of the present invention can be used as a constituent material for mechanical structural members used under high temperatures, high surface pressures, and high-speed sliding, such as sliding members for internal combustion engines, and particularly for spring retainers used in valve train systems. It is ideal as a material. The drawings show the relationship between the addition amount and area ratio of hard particles, the average particle diameter of the hard particles, and the properties of the spring retainer and bubble spring when the spring retainer is constructed from the alloy of the present invention. The optimum range for the combination of the spring retainer and valve spring is the area indicated by A in the drawing. C Effects of the Invention According to the present invention, by specifying the content of each component and the area ratio of hard particles as described above,
In particular, a high-strength aluminum alloy with improved wear resistance can be provided. Further, specifying the upper limit value of the area ratio is effective in providing an aluminum alloy with excellent stress corrosion cracking resistance and relatively high fatigue strength.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は硬質粒子の添加量等と、スプリングリテ
ーナおよびバルブスプリングの性状との関係を示
すグラフである。
The drawing is a graph showing the relationship between the amount of hard particles added and the properties of the spring retainer and valve spring.

Claims (1)

【特許請求の範囲】 1 12.0重量%≦Si≦28.0重量%、 0.8重量%≦Cu≦5.0重量%、 0.3重量%≦Mg≦3.5重量%、 2.0重量%≦Fe≦10.0重量%、 0.5重量%≦Mn≦2.9重量% および不可避不純物を含むアルミニウム合金マ
トリツクスに、Al2O3粒子、SiC粒子、Si3N4
子、ZrO2粒子、SiO2粒子、TiO2粒子および金属
Si粒子から選択される少なくとも一種の硬質粒子
を前記アルミニウム合金マトリツクスに対して
0.5重量%以上、15.0重量%以下分散させること
により、前記硬質粒子の面積率を1%以上、6%
以下に設定したことを特徴とする機械構造部材用
高強度アルミニウム合金。
[Claims] 1 12.0% by weight≦Si≦28.0% by weight, 0.8% by weight≦Cu≦5.0% by weight, 0.3% by weight≦Mg≦3.5% by weight, 2.0% by weight≦Fe≦10.0% by weight, 0.5% by weight Al 2 O 3 particles, SiC particles, Si 3 N 4 particles, ZrO 2 particles, SiO 2 particles , TiO 2 particles and metals are added to the aluminum alloy matrix containing ≦Mn≦2.9% by weight and unavoidable impurities.
At least one hard particle selected from Si particles is applied to the aluminum alloy matrix.
By dispersing 0.5% by weight or more and 15.0% by weight or less, the area ratio of the hard particles can be increased from 1% to 6%.
A high-strength aluminum alloy for mechanical structural members, characterized by the following settings:
JP25337488A 1988-10-07 1988-10-07 High strength aluminum alloy for machine structural member Granted JPH02101141A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP25337488A JPH02101141A (en) 1988-10-07 1988-10-07 High strength aluminum alloy for machine structural member
CA000614165A CA1327153C (en) 1988-10-07 1989-09-28 Valve spring retainer for valve operating mechanism for internal combustion engine
US07/414,692 US4989556A (en) 1988-10-07 1989-09-28 Valve spring retainer for valve operating mechanism for internal combustion engine
DE68915924T DE68915924T2 (en) 1988-10-07 1989-10-06 Valve spring plate for a valve drive device for an internal combustion engine.
EP89310285A EP0363225B1 (en) 1988-10-07 1989-10-06 Valve spring retainer for valve operating mechanism for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25337488A JPH02101141A (en) 1988-10-07 1988-10-07 High strength aluminum alloy for machine structural member

Publications (2)

Publication Number Publication Date
JPH02101141A JPH02101141A (en) 1990-04-12
JPH0541690B2 true JPH0541690B2 (en) 1993-06-24

Family

ID=17250469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25337488A Granted JPH02101141A (en) 1988-10-07 1988-10-07 High strength aluminum alloy for machine structural member

Country Status (1)

Country Link
JP (1) JPH02101141A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535590A1 (en) * 1994-09-26 1996-04-04 Unisia Jecs Corp Piston for IC engines
ATE445731T1 (en) * 2006-08-09 2009-10-15 Hornschuch Ag K METHOD FOR PRODUCING A BREATHABLE MULTI-LAYER ARTIFICIAL LEATHER AND BREATHABLE MULTI-LAYER ARTIFICIAL LEATHER

Also Published As

Publication number Publication date
JPH02101141A (en) 1990-04-12

Similar Documents

Publication Publication Date Title
US5674449A (en) Iron base alloys for internal combustion engine valve seat inserts, and the like
US6485678B1 (en) Wear-resistant iron base alloys
EP1379705B1 (en) Intermetallic wear-resistant material for piston rings
JPH08319504A (en) Composite material of metallic sintered compact and its production
WO2015084546A1 (en) High performance nickel-based alloy
US5047092A (en) Aluminium based alloy with a high Young's modulus and high mechanical, strength
US6037067A (en) High temperature abrasion resistant copper alloy
EP0256555B1 (en) Dispersion strengthened alloys
JPH0541690B2 (en)
JP2923578B2 (en) Wear resistant aluminum alloy
EP0440220B1 (en) Automotive engine parts composed of heat resistant ferritic cast steel having excellent thermal fatigue resistance
JPS63206441A (en) Wear-resistant cu alloy combining high strength with high toughness
US5209772A (en) Dispersion strengthened alloy
JPH07216487A (en) Aluminum alloy, excellent in wear resistance and heat resistance, and its production
JPS61183439A (en) Wear resistant sintered hard alloy having superior oxidation resistance
JPS624849A (en) Die for hot working al and al alloy
JPS61291954A (en) Sintering material having wear resistance and corrosion resistance at high temperature and its manufacture
JP2709097B2 (en) Spring retainer
JPH0558049B2 (en)
JPH079050B2 (en) Connecting rod for internal combustion engine
JP3309451B2 (en) Copper alloy valve guide for Ti alloy valve
JPS62294152A (en) Wear resistant member
JPH01238A (en) Wear-resistant Cu alloy with high strength and toughness
JPH0621311B2 (en) Heat and wear resistant aluminum alloy
JPH0273935A (en) High strength aluminum alloy for machine structural body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees